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Abstract

In this paper we studythe Assued Servicemodelpro-
posedby Clark and Wroclawski[3, 4]. While existing
schemesauseserviceprofilesthat are definedn termsof ab-
solutebandwidth,it is difficult, if notimpossiblefo design
provisioningalgorithmsthat achieve simultaneoushgood
servicequality and high resouce utilization for sud ser
viceswith largespatialgranularities.

e proposean Assued Servicemodel,calledLIRA (Lo-
cation IndependenResouce Accounting),in which ser
vice profilesare definedin units of resouce tokens rather
than absolutebandwidth. The numberof resouce tokens
chargedfor ead in-profile padetis a dynamicfunctionof
thepathit traversesandthe congestiorlevel. Definingser
viceprofilein termsof resoucetokensallowsmore dynamic
andflexible networkcontrol algorithmsthat cansimultane-
ously achieve high utilization and ensue high probability
deliveryof in-profile padets. We presentan integrated set
of algorithmsthat implementthe model. Specifically we
leveragethe existingroutinginfrastructue to distributethe
pathcoststo all edgenodes.Sincethe pathcostreflectshe
congestiorevel alongthe path, we usethis costto design
dynamicrouting andload balancingalgorithms. To avoid
padket re-odering within a flow, we devise a lightweight
medhanismthat bindsa flow to a routesothat all padets
fromtheflow will traversethe sameroute To reduceroute
oscillation, we probabilistically bind a flow to one of the
multipleroutes.Simulationresultsare presentedo demon-
stratethe effectivenessf theapproad.
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1 Introduction

As theInternetevolvesinto a globalcommercialinfras-
tructure,thereis a growing needto supportmoreenhanced
serviceghanthe traditionalbest-efort service.To address
thisissueseveralnev QoSmodels(guaranteed;ontrolled
load,committedrate)have beenproposed26, 31]. Collec-
tively, they arecalledintegratedServiceor Intservmodels.
Recentlytherearenew effortsin theIETFto developanew
classof servicemodelscalledDifferentialServicesor Diff-
servmodels[2, 3,4, 17,22,29].

While theseschemedgliffer in details,they arevery sim-
ilar at the architecturallevel. Usually a schemeconsists
of the following components(a) a serviceprofile between
eachcustomefuser)andthelnternetServiceProvider (ISP)
that definesthe commitmentof the ISP to the user (b)
ingressnodesat the ISP edgewhich police the aggrgate
traffic from eachuserto makesurethatno userexceedsts
serviceprofile, (¢) networknodesnsidethelSP corewhich
implementa variety of packetforwarding, buffer manage-
ment, and schedulingbehaiors in orderto control packet
gueueinglelay loss,and/orthroughputand(d) a setof bits
in the headeiof eachpacketusedto trigger mechanisnfor
differential processingnside the network. Usually there
aretwo typesof bits. Thefirst typespecifieghe differential
processindehaior requestedy the user suchasdrop or
delaypreferenceThesebitsarenotmodifiedby therouters.
The secondype of bits canbe changeddy routersanden-
codesthedynamicinformation. An exampleis the bit that
encodesvhethertthepackeis in or outof theserviceprofile.

The key differencebetweenntservandDiffservis that
while Intservprovidesend-to-endQoSserviceonaperflow
basis, Diffserv is intendedto provide servicedifferentia-
tion amongthe traffic aggregatesto differentusersover a
long timescale Suchdifferenceat the servicelevel hasim-
portantimplicationsonthe compleity of the network-lesel
mechanismsequiredto implementtheseservices.In par
ticular, to provide Intsery eachrouter needsto supporta
flow level signalingprotocolsuchasRSVP[32], maintain
perflow state,andperformschedulingandmanagebuffers
on a perflow basis. Sincetherecanbe a large numberof



flowsin the Internet,it is anopenquestionwhetherintserv
canbeimplementedn a scalablefashion. Diffsery onthe
otherhand,pusheghe compleity to the networkedge and
requiresvery simple priority scheduling/droppig mecha-
nismsinsidethecore.An importantpropertyof theDiffserv
schemegonsideredn this paperis that eachroutertreats
identically all packetswhich have the samebits set. That
is, routersonly distinguisha small numberof aggregated
classe®f packetswherea classrepresentall packetswith
thesamemarking.

Existing Diffserv schemesare basedon the conceptof
serviceprofile. Fromthe services point of view, thereare
threeaspectshata Diffservmodelneedgo specify[3, 4]:

¢ semanticof the serviceprofile: what exactly is pro-
videdto thecustomeruser)?

e spatialgranularityof the service: is the servicepro-
file appliedto traffic destinedto a single destination,
a groupof destinationsall nodesof an ISR or every-
wherein the Internet?

¢ level of assurancehow likely is anin-profile packeto
bedeliveredto thedestination?

Two examplesof differentialservicemodelsarethe As-
suredServiceproposedy ClarkandWroclawski [3, 4] and
the PremiumServiceproposedy Jacobsoret. al [22]. The
PremiumServiceprovidestheequialentof adedicatedink
of fixedbandwidthbetweertwo edgenodes.The mainad-
vantageof the PremiumServiceover the currentintserv
modelssuchasguaranteear controlledload s its imple-
mentationsimplicity — it doesnotrequireperflow manage-
mentat corerouters.

The AssuredServicesupportoarsespatialgranularity
i.e., serviceprofiles are appliedto traffic definedto more
thanonedestination.It is importantto noticethatin addi-
tion to the implementatiorsimplicity, the AssuredService
also provides a servicesemanticthat is richer than those
providedby theexisting Intservmodels.For example while
Intserv and Premiumservicesare bettersuitedfor steady
andlong-livedtraffic, the AssuredServiceprovides better
supportfor traffic aggr@atesthat consistof mary short-
livedburstyflows with differentdestinationgsuchasWEB
traffic).

We believe that a servicemodelwith a coarsespatial
granularityembodiessomeof the fundamentamotivations
behindthe designof the AssuredService. The coarsespa-
tial granularityleadsto a smallernumberof servicepro-
files,whichin turnimprovesthe scalabilityby reducingthe
amountof stateneededat the edgeof the network.In addi-
tion, serviceprofileswith coarserspatialgranularitiesalso
meanhighertraffic aggreationfor eachprofile, which al-
lows usersto achieve a higher degree of statisticalmulti-
plexing gain.

However, asthe spatialgranularitybecomedargerthan
onedestinationit is moredifficult to supporta servicewith
a fixed bandwidthprofile. In this situation,thereis a fun-
damentakonflict betweemrmaximizingresourceutilization
andachiering a high serviceassuranceSincethe network
doesnot know in advancewherethe packetswill go,in or-
derto provide high serviceassurancet needgo provision
enoughresourceso all possibledestinationsThis will re-
sultin a severeresourcainderutilization.

In this paperwe shav thatby definingserviceprofilesin
termsof the amountof resourcgokensratherthanthe ab-
solutebandwidth we candesigndynamicandflexible net-
work controlalgorithmsthatcanachieve high resourceuti-
lization,while atthesameime deliveringin-profile packets
with high probability. The key aspectof the modelis that
theservicedifferentiationis basednresourceéokensrather
thanthe exactamountof bits persecond.Theamountof re-
sourcetokenschagedfor eachbit is a dynamicfunction of
the pathandthe congestionlevel. This avoids the worst-
caseprovisioning dilemmafacedby existing solutions. In
addition,aswe will discussin Section4, our schemecan
alsobe usedto implementdifferentialserviceswith service
profilesdefinedin termsof absolutebandwidth.

Therestof thepaperis organizedasfollows. In Section?
describe®ur modelbasedn resourcaokensandproposes
a setof mechanismgo implementthe model. Section3
presentssimulationexperimentsto demonstratehe effec-
tivenesf our solution. Section4 justifiesthe new service
modelanddiscussepossiblevaysfor ourschemeo imple-
mentotherdifferentialservicemodels.Finally, in Section5
we presentherelatedwork, andin Sectioné we summarize
our contributions.

2 LIRA: Service Differentiation based on Re-
source Right Tokens

In this sectionwe presenbur differentialservicemodel,
calledLIRA (LocationindependenResourceAccounting),
with serviceprofiles definedin terms of resourcetokens
ratherthanabsoluteamountsof bandwidth.

We considerthe following simple two bits encoding
scheme.Thefirst bit, calledthe prefered bit, is setby the
applicationor userandindicateshedroppingpreferencef
the packet.The secondit, calledmarkingbit, is setby the
ingressroutersof an ISP andindicateswhetherthe packet
is in- or out-of profile. More precisely whena preferred
packetarrivesat an ingressnode,the nodemarksit if the
userhasnot exceededits profile; otherwisethe packetis
left unmarked. Thereasorto usetwo bits insteadof oneis
thatin an Internetervironmentwith multiple ISPs,even if
a packetmay be out-of profile in somelSPson the earlier
portion of its path,it maystill bein-profile in a subsequent

LIn thepaperwewill usetheterminologyof markedor unmarkecack-
etsto referto packetdn or out-ofthe serviceprofile, respectiely.



ISP Having a droppingbit thatis unchangedy upstream
ISPson the pathwill allow downstreamlSPsto makethe

correctdecision.Coreroutersimplementa simplebehaior

of priority dropping.Wheneerthereis acongestionacore
routeralwaysdropsunmarkecpacketdirst.

In this paperwe focuson mechanismgor implementing
LIRA in asinglelSP We assumehe following modelfor
theinteractionof multiple ISPs:if ISPA isusingtheservice
of ISPB, thenISPB will treatISPA justlike aregularuser
In particular thetraffic fromall ISPA’suserswill betreated
asasingletraffic aggrgate.

21 LIRA ServiceMode

With LIRA, eachuseri is assigned serviceprofile that
is characterizedby a resourcetokenbucket(r;, b;), where
r; representshe resourceokenrate,andb; representshe
depthof the bucket. Unlike traditionaltokenbucketswhere
eachpreferredbit enteringthe network consumesxactly
onetoken, with resourcetokenbucketsthe numberof to-
kensneededo admita preferredbit is a dynamicfunction
of thepathit traverses.

Althoughtherearemary functionsthatcanbeused,we
considera simplecasein which eachlink i is associateé
cost,denoted; (¢), whichrepresenttheamounif resource
tokenschagedfor sendinga markedbit alongthe link at
time¢t. The costof sendinga markedpacketis computed
as) ;cp L x ci(t), wherelL is the packetlengthand P is
the setof links traversedby the packet.While we focuson
unicastcommunicationgn this paper we notethatthe cost
functionis alsonaturallyapplicableo thecaseof multicast.
As we will shawv in Section3, chaging a userfor every
link it usesandusingthe costin routing decisionshelpto
increaseahe networkthroughput.n fact, it hasbeenshavn
in [19] that using a similar costfunctior? for performing
theshortespathroutinggivesthe bestoverall resultswhen
comparedvith otherdynamicroutingalgorithms.

It isimportantto notethatthecostsusedn this paperare
not monetaryin nature.Insteadthey arereflectingthelevel
of congestiorandtheresourceisagealonglinks/paths.This
is differentfrom pricing which representshe amountof
paymenmadeby anindividualuser Thoughcostscanpro-
vide valuableinput to pricing policies,in generalthereis
no necessargirectconnectiorbetweercostandprice.

Figure 1 illustratesthe algorithm performedby ingress
nodes.Whena preferredpacketarrivesat aningressnode,
the nodecomputests costbasedon the packetlengthand
the pathit traverses. If the userhasenoughresourceto-
kensin its bucketto cover this cost,the packetis marked,
admittedin the network,andthe correspondinghumberof
resourceokensis subtractedrom the bucketaccount Oth-
erwise,dependingon the policy, the packetcan be either

2|t canbe shavn thatwhenall links have the samecapacityour cost
is within a constantfactor from the costof shortest-dist(PL) algorithm
proposedn [19].

dropped,or treatedas besteffort. Informally, our goal at
the userlevel is to ensurethat userswith “similar” com-
municationpatternsreceve service(in termsof aggrgate
markedtraffic) in proportionto theirtokenrates.

Thecruxof theproblemthenis thecomputatioranddis-
tribution of the per markedbit costfor eachpath. In this
section,we first presenthe algorithmto computethe cost
of eachmarkedbit for a singlelink, and next presentan
algorithm that computesand distributesthe perpath cost
of onemarkedbit by leveragingexisting routing protocols.
We then amgue that this dynamic costinformationis also
usefulfor multi-pathrouting andload balancingpurposes.
To avoid routeoscillationandpacketreorderingwithin one
application-le@el flow, we introducetwo techniques First,
a lightweight schemeis devisedto ensurethat all packets
from thesameapplication-leel flow alwaystravel thesame
path. The schemeis lightweightin the sensethat no per
flow stateis neededn ary corerouters.Secondratherthan
usingasimplegreedyalgorithmthatalwaysselectdhepath
with the currentlowestcost,we usea probabilisticscheme
to enhanceystemstability.

2.2 Link Cost Computation

A naturalgoalin designinghelink costfunctionin LIRA
is to avoid markedpacketsbeing dropped. Sincein the
worst caseall userscan competefor the samelink at the
sametime, a sufiicient conditionis to have a cost func-
tion thatexceedsthe numberof tokensin the systemwhen
thelink utilization approachesnity. Without boundingthe
numberof tokensn thesystemthis suggestacostfunction
that goesto infinity when the link utilization approaches
unity. Amongmary possiblecostfunctionsthatexhibit this
property we choosehefollowing one:

a

C(t) - 1— u(t)’ (1)
whereq is the fixed costof usingthe link® whenit is idle,
andu(t) representshelink utilization attimet. In partic-
ular, u(t) = R(t)/C, wereR(t) is thetraffic throughputat
timet, andC representshelink capacity Recallthatc(¢)
is measuredh tokens/bitandrepresentiow muchauseris
chagedfor sendinga markedbit alongthatlink attimet.

In anideal systemwherecostsareinstantaneouslyis-
tributedand the rate of theincomingtraffic variesslowly,
a cost function as definedby Eq. (1) guaranteeshat no
markedpacketsare droppedinside the core. However, in
arealsystemcomputinganddistributing the costinforma-
tion incur overhead so they are usuallydoneperiodically
In addition, thereis alwaystheissueof propagatiordelay
Becauseof these,the costinformation usedin admitting
packetsatingressnodesmay be obsolete.This may cause

3n practice,the network administratorcan makeuseof a to encour
age/discouragthe useof thelink. Simply by changingthefixed costa, a
link will costproportionallymoreor lessatthe sameutilization.



r = resource token rate
| = current bucket level
ci = per bit cost of link i

—Ingress Node Alg.

upon packet arrival :
bit cost=cl +c2 + c3 + ¢4 + c5;
packet_cost = packet_length * bit_cost;
if (preferred(packet) && | > packet_cost
mark(packet);
| —= packet_cost;

Figure 1. When a preferred packet arrives, the node computes the packet's cost, and the packet is

marked if there are sufficient resour ce tokens.

packetdropping,andleadto oscillations. Thoughoscilla-
tions areinherentto ary systemin which the propagation
of the feed-backinformationis non-zero the sensitvity of
our costfunctionwhenthelink utilizationapproachesanity
makeghingsworse.In this regime,anincrementallysmall
traffic changemay resultin anarbitrarylarge costchange.
In fact one may note that Eq. (1) is similar to the equa-
tion describinghedelaybehaior in queueingystemg18],
whichis known to leadto systeminstability whenusedasa
congestionndicationin a heaily loadedsystem.

To addresdheseissues,we usethe following iterative
formulato computethelink cost:

~

R(t;, t;_1)
—c

whereR(#', ") denoteghe averagebit rateof the marked
traffic duringthetimeinterval [t',¢"'). It is easyto seethatif
themarkedtraffic rateis constanandequalto R, theabove
iterationcornvergesto the costgivenby Eg. (1). Themain
adwantageof using Eq. (2) over Eq. (1) is thatit is more
robustagainstargevariationsin thelink utilization. In par
ticular, whenthe link utilization approachesinity the cost
increasedy at mosta every iteration. In addition, unlike
Eg. (1), Eq. (2) is well definedeven whenthe link is con-
gestedj.e.,R(t;—1,t;) = C.

Unfortunatelycomputingthe costby usingEg. (2) is not
asaccurateashby usingEg. (1). Thelink may becomeand
remaincongestedor along time beforethe costincreases
large enoughto reducethe arrival rateof markedbits. This
may resultin the loss of markedpacketswhich we try to
avoid. To addresshis problemwe useonly afractionof the
link capacityC = 3C, for the markedtraffic, the remain-
ing beingusedto absorbthe unexpectedvariationsdueto
inaccuracie@ the costestimatiort. In this paperwe chose
5 betweerD.85and0.9.

4 3 is similar to the pressurdactorusedin someABR congestiorcon-
trol schemedor estimatingthe fair sharg14, 25].

e(ti) = a+c(ti=1) 2

2.3 Path Cost Computation and Distribution

In LIRA, the costof a markedbit over a pathis the sum
of thecostsof amarkedbit over eachlink onthepath.Once
thecostfor eachlink is computedit is easyto computeand
distributethe pathcostby leveragingexisting routingproto-
cols. For link statealgorithms,the costof eachmarkedbit
canbeincludedaspartof thelink state.For distancevector
algorithms,we canpassand computethe partial pathcost
in the sameway the distanceof a partial pathis computed
with respecto theroutingmetric.

24 Multipath Routing and L oad Balancing

Sinceour algorithmdefinesa dynamiccostfunctionthat
reflectsthe congestiorievel of eachlink, it is naturalto use
this costfunction for the purposeof multi-pathrouting. In
this paper we computethe k£ shortestpathsfor eachdes-
tination or egressnode using unit link metric. While the
obvious solutionis to sendpacketsalongthe pathwith the
minimumcost(in thesensef LIRA seeSectiorn?2.1)among
thek pathsthismayintroducetwo problems:(a) packetre-
orderingwithin oneapplication-leel flow, which mayney-
atively affectend-to-enatongestiorcontrolalgorithmsand
(b) routeoscillation,which mayleadto systeminstability.

We introducetwo techniqueso addressheseproblems.
First,we present lightweightmechanisnthatbindsa flow
to aroutesothatall packetdrom theflow will traversethe
sameroute. Second,to reduceroute oscillation, for each
new flow, aningressodeprobabilisticallybindsit to oneof
the multiple routes. By carefully selectingthe probability;
we canachieve bothstability andload-balancing.

24.1 Forwarding Algorithm For Multiple Path Rout-
ing

As discusseckarlier we will maintainmultiple routesfor
eachdestination However, we would like to ensurehatall



ROUTING TABLE
dst|cost| label
ids 7 [id2& id® idj
8 [id2® id® id]

FORWARDING TABLE FORWARDING TABLE
label dst [next hof label |dst |next hop

id3® id5 | id5| id3 id5 |id5]| id5

id4® id5 | id5| id4

FORWARDING TABLE

label dst |next hop
id2® id3® id5id5| id2
id2® id4 idgid5| id2

idl

label = id2& id® id5

label = id2® label = id® id5

label = id3e® label = id5

Figure 2. Example of route binding via packet labeling.

packetdelongingto the sameflow areforwardedalongthe
samepath.

Thebasicideais to associatavith eachpathalabelcom-
putedastheXOR overtheidentifiersof all routersalongthe
path,andthenassociat¢his labelwith eachpacketf aflow
thatgoesalongthatpath.Herewe usethe IP addresssthe
identifier. More preciselyapath P = (idg, ids, . .., id,),
whereid; is the sourceandid,, is the destination,is en-
codedat the source(idy) by Iy = id; ® idy ® ... ® idy,.
Similarly, the path from id; to id, is encodedat id; by
ly, = idy ® ... ® id,. A packetthattravels alongpath P
is labeledwith Iy asit is leaving idy, andwith [; asit is
leaving d;. By using XOR we caniteratively re-compute
the label basedon the packets currentlabel andthe node
identifier As anexample,considera packethatis assigned
labelly at nodeid,. Whenthe packetarrivesat nodeid;,
the new label correspondingo the remainingof the path,
(idy, ..., id,), is computedasfollows:

id; @ (Id1 ®ida® ... Qidy) =ida ® ... ® idy.

L=

It is easyto seethatthis schemeguaranteethatthe packet
will beforwardedexactly alongthe path P. Here,we im-
plicitly assumethat all alternatepathsbetweentwo end-
nodeshave uniquelabels. Although theoreticallythereis
a non-zeroprobability that two labelsmay collide, we be-
lieve thatfor practicalpurposest canbe neglected.

Next we give somedetailsof how this mechanisntan
beimplementedy simply extendingthe informationmain-
tainedby eachrouterin the routingandforwardingtables.

Besidesthe destinationand the route cost, eachentry in
theroutingtablealsocontainghelabelassociatedvith that
path.

< dst, < costV 1V > < cost(k),l(k)) >> 4)

Similarly, the forwardingtable shouldcontainan entry for
eachpath:

< 1M dst,next_hop™ > ... < 1) dst, next_hop*) > (5)

In Figure 2 we give a simple exampleto illustrate this
mechanismAssumehatnodesid; andids areedgenodes,
andthereare two possiblepathsfrom id; to ids of costs
7, and 8, respectrely. Now, assumea packetdestinedto
ids arrivesatid;. Firsttheingressnodeid; searcheshe
classifiertable (not shavn in the Figure), that maintainsa
list of all flows, to seewhetherthis is the first packetof a
flow. If it is, the routerusesthe informationin the routing
tableto probabilisticallybind the flow to a pathto ids. At
the sametime it labelsthe packetwith the encodingof the
selectedoute. In our example,assumehe pathof cost7,
i.e., (idy,idq, ids, ids), is selected.If the arriving packet
is not the first packetof the flow, the routerautomatically
labelsthe packetwith theencodingof the pathto whichthe
flow is bound. This canbe simply achieved by keepinga
copy of the labelin the classifiertable. Oncethe packetis
labeled the routerchecksthe forwardingtablefor the next
hop by matchingthe packets label andits destination.In
our casethis operationgivesusid, asthenext hop. When
the packetarrives at nodeid, the router first computesa
new label basedon the currentpacketlabel andthe router



identifier: label = id> @ label. Thenew labelis thenused
to lookuptheforwardingtable.

It is importantto notethatthe above algorithmassumes
per flow stateonly at ingressnodes. Insidethe core,there
is no perflow state.Moreover, the labelscanspeed-ughe
tablelookupif usedashashkeys.

2.4.2 Path Selection

While theabove forwardingalgorithmensureshatall pack-
etsbelongingto the sameflow traversethe samepath,there
is still theissueof how to selecta pathfor anew flow. The
biggestconcernwith ary dynamicrouting protocol based
on congestioninformationis its stability. Frequentroute
changesnayleadto oscillations.

To addresghis problem,we associate probability with
eachrouteanduseit in binding a new flow to thatroute.
The goal in computingthis probability is to equalizethe
costsalongthealternateroutes,f possible.For thiswe use
a greedyalgorithm. Every time theroutecostsareupdated
we split the set of routesin two equalsets,whereall the
routesin one set have costslarger than the routesin the
secondset. If thereis an odd numberof routes,we leave
the medianout. Then,we decreasehe probability of ev-
ery routein the first set,the onewhich containsthe higher
costroutes,andincreaseahe probabilityof eachroutein the
secondsetby a smallconstant. It canbeshavn thatin a
steady-stateystemthisalgorithmcornvergesto theoptimal
solutionwithin 4.

2.5 Algorithm Scalability

As describedso far, our schemerequiresto maintaink
entriesfor eachdestinationin both the forwarding table
usedby the forwarding engineand the routing table used
by the routing protocol,wherek is the maximumnumber
of alternatepaths. While this factormay not be significant
if & is small, a more seriousissuethat potentially limits
the scalability of the algorithmis thatin the vanilla form
it requiresto maintainan entryfor eachdestinationwhere
in reality, to achieve scalability routersreally maintainthe
longest-prefixof agroupof destinationshatsharethesame
route[11]. Sinceouralgorithmworksin the contet of one
ISR we canmaintainan entryfor eachegressnodeinstead
of eachdestination We believe thisis sufficientasthenum-
berof egressnodesn anISPis usuallynotlarge.

However, assumethat the numberof egressnodesin
an ISP is very large so that significantaddressaggrga-
tion is needed. Then we needto also perform cost ag-
gregation. To illustrate the problem considerthe exam-
ple in Figure 3. Assumethe addressesf d, andd; are
aggrgatedat an intermediaterouter r;. Now the ques-
tion is how much to chage a packetthat entersat the
ingressnodery, and hasthe destinationd,. Sincewe do

Figure 3. Topology to illustrate the label and
cost aggregation.

not keepstatefor the individual routesto dy, andd; re-
spectvely, we needto aggr@atethe costto thesetwo des-
tinations. In doing this, a naturalgoal would be to main-
tain the total chagesthe sameas in a referencesystem
that keepsper route state. Let R(r;, d;) denotethe aver

agetraffic ratefrom ry to d;, ¢ = 1,2. Then,in the refer

encesystemthat maintainsper routestate thetotal chage
pertime unit for the aggre@atetraffic from r, to dy andd;

is: cost(ry, do)R(r1, do) + cost(ry,d1)R(r1,d1). Inasys-
tem that doesnot maintainper route state,the chage for

the sametraffic is cost(r1, do, d1)(R(r1,do) + R(r1,d1)),

wherecost(r1, do, d1) denotesthe per bit aggregyate cost.
Thisyields

cost(r1,do, dy) = COSt(“’dO)R(“’dO))Jr ®)
)

R(Tl, do) —|— R(T’l, d1
cost(ry,d1)R(r1, d1
R(Tl, do) —|— R(T’l, dl) ’

Thus,ary packethatarrivesatr, andhaseitherdestination
dg or d; is chagedwith cost(rg, r1) + cost(ry, do, d1). Ob-
viously, routeaggrgationincreasesheinaccuracied cost
estimation.However, this maybealleviatedby thefactthat
therouteaggregationusuallyexhibits high localities.

Anotherproblemwith addressggreationis thatalabel
cannolongerbeusedto encodeaheentirepathto the desti-
nation. Insteadjt is usedto encodethe commorportion of
thepathgo thedestinationgn theaggregateset. Thismeans
that a packetshouldbe relabeledat every routerthat per
forms aggr@ationinvolving the packets destination. The
mostseriousconcernwith this schemas thatit requiresto
maintainperflow stateandperformpacketclassificatiorat
acorerouter(r; in ourexample).Fortunatelythis scalabil-
ity problemis alleviatedby thefactthatwe needo keepper
flow stateonlyfor theflowswhosedestinatioraddresseare
aggregatedat the current router Finally, we notethatthis
problemis not specificto our schemeary schemehat (i)
allows multiple pathrouting, (i) performsload balancing,
and(iii) avoidspacketreorderinghasto addresst.

3 Simulation Experiments

In this sectionwe evaluateour modelby simulation.We
conductfour experiments: threeinvolving simple topolo-
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Figure 4. (a) Topology used in the first experiment.

Each link has 10 Mbps capacity . S1, S2, and S3

send all their traffic to D1. (b) The throughputs of the three users under BASE and STATIC schemes.
(c) The throughputs under STATIC when the token rate of S2 is twice the rate of S1/52.

gieswhich help to gain a betterunderstandingf the be-
havior of our algorithms,and one more realistic example
with a larger topology and more comple traffic patterns.
Thefirst experimentshaws thatif all userssharethe same
congestegath,then eachuserreceves servicein propor

tion to its resourcdokenrate. This is the sameresultone
would expectfrom using a weightedfair queueingsched-
uler on every link, with the weightssetto the users’token
rate. In the secondexperiment,we shawv that by usingdy-

namicrouting andload balancing,we are ableto achieve

thesameresult—thatis, eachuserto receve servicein pro-

portion to its tokenrate— in a more generalconfiguration
wheresimply usingweightedair queueingcheduleonev-

ery link is not sufiicient. In the third experiment,we shav

how loadbalancingcansignificantlyincreaseaheoverallre-

sourceutilization. Finally, thefourth experimentshovs how

thebehaiors obseredin the previousexperimentsscaleto

alargertopology

3.1 Experiment Design

We have implementeda packetlevel simulator which
supportdoth DistanceVector(DV) andShortesPath First
(SPF)routingalgorithms.To supportoadbalancingve ex-
tendedthesealgorithmsto computethe k£-th shortespaths.
The time interval betweentwo route updatess uniformly
distributedbetween(.5 and 1.5 of the averagevalue. As
shavn in [10] this choice avoids the route-updateself-
synchronization.In SPE when a nodereceves a routing
messagsi first updatests routing tableandthenforwards
themessagéo all its neighborsgxceptingthe sender The
routingmessageareassumedo have high priority, sothey
arenever lost. In the followingswe comparethe following
schemes:

e BASE — this schememodelstoday’s best-efort Inter-
net,andit is usedasabaselingn ourcomparisonThe

routing protocol usesthe numberof hopsasthe dis-
tancemetric and it is implementedby either DV or
SPFE This schemedoesnot implementservicediffer-
entiation,i.e., bothmarkedandunmarkedoacketsare
identicallytreated.

e STATIC - this schemeimplementsthe same static
routingasBASE. In addition,it implementsLIRA by
computingthe link costas describedn Section?2.2,
andmarkingpacketsat eachingressnodeaccordingo
thealgorithmshaown in Figurel1.

¢ DYNAMIC- £ —this schemeaddsdynamicroutingand
loadbalancingo STATIC. Theroutingprotocolusesa
modifiedversionsof DV/SPFto find the first £ short-
est paths. Note that DYNAMIC-1 is equvalentto
STATIC.

Eachrouter implementsa FIFO schedulingdiscipline
with a sharedbuffer anda drop-tail managemenscheme.
Whenthebuffer occupang exceedsa predefinedhreshold,
newly arrivedunmarkedacketsaaredropped.Thus,theen-
tire buffer spacefrom the thresholdup to its total size is
resered to the in-profile traffic>. Unlessotherwisespeci-
fied, throughoutall our experimentsve usea buffer size of
256 KB andathresholdof 64 KB.

The two main performanceandicesthatwe usein com-
paringthe above schemesare the userin-profile and user
oveall throughputs.The userin-profile throughputrepre-

5We note that this schemeis a simplified version of the RIO buffer
managemergchemeproposedy Clark andWroclawski[4]. In addition,
RIO implementsa RandomEarly Detection(RED) [9] droppingpolicy,
insteadof drop-tail,for bothin- andout-of profile traffic. RED providean
efficientdetectiormechanisnfior theadaptveflows,suchasTCR allowing
themto gracefully degradetheir performancesvhen congestionoccurs.
However, sincein this studywe are not concernedvith the behavior of
individual flows, for simplicity we choseto notimplementRED.
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sentsthe rate of the useraggreatein-profile traffic deliv-
eredto its destinations.The overall throughputrepresents
the users entire traffic — i.e., including both the in- and
out-of profile traffic — deliveredto its destinationsin ad-
dition, we useuserdroppingrate of the in-profile traffic to
characterizeéhelevel of serviceassurance.

Recentstudieshave showvn that the traffic in real net-
works exhibits the self-similarproperty[5, 23, 24, 30] —
thatis, thetraffic is burstyoverwidely differenttime scales.
To generateself-similartraffic we usethe techniqueorigi-
nally proposedn [30], whereit wasshawn thatthe super
positionof mary ON-OFFflows with ON andOFF periods
dravn from a heavy tail distribution, andwhich have fixed
ratesduringthe ON periodresultsin self-similartraffic. In
particularin [30] it is shavn thatthe aggreationof several
hundredbf ON-OFFflowsis areasonabl@approximatiorof
therealend-to-endraffic obseredin aLAN.

In all our experimentswe generatehetraffic by draw-
ing the length of the ON and OFF periodsfrom a Pareto
distribution with the power factor of 1.2. During the ON
perioda sourcesendgpacketswith sizesbetweenl00bytes
and 1000 bytes. The time to senda packetof minimum
sizeduringthe ON periodis assumedo bethetime unitin
computingthelengthof the ON andOFFintervals.

Dueto thehigh overheadncurredby apacket-l@el sim-
ulator, suchasours,welimit thelink capacitieso 10 Mbps
andthesimulationtimeto 200sec.We settheaverageinter-
val betweemoutingupdatedo 5 secfor thesmalltopologies
usedin thefirst threeexperimentsandto 3 secfor thelarge
topology usedin the last experiment. In all experiments,
thetraffic startsattime¢ = 20 sec.Thechoiceof thistime
is suchthatto guaranteehat the routing algorithmfinds at
leastonepathbetweerary two nodedby timet. In orderto

eliminatethetransientbehaior, we startour measurements

attimet = 50 sec.

3.2 Local Fairnessand Service Differentiation

This experimentshaws thatif all userssendtheir traffic
alongthe samecongestegbath,they getservicein propor
tion to their tokenrate,aslong asthereis enoughdemand.
Considerthe topologyin Figure4(a), whereusersS1, 52,
andS3 sendtraffic to D1. Figure4(b) shavstheuserover
all throughputover the entiresimulationunderBASE. As
it canbe seen,S1 getssignificantly more than the other
two. In fact,if thetraffic from all sourcesverecontinuously
backloggedye expectthat.S1 to gethalf of the congested
links 5 and6, while 52 andS3 to split the otherhalf. This
is becauseven thougheachusersendsat an averagerate
higherthan10 Mbs, the queuesarenot continuouslyback-
logged. This is dueto the bursty natureof the traffic and
dueto thelimited buffer spaceat eachrouter

Next, we run the same simulation for the STATIC
scheme.To eachuserwe assignthe sametokenrate,and
to eachlink we associatehe samefixed cost. Figure4(b)
shaws the useroverall and in-profile throughputs. Com-
paredto BASE, the overall throughputsare more evenly
distributed. However, the user S1 still getsslightly better
service,i.e., its in-profile throughputis 3.12 Mbps, while
the in-profile throughputof $2/53 is 2.75Mbps. To see
why, recallfrom Eq. (1) thatlink costaccuratelyeflectsthe
level of congestioronthatlink. Consequentlyin this case
links 5 and 6 will have the highestcost,followed by link
4, andthenthe otherthreelinks. Thus,S2 and.S3 have to
“pay” morethanS1 permarkedbit. Sinceall usershave the
sametokenrates this translatesnto lower overall through-
putsfor S2 andS3, respectrely.

To illustrate the relationshipbetweenthe users token
rate andits performancewe doublethe tokenrate of S2.
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Figure 6. (a) Topology used in the third experiment. Mean throughputs when (b) load is balanced,
and (c) when it is unbalanced, i.e, S3 and S4 are inactive .

Figure4(c) shawvs the overall andin-profile throughputf
eachuser In termsof in-profile traffic userS2 getsroughly
twice thethroughoubf S3 (i.e.,4.27Mbpsvs. 2.18Mbps).
Finally, we note that there was no marked packets
droppedin ary of the above simulations. For comparison
morethan60 % of the out-of profile traffic wasdropped.

3.3 User Fairnessand L oad Balancing

In this sectionwe shav how dynamicroutingandload
balancinghelp to improve userlevel fairnessand achieve
betterresourceutilization. Considerthe topologyin Fig-
ure5 whereusersS1, 52, S3 and.S4 sendtraffic to users
D1, D2 andD3. Againthefixedcostsof all links areequal,
andall usersareassignedhe sametokenrate.

Figure 5(b) shaws the overall and in-profile through-
puts of S1, S2, S3 and S4 under BASE, STATIC and
DYNAMIC-2, respectiely. WhenBASE andSTATIC are
usedeachusersendsalwaysalongthe shortespaths.This
resultsin S1, S2 and S3 sharinglink 1, while S4 using
alonelink 3. As a consequencé&4 receves significantly
betterservicethan the other threeusers. Sinceit imple-
mentsthe samerouting algorithm, STATIC doesnot im-
prove the overall throughputs. However, comparedwith
BASE,STATIC guaranteethatin-profile packetsaredeliv-
eredwith very high probability (again,in this experiment,
nomarkedpacketsveredropped).Ontheotherhandwhen
DYNAMIC-2 is usedeachuserreceves almostthe same
service. This is becausenow usersS1, S2 and S3 can
useboth routesto sendtheir traffic, which allow themto
competewith userS4 for link 3. UserS4 still maintainsa
slightly advantageput now the differencebetweerits over-
all throughputandtheoverall throughput®f theotherusers
is lessthan7%. In the caseof thein-profile traffic this dif-
ferences about5%. As in thepreviousexperimenttherea-

sonfor this differences becausavhencompetingwith S4,
theotherusershave to pay, besidedink 3, for link 2 aswell.

Thus, by taking advantageof the alternateroutes,our
schemas ableto achieve fairnessn amoregeneraketting.
At thesametimeit is worth notingthattheoverall through-
put alsoincreasedy almost7 %. However, in this case,
thisis mainly dueto the bursty natureof S4’s traffic which
cannotusethe entire capacityof link 3 whenit is the only
oneto useit, ratherthanloadbalancing.

3.4 Load Distribution and L oad Balancing

This experimentshavs how theload distribution affects
the effectivenessof our load balancingscheme. For this
purpose considerthe topologyin Figure6(a). In the first
simulationwe generatdlows that have the sourceandthe
destinatioruniformly distributedamongusers.Figure6(b)
shavs the meansof the overall throughputsunderBASE,
STATIC, andDYNAMIC-2, respectiely ¢. Dueto theuni-
formity of the traffic pattern,in this caseBASE performs
very well. Under STATIC we get slightly larger overall
throughput,mainly dueto our congestiorcontrol scheme,
which admitsa markedpacketonly if thereis a high prob-
ability to be delivered. However, underDYNAMIC-2 the
performanceslegrades. This is becausehere are times
when our probabilistic routing algorithm selectslonger
routeswhich leadsto inefficientresourcautilization.

Next, we consideran unbalancedoad by makingusers
S3 and S4 inactve. Figure 6(c) shavs throughputmeans
underBASE, STATIC, andDYNAMIC-2, respectiely. As
it canbenoticed,usingDYNAMIC-2 increasethemeanby
30 %. This is becausainderBASE and STATIC schemes

6We have alsocomputedstandardieviationsfor eachcase:thelargest

standarddeviation was 0.342for the overall throughputunder STATIC
schemeand0.4 for thein-profile throughputunderDYNAMIC-2.
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NSS nodes.

the entire traffic betweenS1, S2 and S5, S6 is routed
throughlinks 3 and4 only. Ontheotherhand,DYNAMIC-
2 takesadwantageonthealternateoutethroughlinks 1 and
2.

Finally, in anothersimulationnot shovn herewe con-
sideredthe scenarioin which S5, S6, S7, and S8 send
their entiretraffic to S3 and S4, respectrely. In this case
DYNAMIC-2 outperformsalmosttwo times STATIC and
BASE bothin termsof in-profile and overall throughputs.
This is againbecauseBASE and STATIC useexclusively
links 3 and2, while DYNAMIC-2 usesthe othertwo links
aswell.

3.5 LargeScale Example

In this sectionwe consideralargertopologythatclosely
resembleshe T3 topologyof the NSFNETbackbonecon-
tainingthe IBM NSSnodes(seeFigure?). Themajordif-
ferenceis thatin orderto limit the simulationtime we as-
sumel0 Mbpslinks, insteadof 45 Mbps. We considerthe
following threescenarios.

In the first scenariowe assumethat load is uniformly
distributed,i.e., ary two userscommunicatevith the same
probability. Figure8(a) shavs the resultsfor eachscheme,
resultswhich are consistentwith the onesobtainedin the
previous experiment. Due to the congestiorcontrolwhich
reducesthe number of droppedpacketsin the network,
STATIC achieves higher throughputthan BASE. On the

otherhand,the dynamicroutingandloadbalancingarenot

effective in this case,sincethey tendto generatdonger
routeswhichleadsto inefficientresourcautilization. Thisis

illustratedby the decreasef the overall andthe in-profile

throughputsinderDYNAMIC-2 andDYNAMIC-3, respec-
tively.

In the secondscenariowe assumeunbalancedoad.
More precisely we consider11 users (covered by the
shadedrean Figure7(b))whichareninetimesmoreactive
thantheother i.e.,they send/receie ninetimesmoretraffic
thanthe others’ Unlike the previous scenariojn termsof
overall throughput®YNAMIC-2 outperformsSTATIC by
almost8 %, and BASE by almost20 % (seeFigure 8(b)).
This is becausdDYNAMIC-2 is ableto usesomeof the
idle links from the un-shadegbartition. However, asshavn
by theresultsfor DYNAMIC-3, asthe numberof alternate
pathsincreasedoth the overall andin-profile throughputs
startto decrease.

In the lastscenariove considerthe partition of the net-
work shavn in Figure 7(c). For simplicity, we assume
thatonly usersin the samepartitioncommunicatéetween
them.Thisscenarianodelsavirtual privatenetwork(VPN)
setting,whereeachpartition correspondso a VPN. Again,
DYNAMIC-2 performsthe best, sinceit is ableto make

7 Thismight modeltherealsituationwherethe eastcoastis moreactive
betweerf and12 a.m.EST, thanthewestcoast.
8 Themeanof the useroverallthroughputunderDYNAMIC-2 is 15 %
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Figure 8. The throughputs when the load is balanced (Figure 7(a)), (b) unbalanced ((Figure 7(b)), and
(c) when the network is virtually partitions (Figure 7(c)).

useof somelinks betweenpartitionsthat otherwisewould
remainidle.

Finally, we notethat acrossall simulationspresentedn
this sectionthe droppingrate for the markedpacketswas
never largerthan0.3%. At thesametime the droppingrate
for theunmarkecdpacketsvasover 40 %.

3.6 Summary of Results

Althoughthe experimentsn this sectionarefar from be-
ing exhaustie, we believe thatthey giveareasonablenage
of how our schemeperforms. First, our schemeis effec-
tive in providing servicedifferentiationsat the userlevel.
Specifically the first two experimentsshow thatuserswith
similar communicatiorpatterngyetservicein proportionto
theirtokenrates.Secondat leastfor thetopologiesandthe
traffic modelconsideredn theseexperiments,our scheme
ensureshatmarkedpacketsaredeliveredto thedestination
with high probability.

Consistentwith other studies[19], theseexperiments
shav that performingdynamicrouting andload balancing
make little sensewhen the load is alreadybalanced. In
fact,doingdynamicroutingandloadbalancingcanactually
hurt, since,asnotedabore, thiswill generatdongerroutes
which may resultin inefficient resourceutilization. How-
ever, whentheloadis unbalancedysingDYNAMIC- k£ can
significantly increasethe utilization and achieve a higher
degreeof fairness.

Finally, we note that the in-profile dropping rate de-
creasessthe the numberof alternatepathsincreasesFor
examplein thelastexperimentin thefirst two scenarioshe
droppingrateis no largerthan0.3 % underSTATIC andO
underDYNAMIC-2 andDYNAMIC-3, respectrely, while

largerthanunderSTATIC, and18 % largerthanunderBASE.
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in the lastscenariahe percentagelecreaseffom 0.129%
for STATIC, to 0.101% for DYNAMIC-2, andto 0.054%
for DYNAMIC-3.

4 Discussion

In this paper we have studied a differential service
model,calledLIRA, in whichtheserviceprofileis specified
in termsof resourceokensinsteadof absolutebandwidth.
Sincethe exact bandwidthof markedbits that a customer
canreceve from sucha serviceis notknownapriori, a nat-
ural questiorto askis why suchaservicemodelis interest-
ing.

ThereareseveralreasonsFirst, we believe thatthe apri-
ori specificatiorof anabsoluteamountof bandwidthin the
serviceprofile, thoughdesirable,is not essential. In par
ticular, we believe thatthe essentiahspectshatdistinguish
Diffservfrom Intservarethefollowings: (a)theservicepro-
file is usedfor traffic aggrgatemuchcoarsethanperflow
traffic, and(b) theserviceprofileis definedover atimescale
largerthanthedurationof individualflows,i.e. servicepro-
file is ratherstatic. Noticethatthe degreeof traffic aggre-
gationdirectly relatesto the spatialgranularityof the ser
vice profile. On the one hand, if eachserviceprofile is
definedfor only onedestinationwe have the smallestde-
greeof traffic aggreation. If thereare N possibleegress
nodesfor auser N independenserviceprofilesneedto be
defined.Network provisioningis relatively easyasthe en-
tire traffic matrix betweenall egressand ingressnodesis
known. However, if a userhasa ratherdynamicdistribu-
tion of egressnodesfor its traffic, i.e.,theamountof traffic
destinedto eachegressnode varies significantly and the
numberof possibleegressnodesis large, sucha scheme
will significantly reducethe chanceof statisticalsharing.
Onthe otherhand,if eachserviceprofile is definedfor all



egressnodeswe have the largestdegreeof traffic aggrea-
tion. Only one serviceprofile is neededor eachuserre-
gardlesgshenumberof possiblesgressnodes.ln additionto
a smallernumberof serviceprofiles,sucha servicemodel
alsoallows all thetraffic from the sameuser regardlessof
its destinationsto statisticallysharethe sameservicepro-
file. Theflip sideis thatit makesit difficult to provision
network resources.Sincethe traffic matrix is not known
apriori,thebest-casscenarias whenthe networktraffic is
evenly distributed,andthe worst-casescenarias whenall
traffic goesto the sameegressroutet

Thereforeijt is very difficult, if notimpossibleto design
serviceprofilesthat (1) arestatic,(2) supportcoarsespatial
granularity (3) aredefinedin termsof absolutebandwidth,
andatthe sametime achieve (4) high serviceassurancand
(5) high resourcautilization. Sincewe feel that(1), (2), (4)
and(5) arethe mostimportantfor differentialserviceswe
decideto giveup (3).

Fundamentallywe want a serviceprofile that is static
and egressnode/pathindependent. However, to achiee
high utilization, we needto explicitly addresshe fact that
congestionis a local and dynamicphenomenon.Our so-
lution is to have two levels of differentiation:(a) the user
or service-profilelevel differentiation,which is basedon
resourcetoken arrival rate. This is static and path inde-
pendent; (b) the packetlevel differentiation,which is a
simplepriority betweermarkedandunmarkedacketsand
weightedair shareamongmarkedpacketsBy dynamically
settingthe costof eachmarkedbit asa functionof thecon-
gestionlevel of the pathit traverseswe setup the linkage
betweerthe static/path-independeandthe dynamic/path-
dependentomponentsf theservicemodel.

A secondeasorfor which ourservicemodelmaybeac-
ceptables that usersmay caremore aboutthe differential
aspectof the servicethanthe guaranteedandwidth. For
example,if userA paystwice asmuchasuserB, userA
would expectto have roughly twice asmuchtraffic deliv-
eredasuserB during congestionif they sharesamecon-
gestedinks, whichis exactly whatwe accomplistin LIRA

A third reasonfor which a fixed-resource-token-rate-
variable-bandwidthservice profile may be acceptableis
that the usertraffic is usually bursty over multiple time-
scales[5 23, 30]. Thus,thereis a fundamentaimismatch
betweenan absolutebandwidthprofile and the bursty na-
tureof thetraffic®.

We do recognizethefact thatit is desirablefor boththe
userandtheISPto understandherelationshipbetweerthe
users resourceiokenrateandits expectedcapacity This
canbeachieved by measuringhe rateof markedbits given

9 Somerecentmeasurementshov thatthe aggregateraffic overinter-
netbackbondinks arenotverybursty. We notethatthisis notinconsistent
with the obsenationsthatthe aggregatéraffic from acampugo theInter
netexhibitslongrangedependency
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a fixed tokenrate. Both the userandthe ISP canperform
this measurementin fact, this suggestswo possiblesce-
nariosin which LIRA canbe usedto provide a differential
servicewith an expectedcapacitydefinedin termsof ab-
solutebandwidth. In the first scenariothe serviceis not
transparentlnitially, the ISP will provide the userwith the
following relationship

expected_capacity = f(token_rate trafficomiz) (7)
basednits own prior measuremeniTheuserwill measure
theexpectedcapacityandthenmakeadjustment®y asking
for anincreaseor a decreasén its resourceokenrate. In
the secondscenario the serviceis transparent.Both the
initial settingandthesubsequeradjustmentsf theservice
profile in termsof numberof tokenratewill bemadeby the
ISPonly.

Therefore pneway of thinking aboutour schemas that
it provides a flexible and efficient framewvork for imple-
menting a variety of AssuredServices. In addition, the
dynamiclink costinformationandthe statisticsof the re-
sourceiokenbuckethistoryprovide goodfeedbackothfor
individual applicationgo performruntime adaptationand
for the useror the ISP to do properaccountingand provi-
sioning.

5 Reated Work

Our work is highly influencedby Clark and Wro-
clawski’'s AssuredServiceproposal3, 4]. Thekey differ-
enceis that we defineserviceprofilesin units of resource
tokensratherthanabsolutebandwidth.In addition,we pro-
posearesourceaccountingschemeandanintegratedsetof
algorithmsto implementour servicemodel.

Anotherrelatedproposalis the UserShareDifferentia-
tion (USD) [29] schemewhich doesnot assumeabsolute
bandwidthprofileseither In fact, with USD, a useris as-
signeda shareratherthanatoken-hucket-basedervicepro-
file. For ead congestedink in the networktraversedoy the
userstraffic, theusershareshebandwidthwith otherusers
in proportionto its share. The serviceprovidedis equia-
lent to onein which ead link in a networkimplementsa
weightedfair queueingschedulemwherethe weightis the
users share.With USD, thereis little correlationbetween
the shareof a userandthe aggrgatethroughputit will re-
ceive. For example,two usersthat are assignedhe same
sharecan seedrastically different aggreate throughputs.
A userthat hastraffic for mary destinationgthustraverse
mary differentpaths)can potentially receve muchhigher
aggregatethroughputthana userthat hastraffic for only a
few destinations.

Thereis a hugebody of relatedwork thataddressethe
resourcallocationproblembothfor singleandmultiplere-
sources.However, to the bestof our knowledge,none of



theexisting proposalsaddresshe problemof allocatingre-
sourcesfor traffic aggreatethat hasa large spatialgran-
ularity. In generalthey arelimited in scopeto allocating
resourcesalong individual pathsonly. In addition, these
schemesisuallyrequireeachuserto maintainperresource
state or/andeachresourcdo maintainperuserstate.ln the

following, we discussseveralof themorerelevantschemes.

WaldspugerandWeihl have proposeda framewvork for
resourcemanagemenbasedon lottery tickets [27, 28].
Eachclientis associate@ certainnumberof ticketswhich
encapsulatés resourceights. Thenumberof ticketsauser
recevesis similar to the users incomeratein LIRA This
framevork wasshawvn to provide flexible managemenfor
varioussingle resourcessuchas disk, memoryand CPU.
However, they do not give ary algorithm(s)to coordinate
ticketsallocationamongmultiple resources.

Fegusonet al. proposeda flow control economyto al-
locatenetworkresourcesuchaslinks and buffers among
competingvirtual circuits (VCs) [7, 8]. In thismodel,each
VC is endaved certainfunds for buying resources. The
VC’s goalis to buy a minimum capacityon all links along
its path, andusethe extra moneg/ to minimize the average
end-to-enddelay The resourcepricesare setso that the
supply and the demandare balanced. It hasbeenshavn
that sucheconomyconverges and the resultedallocations
arepareto-optimal.

MacKie-Mason and Varian have proposeda model,
called“smart markets”,in which eachpacketcarriesa bid
that representdonv much the useris willing to pay for
it [20]. At eachcongestedink alonga patha cutoff price
is computecandonly packetghathave ahigherbid arefor-
wardedihe otherpacketsarebuffered. At the servicelevel
it is unclearhow the priorities of individual packetstrans-
lateinto expectednetworkthroughput.In addition,in order
to achieve high level of serviceassuranceg userneedsto
know the smallestbid alongthe path. No mechanismsare
givento propagatehis informationto theusers.

Awerhuch et al. [1] have proposedan on-line resena-
tion algorithm to maximize the throughputin a network
where the duration of eachreseration is known in ad-
vance. The algorithm guaranteeghat the throughputis
within O(log nT') factor of the throughputachieved by an
optimal off-line algorithm,wheren is the numberof nodes
and’l" is the maximumdurationof a reseration. In the
schemegachlink is associatedavith a costthatis a expo-
nentialfunction of its currentutilization. Also, eachcon-
nectionis associatedvith a profit which is receved only
if therequesis granted.The goal of the algorithmis then
to maximizethe overall profit. While this algorithmdiffers
significantlyform oursbothin assumptionandgoals,we
notethatthemechanismsisedto implementLIRA canalso
beusedto implementhis scheme.

Kelly et. al [15, 16] have consideredhe problem of
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bandwidthallocationbetweercompetingstreamswith elas-
tic traffic. In particular they proposea mathematicainodel
to analyzethe stability andfairnessof a classof rate con-
trolled algorithms.In thismodeleachuserchosethechage
perunit of time thatit is willing to payfor aroute. In turn
the networkcomputeghe userratesaccordingto a propor
tionatecriterion. However, they only considerthe model
whereresourcesreallocatedonthebasisof pervirtual cir-
cuit.

Toincreaseesourcautilization, in this papemwe propose
performingdynamicroutingandload balancingamongthe
bestk shortestpathsbetweensourceand destination. In
this contet, one of the first dynamicrouting algorithms,
which usesthe link delay as metric, wasthe ARPANET
shortestpath first [21]. Unfortunately the sensitvity of
this metric whenthe link utilization approachesinity re-
sultedto relative poor performancesVariousrouting algo-
rithms basedon congestiorcontrol informationwere pro-
posedelsavhere[12, 13]. The uniqueaspectf our algo-
rithm is thatit combinesdynamicrouting, congestiorcon-
trol andloadbalancingogetherAlso we alleviatetheprob-
lem of systemstability which plaguedmary of theprevious
dynamicrouting algorithmsby defininga morerobustcost
functionandprobabilisticallybindinga flow to aroute.We
alsonotethatourlink costis similarto theoneusedin [19].
In particular it canbe shaovn thatwhenall links have the
samecapacity our link costis within a constantfactor of
the costof shortest-dist(P1) algorithm presentedn [19].
It is worth notingthatshortest-dist(PL) performedhebest
amongall thealgorithmsstudiedin [19].

6 Summary

We study modelsand algorithmsthat supportAssured
Servicewith serviceprofilesdefinedoverlargespatialgran-
ularities. We proposea servicemodelin which the service-
profile is definedin units of resourceaokensratherthanthe
absolutédbandwidth andanaccountingschemehatdynam-
ically determineshenumberof resourcéokenschagedfor
eachin-profile packet. We presenta setof algorithmsthat
efficiently implementthe servicemodel. In particular we
introducethreetechniques(a) distributing pathcoststo all
edgenodedy leveragingexisting routinginfrastructure(b)
bindinga flow to aroute(route-pinningwithout maintain-
ing per flow state;(c) multi-pathrouting and probabilistic
binding of flows to pathsto achieve load balancing.Simu-
lation resultsarepresentedo demonstrat¢he effectiveness
of the approach.To the bestof our knowledge,this is the
first completeschemahatexplicitly addressethe issueof
large spatialgranularities.

While thesetechniquesare developedin the contet of
supportingAssuredService,they may be usefulin other
contxts. For example, by combiningthe route-pinning
techniquewith the SCED+algorithmproposedn [6], guar



anteecbr premiumservicecanbe providedwithouttheneed
for perflow managemerdtcorerouters.

As future work, we planto extendthis work to support
multiple ISP environments,multicastcommunicationand
bothsendemlandreceverbasedchaging schemes.
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