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Abstract

In this paper, we studythe Assured Servicemodelpro-
posedby Clark and Wroclawski [3, 4]. While existing
schemesuseserviceprofilesthatare definedin termsof ab-
solutebandwidth,it is difficult, if not impossible,to design
provisioningalgorithmsthat achieve simultaneouslygood
servicequality and high resource utilization for such ser-
viceswith largespatialgranularities.

WeproposeanAssuredServicemodel,calledLIRA (Lo-
cation IndependentResource Accounting),in which ser-
viceprofilesare definedin unitsof resource tokens,rather
than absolutebandwidth. Thenumberof resource tokens
chargedfor each in-profile packet is a dynamicfunctionof
thepathit traversesandthecongestionlevel. Definingser-
viceprofilein termsof resourcetokensallowsmoredynamic
andflexible networkcontrol algorithmsthatcansimultane-
ouslyachieve high utilization and ensure high probability
deliveryof in-profile packets. We presentan integratedset
of algorithmsthat implementthe model. Specifically, we
leveragetheexistingroutinginfrastructure to distributethe
pathcoststo all edgenodes.Sincethepathcostreflectsthe
congestionlevel along the path,weusethis costto design
dynamicrouting and load balancingalgorithms. To avoid
packet re-ordering within a flow, we devise a lightweight
mechanismthat bindsa flow to a routeso that all packets
fromtheflow will traversethesameroute. To reduceroute
oscillation, we probabilistically bind a flow to one of the
multipleroutes.Simulationresultsare presentedto demon-
stratetheeffectivenessof theapproach.
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1 Introduction
As theInternetevolvesinto a globalcommercialinfras-

tructure,thereis a growing needto supportmoreenhanced
servicesthanthe traditionalbest-effort service.To address
this issue,severalnew QoSmodels(guaranteed,controlled
load,committedrate)have beenproposed[26, 31]. Collec-
tively, they arecalledIntegratedServicesor Intservmodels.
Recently, therearenew effortsin theIETF to developanew
classof servicemodelscalledDif ferentialServicesor Dif f-
servmodels[2, 3, 4, 17,22,29].

While theseschemesdiffer in details,they areverysim-
ilar at the architecturallevel. Usually a schemeconsists
of the following components:(a) a serviceprofile between
eachcustomer(user)andtheInternetServiceProvider(ISP)
that definesthe commitmentof the ISP to the user, (b)
ingressnodesat the ISP edgewhich police the aggregate
traffic from eachuserto makesurethatno userexceedsits
serviceprofile,(c) networknodesinsidetheISPcorewhich
implementa varietyof packetforwarding,buffer manage-
ment,andschedulingbehaviors in orderto control packet
queueingdelay, loss,and/orthroughput,and(d) asetof bits
in theheaderof eachpacketusedto triggermechanismfor
differentialprocessinginside the network. Usually, there
aretwo typesof bits. Thefirst typespecifiesthedifferential
processingbehavior requestedby theuser, suchasdropor
delaypreference.Thesebitsarenotmodifiedby therouters.
Thesecondtypeof bits canbechangedby routersanden-
codesthedynamicinformation. An exampleis thebit that
encodeswhetherthepacketis in oroutof theserviceprofile.

Thekey differencebetweenIntservandDif fserv is that
while Intservprovidesend-to-endQoSserviceonaperflow
basis,Dif fserv is intendedto provide servicedifferentia-
tion amongthe traffic aggregatesto differentusersover a
long timescale. Suchdifferenceat theservicelevel hasim-
portantimplicationsonthecomplexity of thenetwork-level
mechanismsrequiredto implementtheseservices.In par-
ticular, to provide Intserv, eachrouter needsto supporta
flow level signalingprotocolsuchasRSVP[32], maintain
perflow state,andperformschedulingandmanagebuffers
on a perflow basis. Sincetherecanbe a largenumberof
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flows in theInternet,it is anopenquestionwhetherIntserv
canbeimplementedin a scalablefashion.Dif fserv, on the
otherhand,pushesthecomplexity to thenetworkedge,and
requiresvery simple priority scheduling/dropping mecha-
nismsinsidethecore.An importantpropertyof theDif fserv
schemesconsideredin this paperis that eachroutertreats
identically all packetswhich have the samebits set. That
is, routersonly distinguisha small numberof aggregated
classesof packets,wherea classrepresentsall packetswith
thesamemarking.

Existing Dif fserv schemesarebasedon the conceptof
serviceprofile. From theservice’s point of view, thereare
threeaspectsthata Dif fservmodelneedsto specify[3, 4]:� semanticsof the serviceprofile: what exactly is pro-

videdto thecustomer(user)?� spatialgranularityof the service: is the servicepro-
file appliedto traffic destinedto a singledestination,
a groupof destinations,all nodesof anISP, or every-
wherein theInternet?� level of assurance:how likely is anin-profilepacketto
bedeliveredto thedestination?

Two examplesof differentialservicemodelsaretheAs-
suredServiceproposedby ClarkandWroclawski [3, 4] and
thePremiumServiceproposedby Jacobsonet.al [22]. The
PremiumServiceprovidestheequivalentof adedicatedlink
of fixedbandwidthbetweentwo edgenodes.Themainad-
vantageof the PremiumServiceover the current Intserv
modelssuchasguaranteedor controlledload is its imple-
mentationsimplicity – it doesnot requireperflow manage-
mentat corerouters.

TheAssuredServicesupportscoarsespatialgranularity,
i.e., serviceprofilesareappliedto traffic definedto more
thanonedestination.It is importantto noticethat in addi-
tion to the implementationsimplicity, the AssuredService
also providesa servicesemanticthat is richer than those
providedbytheexistingIntservmodels.For example,while
Intserv andPremiumservicesarebettersuitedfor steady
andlong-livedtraffic, the AssuredServiceprovidesbetter
supportfor traffic aggregatesthat consistof many short-
livedburstyflowswith differentdestinations(suchasWEB
traffic).

We believe that a servicemodel with a coarsespatial
granularityembodiessomeof thefundamentalmotivations
behindthedesignof theAssuredService.Thecoarsespa-
tial granularityleadsto a smallernumberof servicepro-
files,whichin turn improvesthescalabilityby reducingthe
amountof stateneededat theedgeof thenetwork.In addi-
tion, serviceprofileswith coarserspatialgranularitiesalso
meanhighertraffic aggregationfor eachprofile, which al-
lows usersto achieve a higher degreeof statisticalmulti-
plexing gain.

However, asthespatialgranularitybecomeslarger than
onedestination,it is moredifficult to supportaservicewith
a fixed bandwidthprofile. In this situation,thereis a fun-
damentalconflict betweenmaximizingresourceutilization
andachieving a high serviceassurance.Sincethenetwork
doesnot know in advancewherethepacketswill go, in or-
derto provide high serviceassurance,it needsto provision
enoughresourcesto all possibledestinations.This will re-
sult in a severeresourceunder-utilization.

In thispaper, weshow thatby definingserviceprofilesin
termsof the amountof resourcetokensratherthantheab-
solutebandwidth,we candesigndynamicandflexible net-
work controlalgorithmsthatcanachieve high resourceuti-
lization,while at thesametimedeliveringin-profilepackets
with high probability. The key aspectof the modelis that
theservicedifferentiationis basedonresourcetokensrather
thantheexactamountof bitspersecond.Theamountof re-
sourcetokenschargedfor eachbit is a dynamicfunctionof
the pathand the congestionlevel. This avoids the worst-
caseprovisioningdilemmafacedby existing solutions. In
addition,aswe will discussin Section4, our schemecan
alsobeusedto implementdifferentialserviceswith service
profilesdefinedin termsof absolutebandwidth.

Therestof thepaperisorganizedasfollows. In Section2
describesourmodelbasedon resourcetokensandproposes
a set of mechanismsto implementthe model. Section3
presentssimulationexperimentsto demonstratethe effec-
tivenessof our solution.Section4 justifiesthenew service
modelanddiscussespossiblewaysfor ourschemeto imple-
mentotherdifferentialservicemodels.Finally, in Section5
wepresenttherelatedwork,andin Section6 wesummarize
ourcontributions.

2 LIRA: Service Differentiation based on Re-
source Right Tokens

In thissection,wepresentourdifferentialservicemodel,
calledLIRA (LocationIndependentResourceAccounting),
with serviceprofiles definedin terms of resourcetokens
ratherthanabsoluteamountsof bandwidth.

We considerthe following simple two bits encoding
scheme.Thefirst bit, calledthepreferred bit, is setby the
applicationor userandindicatesthedroppingpreferenceof
thepacket.Thesecondbit, calledmarkingbit, is setby the
ingressroutersof an ISP andindicateswhetherthepacket
is in- or out-of profile. More precisely, whena preferred
packetarrivesat an ingressnode,the nodemarksit if the
userhasnot exceededits profile; otherwisethe packetis
left unmarked� . Thereasonto usetwo bits insteadof oneis
that in an Internetenvironmentwith multiple ISPs,even if
a packetmay beout-of profile in someISPson theearlier
portionof its path,it maystill bein-profile in a subsequent�

In thepaper,wewill usetheterminologyof markedorunmarkedpack-
etsto referto packetsin or out-of theserviceprofile,respectively.
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ISP. Having a droppingbit that is unchangedby upstream
ISPson the pathwill allow downstreamISPsto makethe
correctdecision.Coreroutersimplementa simplebehavior
of priority dropping.Whenever thereis acongestion,acore
routeralwaysdropsunmarkedpacketsfirst.

In thispaper, wefocusonmechanismsfor implementing
LIRA in a singleISP. We assumethe following modelfor
theinteractionof multipleISPs:if ISPA isusingtheservice
of ISPB, thenISPB will treatISPA just like aregularuser.
In particular, thetraffic fromall ISPA’suserswill betreated
asa singletraffic aggregate.

2.1 LIRA Service Model
With LIRA, eachuser 	 is assigneda serviceprofile that

is characterizedby a resourcetokenbucket 
���
�����
�� , where��
 representstheresourcetokenrate,and ��
 representsthe
depthof thebucket.Unlike traditionaltokenbucketswhere
eachpreferredbit enteringthe networkconsumesexactly
onetoken,with resourcetokenbucketsthe numberof to-
kensneededto admita preferredbit is a dynamicfunction
of thepathit traverses.

Althoughtherearemany functionsthatcanbeused,we
considera simplecasein which eachlink 	 is associateda
cost,denoted� 
 
���� , whichrepresentstheamountof resource
tokenscharged for sendinga markedbit along the link at
time � . The costof sendinga markedpacketis computed
as � 
������ � � 
 
!��� , where � is thepacketlengthand " is
thesetof links traversedby thepacket.While we focuson
unicastcommunicationsin this paper, we notethat thecost
functionis alsonaturallyapplicableto thecaseof multicast.
As we will show in Section3, charging a userfor every
link it usesandusingthe costin routingdecisionshelp to
increasethenetworkthroughput.In fact, it hasbeenshown
in [19] that usinga similar cost function# for performing
theshortestpathroutinggivesthebestoverall resultswhen
comparedwith otherdynamicroutingalgorithms.

It is importantto notethatthecostsusedin thispaperare
not monetaryin nature.Insteadthey arereflectingthelevel
of congestionandtheresourceusagealonglinks/paths.This
is different from pricing which representsthe amountof
paymentmadeby anindividualuser. Thoughcostscanpro-
vide valuableinput to pricing policies,in general,thereis
nonecessarydirectconnectionbetweencostandprice.

Figure1 illustratesthe algorithmperformedby ingress
nodes.Whena preferredpacketarrivesat an ingressnode,
thenodecomputesits costbasedon the packetlengthand
the path it traverses. If the userhasenoughresourceto-
kensin its bucketto cover this cost, the packetis marked,
admittedin the network,andthecorrespondingnumberof
resourcetokensis subtractedfrom thebucketaccount.Oth-
erwise,dependingon the policy, the packetcan be either$

It canbe shown that whenall links have the samecapacityour cost
is within a constantfactor from the costof shortest-dist(P, 1) algorithm
proposedin [19].

dropped,or treatedasbesteffort. Informally, our goal at
the userlevel is to ensurethat userswith “similar” com-
municationpatternsreceive service(in termsof aggregate
markedtraffic) in proportionto their tokenrates.

Thecruxof theproblemthenis thecomputationanddis-
tribution of the per markedbit cost for eachpath. In this
section,we first presentthe algorithmto computethecost
of eachmarkedbit for a single link, and next presentan
algorithm that computesand distributesthe per-path cost
of onemarkedbit by leveragingexisting routingprotocols.
We then argue that this dynamiccost information is also
usefulfor multi-pathroutingandloadbalancingpurposes.
To avoid routeoscillationandpacketreorderingwithin one
application-level flow, we introducetwo techniques.First,
a lightweight schemeis devisedto ensurethat all packets
from thesameapplication-level flow alwaystravel thesame
path. The schemeis lightweight in the sensethat no per
flow stateis neededin any corerouters.Second,ratherthan
usingasimplegreedyalgorithmthatalwaysselectsthepath
with thecurrentlowestcost,we usea probabilisticscheme
to enhancesystemstability.

2.2 Link Cost Computation
A naturalgoalin designingthelink costfunctionin LIRA

is to avoid markedpacketsbeing dropped. Since in the
worst caseall userscan competefor the samelink at the
sametime, a sufficient condition is to have a cost func-
tion thatexceedsthenumberof tokensin thesystemwhen
thelink utilizationapproachesunity. Without boundingthe
numberof tokensin thesystem,thissuggestsacostfunction
that goesto infinity when the link utilization approaches
unity. Amongmany possiblecostfunctionsthatexhibit this
property, wechoosethefollowing one:

��
����&% '(*),+ 
���� � (1)

where ' is the fixedcostof usingthe link - whenit is idle,
and
+ 
���� representsthe link utilization at time � . In partic-

ular,
+ 
����.%0/1
����3254 , were /1
!��� is thetraffic throughputat

time � , and 4 representsthe link capacity. Recallthat �6
!���
is measuredin tokens/bitandrepresentshow muchauseris
chargedfor sendinga markedbit alongthatlink at time � .

In an idealsystem,wherecostsareinstantaneouslydis-
tributedand the rateof the incomingtraffic variesslowly,
a cost function as definedby Eq. (1) guaranteesthat no
markedpacketsaredroppedinsidethe core. However, in
a realsystem,computinganddistributingthecostinforma-
tion incur overhead,so they areusuallydoneperiodically.
In addition,thereis alwaysthe issueof propagationdelay.
Becauseof these,the cost information usedin admitting
packetsat ingressnodesmaybeobsolete.This maycause7

In practice,the networkadministratorcanmakeuseof 8 to encour-
age/discouragetheuseof the link. Simply by changingthefixedcost 8 , a
link will costproportionallymoreor lessat thesameutilization.
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upon packet arrival :
   bit_cost = c1 + c2 + c3 + c4 + c5;
    packet_cost = packet_length * bit_cost;
    if (preferred(packet) && l > packet_cost)
        mark(packet);
        l −= packet_cost;

l = current bucket  level
ci = per bit cost of link i

r = resource token  rate

Ingress Node Alg.

Figure 1. When a preferred packet arrives, the node computes the packet’ s cost, and the packet is
marked if there are sufficient resour ce tokens.

packetdropping,andleadto oscillations.Thoughoscilla-
tions are inherentto any systemin which the propagation
of the feed-backinformationis non-zero,thesensitivity of
ourcostfunctionwhenthelink utilizationapproachesunity
makesthingsworse.In this regime,anincrementallysmall
traffic changemayresultin anarbitrarylargecostchange.
In fact one may note that Eq. (1) is similar to the equa-
tion describingthedelaybehavior in queueingsystems[18],
whichis known to leadto systeminstabilitywhenusedasa
congestionindicationin a heavily loadedsystem.

To addresstheseissues,we usethe following iterative
formulato computethelink cost:

��
�� 
 �9% ';: ��
�� 
�< � �
=/1
!� 
 �>� 
�< � �4 ? (2)

where
=/1
!�3@A�>�3@B@C� denotesthe averagebit rateof the marked

traffic duringthetimeinterval D �3@��A�3@B@!� . It is easyto seethatif
themarkedtraffic rateis constantandequalto / , theabove
iterationconvergesto the costgivenby Eq. (1). Themain
advantageof using Eq. (2) over Eq. (1) is that it is more
robustagainstlargevariationsin thelink utilization. In par-
ticular, whenthe link utilization approachesunity the cost
increasesby at most ' every iteration. In addition,unlike
Eq. (1), Eq. (2) is well definedeven whenthe link is con-
gested,i.e.,

=/1
!�3
�< � �>�3
A�E% 4 .
Unfortunately, computingthecostby usingEq.(2) is not

asaccurateasby usingEq. (1). Thelink maybecomeand
remaincongestedfor a long time beforethe costincreases
largeenoughto reducethearrival rateof markedbits. This
may result in the lossof markedpackets,which we try to
avoid. To addressthisproblemweuseonly afractionof the
link capacity, F4G%IHJ4 , for themarkedtraffic, theremain-
ing beingusedto absorbthe unexpectedvariationsdueto
inaccuraciesin thecostestimationK . In this paperwechoseH between0.85and0.9.L�M

is similar to thepressurefactorusedin someABR congestioncon-
trol schemesfor estimatingthefair share[14, 25].

2.3 Path Cost Computation and Distribution

In LIRA, thecostof a markedbit over a pathis thesum
of thecostsof amarkedbit overeachlink onthepath.Once
thecostfor eachlink is computed,it is easyto computeand
distributethepathcostby leveragingexistingroutingproto-
cols. For link statealgorithms,thecostof eachmarkedbit
canbeincludedaspartof thelink state.For distancevector
algorithms,we canpassandcomputethe partial pathcost
in thesameway the distanceof a partialpathis computed
with respectto theroutingmetric.

2.4 Multipath Routing and Load Balancing

Sinceouralgorithmdefinesadynamiccostfunctionthat
reflectsthecongestionlevel of eachlink, it is naturalto use
this costfunction for thepurposeof multi-pathrouting. In
this paper, we computethe N shortestpathsfor eachdes-
tination or egressnodeusingunit link metric. While the
obvioussolutionis to sendpacketsalongthepathwith the
minimumcost(in thesenseof LIRA, seeSection2.1)among
the N paths,thismayintroducetwo problems:(a)packetre-
orderingwithin oneapplication-level flow, whichmayneg-
ativelyaffectend-to-endcongestioncontrolalgorithms,and
(b) routeoscillation,whichmayleadto systeminstability.

We introducetwo techniquesto addresstheseproblems.
First,wepresenta lightweightmechanismthatbindsa flow
to a routesothatall packetsfrom theflow will traversethe
sameroute. Second,to reducerouteoscillation, for each
new flow, aningressnodeprobabilisticallybindsit to oneof
the multiple routes.By carefully selectingtheprobability,
wecanachieve bothstability andload-balancing.

2.4.1 Forwarding Algorithm For Multiple Path Rout-
ing

As discussedearlier, we will maintainmultiple routesfor
eachdestination.However, wewould like to ensurethatall
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Figure 2. Example of route binding via packet labeling.
packetsbelongingto thesameflow areforwardedalongthe
samepath.

Thebasicideais to associatewith eachpathalabelcom-
putedastheXOR overtheidentifiersof all routersalongthe
path,andthenassociatethis labelwith eachpacketof aflow
thatgoesalongthatpath.HereweusetheIP addressasthe
identifier. More precisely, a path "O%P
�	�QSR5��	�Q � � ?T?U? ��	�QWVX� ,where 	�Q R is the sourceand 	�Q V is the destination,is en-
codedat the source( 	�Q R ) by Y R %Z	�Q �.[ 	�Q #\[ ?T?U? [ 	�Q V .Similarly, the path from 	�Q � to 	�Q V is encodedat 	�Q � byY � %]	�Q #.[ ?T?U? [ 	�Q V . A packetthat travels alongpath "
is labeledwith Y R as it is leaving 	�Q R , andwith Y � as it is
leaving Q � . By usingXOR we caniteratively re-compute
the label basedon the packet’s currentlabel andthe node
identifier. As anexample,considerapacketthatis assigned
label Y R at node 	�Q R . Whenthe packetarrivesat node 	�Q � ,
the new label correspondingto the remainingof the path,
�	�Q � � ?T?U? ��	�Q V � , is computedasfollows:

Y � % 	�Q �E[ Y R % (3)	�Q �E[ 
�	�Q �E[ 	�Q #&[ ?T?U? [ 	�Q V �9%^	�Q #&[ ?T?U? [ 	�Q V ?
It is easyto seethat this schemeguaranteesthat thepacket
will be forwardedexactly alongthepath " . Here,we im-
plicitly assumethat all alternatepathsbetweentwo end-
nodeshave uniquelabels. Although theoreticallythereis
a non-zeroprobability that two labelsmaycollide, we be-
lievethatfor practicalpurposesit canbeneglected.

Next we give somedetailsof how this mechanismcan
beimplementedby simplyextendingtheinformationmain-
tainedby eachrouterin theroutingandforwardingtables.

Besidesthe destinationand the route cost, eachentry in
theroutingtablealsocontainsthelabelassociatedwith that
path._

QS`a�U�
_
��b�`���c �>d �3Y>c �3dfe � ?T?U?

_
��b�`���chg d �iYAcCg d � e;e (4)

Similarly, the forwardingtableshouldcontainanentry for
eachpath:_
Y c �3d ��QS`a�U��j�kTlS� mnb�o c �3d e ?U?T?

_
Y chg d ��QS`��U��j�kUlp� mqb�o cCg d e (5)

In Figure2 we give a simpleexampleto illustrate this
mechanism.Assumethatnodes	�Q � and 	�QSr areedgenodes,
and thereare two possiblepathsfrom 	�Q � to 	�QSr of costs
7, and8, respectively. Now, assumea packetdestinedto	�Q r arrivesat 	�Q � . First the ingressnode 	�Q � searchesthe
classifiertable(not shown in the Figure),that maintainsa
list of all flows, to seewhetherthis is the first packetof a
flow. If it is, therouterusesthe informationin therouting
tableto probabilisticallybind theflow to a pathto 	�Q r . At
thesametime it labelsthepacketwith theencodingof the
selectedroute. In our example,assumethepathof cost7,
i.e., 
�	�Q � ��	�Q # ��	�Q - ��	�Q r � , is selected. If the arriving packet
is not the first packetof the flow, the routerautomatically
labelsthepacketwith theencodingof thepathto which the
flow is bound. This canbe simply achieved by keepinga
copyof the label in theclassifiertable. Oncethepacketis
labeled,therouterchecksthe forwardingtablefor thenext
hop by matchingthe packet’s label andits destination.In
ourcase,this operationgivesus 	�Q # asthenext hop. When
the packetarrives at node 	�Q # the router first computesa
new label basedon the currentpacketlabel andthe router
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identifier: Y ' ��k�Y&%0	�Q #*[ Y ' ��k�Y . Thenew label is thenused
to lookuptheforwardingtable.

It is importantto notethat theabove algorithmassumes
perflow stateonly at ingressnodes.Insidethe core,there
is no perflow state.Moreover, the labelscanspeed-upthe
tablelookupif usedashashkeys.

2.4.2 Path Selection

While theaboveforwardingalgorithmensuresthatall pack-
etsbelongingto thesameflow traversethesamepath,there
is still theissueof how to selecta pathfor a new flow. The
biggestconcernwith any dynamicrouting protocolbased
on congestioninformation is its stability. Frequentroute
changesmayleadto oscillations.

To addressthis problem,weassociatea probabilitywith
eachrouteanduseit in binding a new flow to that route.
The goal in computingthis probability is to equalizethe
costsalongthealternateroutes,if possible.For this weuse
a greedyalgorithm.Every time theroutecostsareupdated
we split the set of routesin two equalsets,whereall the
routesin one set have costslarger than the routesin the
secondset. If thereis an odd numberof routes,we leave
the medianout. Then,we decreasethe probability of ev-
ery routein thefirst set,theonewhich containsthehigher
costroutes,andincreasetheprobabilityof eachroutein the
secondsetby a smallconstants . It canbeshown that in a
steady-statesystem,thisalgorithmconvergesto theoptimal
solutionwithin s .
2.5 Algorithm Scalability

As describedso far, our schemerequiresto maintain N
entriesfor eachdestinationin both the forwarding table
usedby the forwardingengineand the routing tableused
by the routing protocol,where N is the maximumnumber
of alternatepaths.While this factormaynot besignificant
if N is small, a more seriousissuethat potentially limits
the scalabilityof the algorithmis that in the vanilla form
it requiresto maintainanentryfor eachdestination,where
in reality, to achieve scalability, routersreally maintainthe
longest-prefixof agroupof destinationsthatsharethesame
route[11]. Sinceouralgorithmworksin thecontext of one
ISP, we canmaintainanentryfor eachegressnodeinstead
of eachdestination.Webelievethis is sufficientasthenum-
berof egressnodesin anISPis usuallynot large.

However, assumethat the numberof egressnodesin
an ISP is very large so that significantaddressaggrega-
tion is needed. Then we needto also perform cost ag-
gregation. To illustrate the problem considerthe exam-
ple in Figure 3. Assumethe addressesof QSR and Q � are
aggregatedat an intermediaterouter � � . Now the ques-
tion is how much to charge a packetthat entersat the
ingressnode �TR andhasthe destinationQSR . Sincewe do

d0

d1

r1r0

Figure 3. Topology to illustrate the label and
cost aggregation.

not keepstatefor the individual routesto Q R , and Q � re-
spectively, we needto aggregatethecostto thesetwo des-
tinations. In doing this, a naturalgoal would be to main-
tain the total charges the sameas in a referencesystem
that keepsper routestate. Let /1
�� � ��Q 
 � denotethe aver-
agetraffic ratefrom � � to Q 
 , 	t% ( ��u . Then,in the refer-
encesystemthatmaintainsperroutestate,thetotal charge
per time unit for theaggregatetraffic from � � to Q R and Q �
is: ��b�`��U
�� � ��Q R �3/1
�� � ��Q R � : ��b�`a�U
�� � ��Q � �3/1
�� � ��Q � � . In asys-
tem that doesnot maintainper route state,the charge for
thesametraffic is ��b�`��U
�� � ��QSR���Q � ��
�/1
�� � ��QSR�� : /1
�� � ��Q � �3� ,where ��b�`��U
�� � ��QvR6��Q � � denotesthe per bit aggregatecost.
Thisyields

��b�`��U
�� � ��QSR���Q � �w% ��b�`��U
�� � ��QSR��3/1
�� � ��QSR��/1
�� � ��Q R � : /1
�� � ��Q � � : (6)

��b�`��U
�� � ��Q � �3/1
�� � ��Q � �/1
�� � ��Q R � : /1
�� � ��Q � � ?
Thus,any packetthatarrivesat �TR andhaseitherdestinationQSR or Q � is chargedwith ��b�`a�U
��TR5��� � � : ��b�`a�U
�� � ��QSRT��Q � � . Ob-
viously, routeaggregationincreasestheinaccuraciesin cost
estimation.However, thismaybealleviatedby thefact that
therouteaggregationusuallyexhibits high localities.

Anotherproblemwith addressaggregationis thata label
cannolongerbeusedto encodetheentirepathto thedesti-
nation. Instead,it is usedto encodethecommonportionof
thepathsto thedestinationsin theaggregateset.Thismeans
that a packetshouldbe relabeledat every routerthat per-
forms aggregationinvolving the packet’s destination.The
mostseriousconcernwith this schemeis that it requiresto
maintainperflow stateandperformpacketclassificationat
acorerouter( � � in ourexample).Fortunately, thisscalabil-
ity problemis alleviatedby thefactthatweneedto keepper
flow stateonly for theflowswhosedestinationaddressesare
aggregatedat the current router. Finally, we notethat this
problemis not specificto our scheme;any schemethat (i)
allows multiple pathrouting, (ii) performsload balancing,
and(iii) avoidspacketreorderinghasto addressit.

3 Simulation Experiments
In thissectionweevaluateourmodelby simulation.We

conductfour experiments: threeinvolving simple topolo-
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Figure 4. (a) Topology used in the first experiment. Each link has 10 Mbps capacity . � ( , ��u , and ���
send all their traffic to � ( . (b) The throughputs of the three users under BASE and STATIC schemes.
(c) The throughputs under STATIC when the token rate of �Eu is twice the rate of � ( / ��u .

gieswhich help to gain a betterunderstandingof the be-
havior of our algorithms,andone morerealisticexample
with a larger topologyandmore complex traffic patterns.
Thefirst experimentshows that if all userssharethe same
congestedpath,theneachuserreceivesservicein propor-
tion to its resourcetokenrate. This is the sameresultone
would expect from usinga weightedfair queueingsched-
uler on every link, with theweightssetto the users’token
rate. In thesecondexperiment,we show thatby usingdy-
namicrouting andload balancing,we areable to achieve
thesameresult– thatis, eachuserto receive servicein pro-
portion to its tokenrate– in a moregeneralconfiguration
wheresimplyusingweightedfair queueingscheduleronev-
ery link is not sufficient. In the third experiment,we show
how loadbalancingcansignificantlyincreasetheoverall re-
sourceutilization.Finally, thefourthexperimentshowshow
thebehaviorsobservedin thepreviousexperimentsscaleto
a largertopology.

3.1 Experiment Design

We have implementeda packetlevel simulator which
supportsbothDistanceVector(DV) andShortestPathFirst
(SPF)routingalgorithms.To supportloadbalancingweex-
tendedthesealgorithmsto computethe N -th shortestpaths.
The time interval betweentwo routeupdatesis uniformly
distributedbetween� ?B� and

( ?B� of the averagevalue. As
shown in [10] this choice avoids the route-updateself-
synchronization.In SPF, when a nodereceives a routing
message,it first updatesits routingtableandthenforwards
themessageto all its neighbors,exceptingthesender. The
routingmessagesareassumedto have highpriority, sothey
arenever lost. In thefollowingswe comparethefollowing
schemes:

� BASE – this schememodelstoday’s best-effort Inter-
net,andit is usedasabaselinein ourcomparison.The

routing protocolusesthe numberof hopsas the dis-
tancemetric and it is implementedby either DV or
SPF. This schemedoesnot implementservicediffer-
entiation,i.e., bothmarkedandunmarkedpacketsare
identicallytreated.� STATIC – this schemeimplementsthe samestatic
routingasBASE. In addition,it implementsLIRA by
computingthe link cost as describedin Section2.2,
andmarkingpacketsateachingressnodeaccordingto
thealgorithmshown in Figure1.

� DYNAMIC- N – thisschemeaddsdynamicroutingand
loadbalancingto STATIC. Theroutingprotocolusesa
modifiedversionsof DV/SPFto find thefirst N short-
est paths. Note that DYNAMIC-1 is equivalent to
STATIC.

Each router implementsa FIFO schedulingdiscipline
with a sharedbuffer anda drop-tail managementscheme.
Whenthebuffer occupancy exceedsapredefinedthreshold,
newly arrivedunmarkedpacketsaredropped.Thus,theen-
tire buffer spacefrom the thresholdup to its total size is
reserved to the in-profile traffic r . Unlessotherwisespeci-
fied, throughoutall our experimentsweusea buffer sizeof
256KB anda thresholdof 64KB.

The two mainperformanceindicesthatwe usein com-
paring the above schemesare the user in-profile anduser
overall throughputs.The userin-profile throughputrepre-�

We note that this schemeis a simplified versionof the RIO buffer
managementschemeproposedby Clark andWroclawski[4]. In addition,
RIO implementsa RandomEarly Detection(RED) [9] droppingpolicy,
insteadof drop-tail,for bothin- andout-of profile traffic. REDprovidean
efficientdetectionmechanismfor theadaptiveflows,suchasTCP, allowing
them to gracefullydegradetheir performanceswhen congestionoccurs.
However, sincein this studywe arenot concernedwith the behavior of
individualflows, for simplicity wechoseto not implementRED.
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Figure 5. (a) Topology used in the second experiment. � ( , ��u , ��� , and �f® send all their traffic to � ( ,�¯u , and �¯� , respectivel y. (b) The throughputs of all users under BASE, STATIC, and DYNAMIC-2.

sentsthe rateof the useraggregatein-profile traffic deliv-
eredto its destinations.The overall throughputrepresents
the user’s entire traffic — i.e., including both the in- and
out-of profile traffic — deliveredto its destinations.In ad-
dition, we useuserdroppingrateof the in-profile traffic to
characterizethelevel of serviceassurance.

Recentstudieshave shown that the traffic in real net-
works exhibits the self-similarproperty[5, 23, 24, 30] —
thatis, thetraffic is burstyoverwidely differenttimescales.
To generateself-similartraffic we usethe techniqueorigi-
nally proposedin [30], whereit wasshown that thesuper-
positionof many ON-OFFflows with ON andOFFperiods
drawn from a heavy tail distribution, andwhich have fixed
ratesduringtheON periodresultsin self-similartraffic. In
particular, in [30] it is shown thattheaggregationof several
hundredof ON-OFFflows is areasonableapproximationof
therealend-to-endtraffic observedin a LAN.

In all our experiments,we generatethe traffic by draw-
ing the lengthof the ON andOFF periodsfrom a Pareto
distribution with the power factor of °W±B² . During the ON
perioda sourcesendspacketswith sizesbetween100bytes
and 1000 bytes. The time to senda packetof minimum
sizeduringtheON periodis assumedto bethetimeunit in
computingthelengthof theON andOFFintervals.

Dueto thehighoverheadincurredby apacket-level sim-
ulator, suchasours,welimit thelink capacitiesto 10Mbps
andthesimulationtimeto 200sec.Wesettheaverageinter-
valbetweenroutingupdatesto 5 secfor thesmalltopologies
usedin thefirst threeexperiments,andto 3 secfor thelarge
topologyusedin the last experiment. In all experiments,
thetraffic startsat time ³µ´0²5¶ sec.Thechoiceof this time
is suchthat to guaranteethat theroutingalgorithmfindsat
leastonepathbetweenany two nodesby time ³ . In orderto
eliminatethetransientbehavior, westartourmeasurements

at time ³.´ ·5¶ sec.

3.2 Local Fairness and Service Differentiation

This experimentshows that if all userssendtheir traffic
alongthesamecongestedpath,they getservicein propor-
tion to their tokenrate,aslong asthereis enoughdemand.
Considerthe topologyin Figure4(a),whereuserş*° , ¸�² ,
and ¸�¹ sendtraffic to º»° . Figure4(b) showstheuserover-
all throughputsover theentiresimulationunderBASE.As
it can be seen, ¸.° getssignificantly more than the other
two. In fact,if thetraffic from all sourceswerecontinuously
backlogged,we expectthat ¸.° to gethalf of thecongested
links · and ¼ , while ¸E² and ¸�¹ to split theotherhalf. This
is becauseeven thougheachusersendsat an averagerate
higherthan10 Mbs, thequeuesarenot continuouslyback-
logged. This is dueto the bursty natureof the traffic and
dueto thelimited buffer spaceateachrouter.

Next, we run the same simulation for the STATIC
scheme.To eachuserwe assignthe sametokenrate,and
to eachlink we associatethe samefixed cost. Figure4(b)
shows the useroverall and in-profile throughputs. Com-
paredto BASE, the overall throughputsare more evenly
distributed. However, the user ¸.° still getsslightly better
service,i.e., its in-profile throughputis 3.12 Mbps, while
the in-profile throughputof ¸�² / ¸�¹ is 2.75 Mbps. To see
why, recallfrom Eq.(1) thatlink costaccuratelyreflectsthe
level of congestionon that link. Consequently, in this case
links 5 and6 will have the highestcost, followedby link
4, andthentheotherthreelinks. Thus, ¸�² and ¸E¹ have to
“pay” morethan ¸*° permarkedbit. Sinceall usershave the
sametokenrates,this translatesinto loweroverall through-
putsfor ¸�² and ¸�¹ , respectively.

To illustrate the relationshipbetweenthe user’s token
rateand its performance,we doublethe tokenrateof ¸�² .
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Figure 6. (a) Topology used in the thir d experiment. Mean throughputs when (b) load is balanced,
and (c) when it is unbalanced, i.e, S3 and S4 are inactive .

Figure4(c) shows theoverall andin-profile throughputsof
eachuser. In termsof in-profiletraffic useŗ�² getsroughly
twicethethroughoutof ¸E¹ (i.e.,4.27Mbpsvs.2.18Mbps).

Finally, we note that there was no marked packets
droppedin any of the above simulations. For comparison
morethan60% of theout-ofprofile traffic wasdropped.

3.3 User Fairness and Load Balancing
In this sectionwe show how dynamicroutingandload

balancinghelp to improve userlevel fairnessandachieve
betterresourceutilization. Considerthe topology in Fig-
ure5 whereuserş*° , ¸E² , ¸�¹ and ¸fÑ sendtraffic to usersº»° , º¯² and º¯¹ . Againthefixedcostsof all linksareequal,
andall usersareassignedthesametokenrate.

Figure 5(b) shows the overall and in-profile through-
puts of ¸*° , ¸�² , ¸�¹ and ¸fÑ under BASE, STATIC and
DYNAMIC-2, respectively. WhenBASE andSTATIC are
used,eachusersendsalwaysalongtheshortestpaths.This
resultsin ¸*° , ¸�² and ¸�¹ sharinglink 1, while ¸JÑ using
alonelink 3. As a consequencȩfÑ receives significantly
betterservicethan the other threeusers. Sinceit imple-
mentsthe samerouting algorithm, STATIC doesnot im-
prove the overall throughputs. However, comparedwith
BASE,STATIC guaranteesthatin-profilepacketsaredeliv-
eredwith very high probability (again,in this experiment,
nomarkedpacketsweredropped).Ontheotherhand,when
DYNAMIC-2 is usedeachuserreceives almostthe same
service. This is because,now users ¸*° , ¸E² and ¸�¹ can
useboth routesto sendtheir traffic, which allow themto
competewith user ¸JÑ for link 3. User ¸fÑ still maintainsa
slightly advantage,but now thedifferencebetweenits over-
all throughputandtheoverall throughputsof theotherusers
is lessthan7%. In thecaseof thein-profile traffic this dif-
ferenceis about5%. As in thepreviousexperimenttherea-

sonfor thisdifferenceis becausewhencompetingwith ¸fÑ ,
theotherusershaveto pay, besideslink 3, for link 2 aswell.

Thus, by taking advantageof the alternateroutes,our
schemeis ableto achieve fairnessin amoregeneralsetting.
At thesametime it is worthnotingthattheoverall through-
put also increasesby almost7 %. However, in this case,
this is mainlydueto theburstynatureof ¸fÑ ’s traffic which
cannotusetheentirecapacityof link 3 whenit is theonly
oneto useit, ratherthanloadbalancing.

3.4 Load Distribution and Load Balancing

This experimentshows how theloaddistributionaffects
the effectivenessof our load balancingscheme. For this
purpose,considerthe topologyin Figure6(a). In the first
simulationwe generateflows that have the sourceandthe
destinationuniformly distributedamongusers.Figure6(b)
shows the meansof the overall throughputsunderBASE,
STATIC, andDYNAMIC-2, respectively Ò . Dueto theuni-
formity of the traffic pattern,in this caseBASE performs
very well. Under STATIC we get slightly larger overall
throughput,mainly dueto our congestioncontrol scheme,
which admitsa markedpacketonly if thereis a high prob-
ability to be delivered. However, underDYNAMIC-2 the
performancesdegrades. This is becausethere are times
when our probabilistic routing algorithm selectslonger
routes,which leadsto inefficient resourceutilization.

Next, we consideranunbalancedloadby makingusers¸�¹ and ¸fÑ inactive. Figure6(c) shows throughputmeans
underBASE,STATIC, andDYNAMIC-2, respectively. As
it canbenoticed,usingDYNAMIC-2 increasesthemeanby
30 %. This is becauseunderBASE andSTATIC schemesÓ

We have alsocomputedstandarddeviationsfor eachcase:thelargest
standarddeviation was 0.342 for the overall throughputunderSTATIC
scheme,and0.4for thein-profile throughputunderDYNAMIC-2.
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Figure 7. Topology similar to the T3 topology of the NSFNET backbone network containing the IBM
NSS nodes.

the entire traffic between ¸*° , ¸�² and ¸�· , ¸�¼ is routed
throughlinks 3 and4 only. On theotherhand,DYNAMIC-
2 takesadvantageonthealternateroutethroughlinks 1 and
2.

Finally, in anothersimulationnot shown herewe con-
sideredthe scenarioin which ¸E· , ¸�¼ , ¸�Ô , and ¸�Õ send
their entiretraffic to ¸�¹ and ¸JÑ , respectively. In this case
DYNAMIC-2 outperformsalmosttwo times STATIC and
BASE both in termsof in-profile andoverall throughputs.
This is againbecauseBASE andSTATIC useexclusively
links 3 and2, while DYNAMIC-2 usestheothertwo links
aswell.

3.5 Large Scale Example

In thissectionweconsidera largertopologythatclosely
resemblestheT3 topologyof theNSFNETbackbonecon-
tainingthe IBM NSSnodes(seeFigure7). Themajordif-
ferenceis that in orderto limit the simulationtime we as-
sume10 Mbpslinks, insteadof 45 Mbps. We considerthe
following threescenarios.

In the first scenariowe assumethat load is uniformly
distributed,i.e., any two userscommunicatewith thesame
probability. Figure8(a)shows theresultsfor eachscheme,
resultswhich areconsistentwith the onesobtainedin the
previousexperiment.Due to thecongestioncontrolwhich
reducesthe numberof droppedpacketsin the network,
STATIC achieves higher throughputthan BASE. On the

otherhand,thedynamicroutingandloadbalancingarenot
effective in this case,since they tend to generatelonger
routeswhichleadsto inefficientresourceutilization.This is
illustratedby the decreaseof the overall andthe in-profile
throughputsunderDYNAMIC-2 andDYNAMIC-3, respec-
tively.

In the secondscenariowe assumeunbalancedload.
More precisely, we consider11 users (covered by the
shadedareain Figure7(b))whichareninetimesmoreactive
thantheother, i.e.,they send/receiveninetimesmoretraffic
thantheothers.Ö Unlike thepreviousscenario,in termsof
overall throughputsDYNAMIC-2 outperformsSTATIC by
almost8 %, andBASE by almost20 % (seeFigure8(b)).
This is becauseDYNAMIC-2 is able to usesomeof the
idle links from theun-shadedpartition.However, asshown
by theresultsfor DYNAMIC-3, asthenumberof alternate
pathsincreasesboth the overall andin-profile throughputs
startto decrease.

In the lastscenariowe considerthepartitionof thenet-
work shown in Figure 7(c). For simplicity, we assume
thatonly usersin thesamepartitioncommunicatebetween
them.Thisscenariomodelsavirtual privatenetwork(VPN)
setting,whereeachpartitioncorrespondsto a VPN. Again,
DYNAMIC-2 performsthe best× , sinceit is able to makeØ

Thismightmodeltherealsituationwheretheeastcoastis moreactive
between9 and12 a.m.EST, thanthewestcoast.Ù

Themeanof theuseroverallthroughputunderDYNAMIC-2 is 15 %
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Figure 8. The throughputs when the load is balanced (Figure 7(a)), (b) unbalanced ((Figure 7(b)), and
(c) when the network is vir tuall y par titions (Figure 7(c)).

useof somelinks betweenpartitionsthatotherwisewould
remainidle.

Finally, we notethatacrossall simulationspresentedin
this sectionthe droppingrate for the markedpacketswas
never largerthan0.3%. At thesametimethedroppingrate
for theunmarkedpacketswasover 40%.

3.6 Summary of Results

Althoughtheexperimentsin thissectionarefar from be-
ing exhaustive,webelievethatthey giveareasonableimage
of how our schemeperforms. First, our schemeis effec-
tive in providing servicedifferentiationsat the userlevel.
Specifically, thefirst two experimentsshow thatuserswith
similarcommunicationpatternsgetservicein proportionto
their tokenrates.Second,at leastfor thetopologiesandthe
traffic modelconsideredin theseexperiments,our scheme
ensuresthatmarkedpacketsaredeliveredto thedestination
with highprobability.

Consistentwith other studies[19], theseexperiments
show thatperformingdynamicroutingandload balancing
make little sensewhen the load is alreadybalanced. In
fact,doingdynamicroutingandloadbalancingcanactually
hurt, since,asnotedabove, this will generatelongerroutes
which may result in inefficient resourceutilization. How-
ever, whentheloadis unbalanced,usingDYNAMIC- ô can
significantly increasethe utilization and achieve a higher
degreeof fairness.

Finally, we note that the in-profile dropping rate de-
creasesasthe thenumberof alternatepathsincreases.For
examplein thelastexperimentin thefirst two scenariosthe
droppingrateis no larger than0.3 % underSTATIC and0
underDYNAMIC-2 andDYNAMIC-3, respectively, while

largerthanunderSTATIC, and18% largerthanunderBASE.

in the lastscenariothepercentagedecreasesfrom 0.129%
for STATIC, to 0.101% for DYNAMIC-2, andto 0.054%
for DYNAMIC-3.

4 Discussion
In this paper, we have studied a differential service

model,calledLIRA, in which theserviceprofile is specified
in termsof resourcetokensinsteadof absolutebandwidth.
Sincethe exact bandwidthof markedbits that a customer
canreceive from sucha serviceis notknownapriori, a nat-
uralquestionto askis why suchaservicemodelis interest-
ing.

Thereareseveralreasons.First,webelievethattheapri-
ori specificationof anabsoluteamountof bandwidthin the
serviceprofile, thoughdesirable,is not essential. In par-
ticular, webelievethattheessentialaspectsthatdistinguish
Dif fservfromIntservarethefollowings:(a)theservicepro-
file is usedfor traffic aggregatemuchcoarserthanperflow
traffic, and(b) theserviceprofileis definedoveratimescale
largerthanthedurationof individualflows,i.e. servicepro-
file is ratherstatic. Notice that the degreeof traffic aggre-
gationdirectly relatesto the spatialgranularityof the ser-
vice profile. On the one hand, if eachserviceprofile is
definedfor only onedestination,we have the smallestde-
greeof traffic aggregation. If thereare õ possibleegress
nodesfor a user, õ independentserviceprofilesneedto be
defined.Networkprovisioningis relatively easyastheen-
tire traffic matrix betweenall egressand ingressnodesis
known. However, if a userhasa ratherdynamicdistribu-
tion of egressnodesfor its traffic, i.e., theamountof traffic
destinedto eachegressnodevariessignificantly, and the
numberof possibleegressnodesis large, sucha scheme
will significantly reducethe chanceof statisticalsharing.
On the otherhand,if eachserviceprofile is definedfor all
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egressnodes,wehave thelargestdegreeof traffic aggrega-
tion. Only oneserviceprofile is neededfor eachuserre-
gardlessthenumberof possibleegressnodes.In additionto
a smallernumberof serviceprofiles,sucha servicemodel
alsoallows all the traffic from thesameuser, regardlessof
its destinations,to statisticallysharethe sameservicepro-
file. The flip side is that it makesit difficult to provision
network resources.Sincethe traffic matrix is not known
apriori, thebest-casescenariois whenthenetworktraffic is
evenly distributed,andtheworst-casescenariois whenall
traffic goesto thesameegressrouter.

Therefore,it is verydifficult, if not impossible,to design
serviceprofilesthat(1) arestatic,(2) supportcoarsespatial
granularity, (3) aredefinedin termsof absolutebandwidth,
andatthesametimeachieve (4) highserviceassuranceand
(5) high resourceutilization. Sincewe feel that(1), (2), (4)
and(5) arethemostimportantfor differentialservices,we
decideto giveup (3).

Fundamentally, we want a serviceprofile that is static
and egressnode/pathindependent. However, to achieve
high utilization, we needto explicitly addressthe fact that
congestionis a local anddynamicphenomenon.Our so-
lution is to have two levels of differentiation:(a) the user
or service-profilelevel differentiation,which is basedon
resourcetoken arrival rate. This is static and path inde-
pendent;(b) the packet level differentiation,which is a
simplepriority betweenmarkedandunmarkedpacketsand
weightedfair shareamongmarkedpackets.By dynamically
settingthecostof eachmarkedbit asa functionof thecon-
gestionlevel of the pathit traverses,we setup the linkage
betweenthestatic/path-independentandthedynamic/path-
dependentcomponentsof theservicemodel.

A secondreasonfor whichourservicemodelmaybeac-
ceptableis that usersmaycaremoreaboutthe differential
aspectof the servicethanthe guaranteedbandwidth. For
example,if userA paystwice asmuchasuserB, userA
would expect to have roughly twice asmuchtraffic deliv-
eredas userB during congestionif they sharesamecon-
gestedlinks, which is exactly whatweaccomplishin LIRA.

A third reasonfor which a fixed-resource-token-rate-
variable-bandwidthservice profile may be acceptableis
that the user traffic is usually bursty over multiple time-
scales[5, 23, 30]. Thus, thereis a fundamentalmismatch
betweenan absolutebandwidthprofile and the bursty na-
tureof thetraffic ö .

We do recognizethefact that it is desirablefor boththe
userandtheISPto understandtherelationshipbetweenthe
user’s resourcetokenrateand its expectedcapacity. This
canbeachievedby measuringtherateof markedbits given÷

Somerecentmeasurementsshow thattheaggregatetraffic overInter-
netbackbonelinks arenotverybursty. Wenotethatthis is not inconsistent
with theobservationsthattheaggregatetraffic from acampusto theInter-
netexhibitslongrangedependency.

a fixed tokenrate. Both the userandthe ISP canperform
this measurement.In fact, this suggeststwo possiblesce-
nariosin which LIRA canbeusedto provide a differential
servicewith an expectedcapacitydefinedin termsof ab-
solutebandwidth. In the first scenario,the serviceis not
transparent.Initially, theISPwill provide theuserwith the
following relationship

øUùWúnøTû ³ øTü û�ýTúnýSû�þ ³�ÿ ´ ��� ³���ô ø�� ��ý ³ ø
	 ³ ��ý ��� þ�û � þ�ù�
 (7)

basedonits own prior measurement.Theuserwill measure
theexpectedcapacityandthenmakeadjustmentsby asking
for an increaseor a decreasein its resourcetokenrate. In
the secondscenario,the serviceis transparent.Both the
initial settingandthesubsequentadjustmentsof theservice
profile in termsof numberof tokenratewill bemadeby the
ISPonly.

Therefore,oneway of thinkingaboutourschemeis that
it provides a flexible and efficient framework for imple-
mentinga variety of AssuredServices. In addition, the
dynamiclink cost informationandthe statisticsof the re-
sourcetokenbuckethistoryprovidegoodfeedbackbothfor
individual applicationsto performruntimeadaptation,and
for the useror the ISP to do properaccountingandprovi-
sioning.

5 Related Work

Our work is highly influenced by Clark and Wro-
clawski’s AssuredServiceproposal[3, 4]. Thekey differ-
enceis that we defineserviceprofiles in units of resource
tokensratherthanabsolutebandwidth.In addition,wepro-
posea resourceaccountingschemeandanintegratedsetof
algorithmsto implementourservicemodel.

Anotherrelatedproposalis the User-ShareDif ferentia-
tion (USD) [29] scheme,which doesnot assumeabsolute
bandwidthprofileseither. In fact, with USD, a useris as-
signedashareratherthanatoken-bucket-basedservicepro-
file. For each congestedlink in thenetworktraversedby the
user’straffic, theusersharesthebandwidthwith otherusers
in proportionto its share.The serviceprovided is equiva-
lent to onein which each link in a networkimplementsa
weightedfair queueingschedulerwherethe weight is the
user’s share.With USD, thereis little correlationbetween
theshareof a userandtheaggregatethroughputit will re-
ceive. For example,two usersthat areassignedthe same
sharecan seedrasticallydifferent aggregate throughputs.
A userthat hastraffic for many destinations(thustraverse
many differentpaths)canpotentiallyreceive muchhigher
aggregatethroughputthana userthathastraffic for only a
few destinations.

Thereis a hugebodyof relatedwork thataddressesthe
resourceallocationproblembothfor singleandmultiplere-
sources.However, to the bestof our knowledge,noneof
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theexisting proposalsaddresstheproblemof allocatingre-
sourcesfor traffic aggregatethat hasa large spatialgran-
ularity. In general,they are limited in scopeto allocating
resourcesalong individual pathsonly. In addition, these
schemesusuallyrequireeachuserto maintainper resource
state,or/andeachresourceto maintainperuserstate.In the
following,wediscussseveralof themorerelevantschemes.

WaldspurgerandWeihl have proposeda framework for
resourcemanagementbasedon lottery tickets [27, 28].
Eachclient is associateda certainnumberof ticketswhich
encapsulateits resourcerights.Thenumberof ticketsauser
receives is similar to the user’s incomeratein LIRA. This
framework wasshown to provide flexible managementfor
varioussingle resources,suchasdisk, memoryandCPU.
However, they do not give any algorithm(s)to coordinate
ticketsallocationamongmultipleresources.

Fergusonet al. proposeda flow control economyto al-
locatenetworkresourcessuchaslinks andbuffers among
competingvirtual circuits(VCs) [7, 8]. In this model,each
VC is endowed certainfunds for buying resources.The
VC’s goal is to buy a minimumcapacityon all links along
its path,andusethe extra money to minimize the average
end-to-enddelay. The resourcepricesare set so that the
supplyand the demandare balanced. It hasbeenshown
that sucheconomyconvergesand the resultedallocations
arepareto-optimal.

MacKie-Mason and Varian have proposeda model,
called“smartmarkets”,in which eachpacketcarriesa bid
that representshow much the user is willing to pay for
it [20]. At eachcongestedlink alonga patha cutoff price
is computedandonly packetsthathave ahigherbid arefor-
warded;theotherpacketsarebuffered.At theservicelevel
it is unclearhow the prioritiesof individual packetstrans-
lateinto expectednetworkthroughput.In addition,in order
to achieve high level of serviceassurance,a userneedsto
know thesmallestbid alongthepath. No mechanismsare
givento propagatethis informationto theusers.

Awerbuch et al. [1] have proposedan on-line reserva-
tion algorithm to maximize the throughputin a network
where the duration of eachreservation is known in ad-
vance. The algorithm guaranteesthat the throughputis
within � �����
� ����
 factor of the throughputachieved by an
optimaloff-line algorithm,where � is thenumberof nodes
and � is the maximumdurationof a reservation. In the
scheme,eachlink is associatedwith a costthat is a expo-
nential function of its currentutilization. Also, eachcon-
nectionis associatedwith a profit which is received only
if therequestis granted.Thegoalof the algorithmis then
to maximizetheoverall profit. While this algorithmdiffers
significantlyform oursboth in assumptionsandgoals,we
notethatthemechanismsusedto implementLIRAcanalso
beusedto implementthis scheme.

Kelly et. al [15, 16] have consideredthe problemof

bandwidthallocationbetweencompetingstreamswith elas-
tic traffic. In particular, they proposea mathematicalmodel
to analyzethe stability andfairnessof a classof ratecon-
trolledalgorithms.In thismodeleachuserchosethecharge
perunit of time that it is willing to payfor a route. In turn
thenetworkcomputestheuserratesaccordingto a propor-
tionatecriterion. However, they only considerthe model
whereresourcesareallocatedonthebasisof pervirtual cir-
cuit.

To increaseresourceutilization,in thispaperwepropose
performingdynamicroutingandloadbalancingamongthe
best ô shortestpathsbetweensourceand destination. In
this context, one of the first dynamicrouting algorithms,
which usesthe link delay as metric, was the ARPANET
shortestpath first [21]. Unfortunately, the sensitivity of
this metric when the link utilization approachesunity re-
sultedto relative poorperformances.Variousroutingalgo-
rithms basedon congestioncontrol informationwerepro-
posedelsewhere[12, 13]. The uniqueaspectof our algo-
rithm is that it combinesdynamicrouting,congestioncon-
trol andloadbalancingtogether. Also wealleviatetheprob-
lemof systemstabilitywhichplaguedmany of theprevious
dynamicroutingalgorithmsby defininga morerobustcost
functionandprobabilisticallybindinga flow to a route.We
alsonotethatour link costis similar to theoneusedin [19].
In particular, it canbe shown that whenall links have the
samecapacity, our link cost is within a constantfactor of
the costof shortest-dist(P, 1) algorithmpresentedin [19].
It is worthnotingthatshortest-dist(P, 1) performedthebest
amongall thealgorithmsstudiedin [19].

6 Summary

We studymodelsand algorithmsthat supportAssured
Servicewith serviceprofilesdefinedoverlargespatialgran-
ularities.We proposea servicemodelin which theservice-
profile is definedin unitsof resourcetokensratherthanthe
absolutebandwidth,andanaccountingschemethatdynam-
ically determinesthenumberof resourcetokenschargedfor
eachin-profile packet.We presenta setof algorithmsthat
efficiently implementthe servicemodel. In particular, we
introducethreetechniques:(a) distributing pathcoststo all
edgenodesby leveragingexistingroutinginfrastructure;(b)
bindinga flow to a route(route-pinning)without maintain-
ing perflow state;(c) multi-pathrouting andprobabilistic
bindingof flows to pathsto achieve loadbalancing.Simu-
lation resultsarepresentedto demonstratetheeffectiveness
of the approach.To the bestof our knowledge,this is the
first completeschemethatexplicitly addressesthe issueof
largespatialgranularities.

While thesetechniquesaredevelopedin the context of
supportingAssuredService,they may be useful in other
contexts. For example, by combining the route-pinning
techniquewith theSCED+algorithmproposedin [6], guar-
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anteedor premiumservicecanbeprovidedwithouttheneed
for perflow managementatcorerouters.

As futurework, we plan to extendthis work to support
multiple ISP environments,multicastcommunication,and
bothsenderandreceiver-basedcharging schemes.
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