Exact Emulation of an Output Queueing Switch by

a Combined Input Output Queueing Switch

lon Stoica, Hui Zhang
Carnegie Mellon University
Pittsburgh, PA 15213

e-mail: {istoica,hzhang}@cs.cmu.edu

Abstract—

Combined input output queueing
(CIOQ) have better scaling properties than output
queueing (0Q) switches. However, a CIOQ switch
may have lower switch throughput, and more im-
portantly, it is difficult to control delay in a CIOQ
switch due to the existence of multiple queueing
points. In this paper, we study the following prob-
lem, originally formulated and studied by Prab-
hakar and Mckeown [16]: Can a CIOQ switch be de-
signed to behave identically to an OQ switch? In [16],
an algorithm was proposed so that a CIOQ switch
with an internal speedup of four can behave iden-
tically to an OQ switch with FIFO as the output
queueing discipline. In this paper, we propose a
new switch scheduling algorithm called Joined Pre-
ferred Matching (JPM) that improves Prahhakar
and Mckeown’s results in two aspects. First, with
JPM, the internal speedup needed for a CIOQ
switch to achieve exact emulation of an OQ switch
is only 2 instead of 4. Second, the result applies to
0Q switches that employ a general class of output
service disciplines, including FIFO and various Fair
Queueing algorithms !

switches

This result lays the theoretical foundation for de-
signing scalable high-speed CIOQ switches that can
provide same throughput and QoS as OQ switches,
but require lower speed internal memory.
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'"We note that Chuang et al have independently come up with
similar results [6].

I. INTRODUCTION

Due to its conceptual simplicity, output queueing
(OQ) represents a natural way to design an N x N
communication switch. In an OQ switch, when a
packet arrives at an input port, it is immediately put
into the buffer that resides at the corresponding out-
put port. Since buffering and queueing happen only
at output ports in an OQ switch, it is possible to de-
sign output queue scheduling algorithms that provide
various QoS guarantees [20].

However, OQ has fundamental scaling limitations.
Because packets destined for the same output port
may arrive simultaneously from many input ports,
the output buffer needs to enqueue traffic at a much
higher rate than a single port may dequeue it. In the
worst case, IV (the number of line cards in the switch)
packets could arrive in the amount of time a port could
send one. This requires that the memory bandwidth
and control systems speed to scale as a function of the
number of cards in the switch, which places stringent
limits on the system size.

In order to reduce cost and simplify implemen-
tation, most high performance switches (both re-
search [5], [14] and commercial [7], [8] have chosen
architectures employing some form of input buffering.
By having buffers at input ports, it is possible to build
high performance switches with speedup much smaller
than N, where the speedup is defined as the ratio of
the line card’s bandwidth into/from the switch core
to the link speed.

Buffering at the input changes the contention prob-
lem inside the switch. While contentions only happen
at output links in an output buffered switch, they
also happen at input and output cards in an input
buffered switch — multiple packets from the same in-
put card may be destined to the different output cards
and multiple packets from different input cards may



be destined to the same output card. If the input
buffer is FIFO, there is no contention at input cards,
but it introduces the problem of Head-of-Line (HOL)
blocking [13]: if the packet at the head of the queue is
blocked due to contention of the output card, packets
that are on the same input card but destined to other
contention-free output cards cannot be forwarded. By
maintaining at an input card a separate queue for
each output card [1], the HOL problem can be elimi-
nated. Additional flexibility can be obtained by hav-
ing buffering at both input and output cards [5], [7],
8], [14], [17]

Most of the early studies on input queueing (IQ)
and CIOQ switches have focused on the throughput
achievable by these switches with various speed-ups
and under different workloads [2], [4], [10], [12], [15].
While it is important to achieve switch throughput,
it is also critical to provide QoS guarantees, either for
each individual flow, or for both individual flows and
traflic aggregates.

There are several recent studies on how to provide
QoS guarantees in C10OQ switches. In [16], Prabhakar
and Mckeown considered the following problem: is
it possible to construct a ClOQ switch that behaves
identically to an OQ switch? They proposed an algo-
rithm, called the the most urgent cell first algorithm
(MUCFA), and showed that it can identically emu-
late an OQ switch that employs FIFO output queue-
ing scheduler under any arrival pattern as long as
the speedup is no less than 4. In [3], [19], Charny
et al. and Stephens and Zhang studied a similar
problem. Their focus was not to emulate the exact
behavior of an OQ switch, but to provide QoS guaran-
tees that are comparable to those provided by an OQ
switch. Charny et al. assume a switch architecture
employing maximal matching algorithms. Stephens
and Zhang assume a switch architecture with buffered
crossbar that can operate with variable packet sizes.

In this paper, we study the Prabhakar and Mcke-
own’s problem and propose an algorithm called Joined
Preferred Matching (JPM) that improves their results
in two aspects. First, with JPM, the internal speedup
needed for a CIOQ switch to achieve exact emula-
tion of an OQ switch is only 2 instead of 4. Sec-
ond, the result applies to any OQ switch that employs
a monotonic and work-conserving output scheduling
discipline. A scheduling algorithm is monotonic if
the arrival of a new packet does not change the rela-

tive scheduling order of the packets already enqueued.
Many of the widely used scheduling disciplines, such
as First-In-First-Out (FIFO) and various Fair Queue-
ing algorithms, are monotonic and work-conserving.
We have recently learned that the same problem has
been independently addressed by Chuang et al. in [6]
with an algorithm similar to JPM. In addition, they
show that a speedup of 2—1/N is both a necessary and
sufficient condition for a FIFO OQ switch in which a
slot consists of either one or two phases.

Similarly to [16] we assume that only fixed sized
packets, also called cells, are transfered inside the
switch. This assumption is supported by the design of
many of today’s high speed switches, where the vari-
able length packets are segmented in cells when they
arrive and are reassembled before they depart. Also
we assume that the time is divided in slots, and dur-
ing each slot at most one cell can arrive at an input,
and at most one cell can depart from an output. Sim-
ilarly, in a CIOQ switch with speedup S at most S
cells can be removed from an input, and at most S
cells can arrive at an output. Finally, for convenience
we assume that one slot is divided in S phases (or
sub-slots), so that during each phase at most one cell
can be removed from an input and at most one cell
can arrive at an output.

II. ALGORITHM DESCRIPTION

To each input and output we associate a preference
list. Based on these preference lists at the beginning of
every phase we perform a stable matching [9] between
inputs and outputs. Then, similarly to [16] we use
this matching to transfer cells from inputs to outputs.

Next, we define the notions of input and output
preference lists, which are used to match inputs with
outputs.

Definition 1: The preference list of an input rep-
resents the list of cells at that input ordered in the
inverse order of their arrival times.

Definition 2: The preference list of an output
represents the list of cells from all inputs that should
be forwarded to that output, ordered by their schedul-
ing times in the corresponding OQ schedule. Ties are
broken by the index of the input where the cell is en-
queued.

As outlined above, at the start of each phase we
perform a stable matching. A matching is an one-one
correspondence between inputs and outputs. An in-
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Fig. 2. Example to illustrate the Gale-Shapeley algorithm to compute a stable matching for a 3 x 3 switch. The letter
in each cell denotes the output to which the cell is destined, while the number indicates its order in the output
schedule. The light arrows represent the output requests, and the dark arrows represent input-output matching

pairs.

while there are unmatched outputs that
where not rejected by all inputs do

each unmatched output requests its most
preferred cell from an input that has not
rejected it yet;

each input grants the request to the output
with the most preferred cell;

Fig. 1. The Gale-Shapley algorithm to compute a stable
matching.

put ¢ and output 7 are said to block a matching M, or
to be a blocking pair for M, if 7 and j does not match
in M, but both 7 and j prefer each other to their cur-
rent match in M. A matching that has no blocking
pair is called stable; otherwise it is called instable. To
compute a stable matching we use the Gale-Shapely
algorithm [9]. This algorithm is summarized in Fig-
ure 1.

Figure 2 illustrates how the matching algorithm

works for a 3 X 3 switch. The letter in each cell de-
notes the output port where the cell should be for-
warded, while the number denotes its order in the
preference list of that output. The light arrows indi-
cate the requests made by outputs, while the dark ar-
rows represent the requests granted by inputs. During
the first iteration each output asks for its most pre-
ferred cell enqueued at the inputs (see Figure 2(a)).
In turn, input 2 grants the only request it receives to
output ¢, while input 1 grants the request correspond-
ing to its most preferred cell, i.e., the request issued
by output a for cell a.1. Thus, after the first iteration
outputs a and ¢ are matched to their most preferred
cells. During the next iteration, the unmatched out-
put b requests its most preferred cell from input? 3 (see
Figure 2(b)). As a result, input 3 grants the output
b’s request and the matching completes. Figure 2(d)
shows the switch’s state after cells are transferred ac-

?Note that since output b was rejected in the first iteration
by input 1, it does no longer consider this input in the current
iteration.



cording to the resulting matching.

A shown in [11], the stable matching problem has a
lower bound of Q(N?), where N is the number of in-
puts/outputs. By using ranking arrays for expressing
the preference of both inputs/outputs it can be shown
that the Gale-Shapely algorithm can be implemented
in N? time [11]. However, in order to construct the
ranking arrays efficiently we need to maintain for each
input, besides its preference list, a virtual list associ-
ated to each output which contains all cells destined
to that output, ordered by their schedule times in the
corresponding OQ schedule. Furthermore, it can be
shown that the average time complexity of the Gale-
Shapely algorithm is O(N log N). Finally, in the con-
text of addressing the same problem Chuang et al [6]
have shown that it is possible to reduce the match-
ing complexity to N, by carefully considering only a
sub-set of cells from the preference lists.

III. ALGORITHM ANALYSIS

In this section we prove that a C1OQ switch with a
speedup S > 2 operating under JPM behaves identi-
cally to an OQ switch that employs a monotonic and
work-conserving scheduling discipline (Theorem 1).
The main idea behind the proof is to establish a suffi-
cient condition such that Theorem 1 holds (Lemma 2),
and then to find an invariant that makes the sufficient
condition true (Lemma 3).

As noted in Section I we consider a switch model in
which every slot is divided in S phases. During each
phase we compute a stable matching which is used to
transfer cells from inputs to outputs. We assume that
a new cell arrives at the beginning of a slot, before the
first phase starts, and that a cell is transmitted at the
end of the slot, after all S phases complete. Also, we
assume that if time ¢ represents the starting time of a
slot, the preference lists do not include the cells that
eventually arrive in that slot. For simplicity, through-
out this section we assume unit time slots. Finally,
whenever it is clear from the context a slot that starts
at time ¢ is simply referred as slot ¢t. We start with
two simple definitions.

Definition 3: Let p be a cell at input ¢ that needs
to be transferred to output 7. Then we define:

o rank(p,t) — the number of cells at output j that
are ahead of cell p in the OQ schedule.
o pos(p,t) — the position of cell p at time ¢ in the

preference list of input ¢. (The cell positions in the
preference list are assumed to be one-indexed.)

As noted in [16], input and output contention are
the only reasons for which a cell p is not transferred
from its input ¢ to its output 5 during a phase. Input
contention happens when input ¢ chooses to send a
cell more preferred than p, while output contention
happens when output j receives a cell more preferred
than p during that phase. The next result relates the
rank and the position of a cell p that is not transferred
during a time slot.

Lemma 1: Consider a CIOQ switch operating under
JPM with speedup S, and let {y be the starting time
of an arbitrary slot. Then, for any cell p that has
arrived in a previous slot and which is not transferred
during slot ¢, we have

rank(p,to + 1) — pos(p,to+ 1) >
rank(p,to) — post(p,to) + S — 2.

Proof. Recall that if a cell p is not transferred dur-
ing a phase this is due to either input or output con-
tention. If there is input contention this means that
a more preferred cell at that input is transferred, and
therefore the position of cell p decreases by one. On
the other hand, if cell p is not transferred due to out-
put contention, this means that a more preferred cell
was transferred to that output, and therefore accord-
ing to Definition 3 the rank of cell p increases by one.
Finally, note that in the particular case when a cell ¢
more preferred than p is transferred from input ¢ to
the same output j (i.e., cell ¢ is also more preferred
than p by output j) the rank of p increases by one,
while its position decreases by one. Thus, in either of
these cases, the difference between cell’s rank and its
position increases by at least one.

Since cell p is not transferred during the entire slot,
and since there are S phases during each slot, the
difference between the rank of cell p and its position
increases by 5.

In addition, at most one cell is received by input %,
and at most one cell is transmitted by output 5 during
the slot starting at 5. According to Definition 1 a new
cell that eventually arrives at input ¢ will become the
most preferred cell of that input, and consequently
will increase the position of p by one. At the same
time, note that since the OQ scheduling discipline is

(1)



assumed to be monotonic a new arrival cell will not
change the rank of p. However, a cell that is eventually
transmitted by output 7 decreases the rank of cell p
by one, which concludes the proof. O

The next lemma gives a sufficient condition under
which a CIOQ switch behaves identically to an OQ

switch.

Lemma 2: A CIOQ switch operating under JPM
behaves identically to an OQ switch that employs a
work-conserving and monotonic scheduling discipline,
regardless of the input traffic pattern, if at the begin-
ning of every time slot the ranks of all cells® at the
inputs are greater or equal to 1.

Proof. Assume this is not true, i.e., the ranks of all
cells at the inputs are always greater or equal to 1,
but there is a cell ¢ that is not scheduled at the same
time in the CIOQ switch as in the corresponding OQ
switch. Let £y be the starting time of the slot in which
cell ¢ should be transmitted in the OQ switch, and let
t be the starting of the slot during which ¢ is actually
transmitted in the CIOQ switch. Consider two cases,
whether ¢ < {g, or t > lg, and let 5 be the output to
which cell p is destined.

If t < tg, let p be the cell that is transmitted during
the slot starting at ¢ by output j in the correspond-
ing OQ switch. Since the output scheduling discipline
is work conserving, and since cell p is presented in
the system at time ¢, but it is not transmitted until
time g > ¢, we are guaranteed that such cell exists.
But then cell p will miss its schedule (because cell g is
transmitted instead), which contradicts our assump-
tion that ¢ is the first cell that is not scheduled at the
same time in the CIOQ switch as in the corresponding
0Q switch.

On the other hand, if ¢ > #g, it is easy to see that
cell ¢ does not reach output j during the slot starting
at tp. To see why, assume this is not true. Since the
output scheduling discipline is assumed to be work-
conserving, the only reason for which cell ¢ is not
transmitted during slot ¢y is because another more
preferred cell p is being transmitted. But this means
that p is also late (it should have been sent during
a previous slot), which again violates our assumption
that ¢ is the first cell to miss its schedule. Thus, at

®Recall that this does not include the cell that is eventually
received during the current slot.

time tg, cell ¢ will be enqueued at input ¢, and there is
no more preferred cell than ¢ at output j. But then ac-
cording to Definition 3 we have rank(q,tg) = 0, which
contradicts the hypothesis, and therefore proves the
lemma. O

The following lemma establishes an invariant for the
JPM algorithm, invariant which makes the assump-
tion of Lemma 2 true.

Lemma 3: Consider a ClOQ switch with speedup
S > 2 operating under JPM. Let ¢ be the starting
time of an arbitrary slot, and let p be an arbitrary
cell enqueued at its input. Then, at the beginning of
every slot ¢, we have

(2)
Proof. The proof is by induction on the starting
times of the slots during which a cell is enqueued at
its input. (Recall, that a cell arriving in slot ¢ is
assumed to not be enqueued at time £g.)

Basic Step. Assume cell p, destined to output j,
arrives at input ¢ in slot ¢{g. Further, assume that cell
p is not transferred* during slot #g. Since p is the
most preferred cell of input ¢ during slot ¢g, it follows
that the only reason for which p is not transferred
in this slot is because there is contention its output j
(i.e., a more preferred cell is transferred to that output
instead) during every phase of slot ¢y. Since there are
S such phases and during the entire slot at most one
cell is transmitted from output j, it follows that at
to+ 1, output j will hold at least .S — 1 cells which are
more preferred than p. This yields

rank(p,t) > pos(p,t).

rank(p,to+1)>S5—-1>1.

(3)

Since by definition pos(p,to+1) = 1, the proof for the
basic step follows.

Induction Step. Assume (2) is true at time ¢ for
any cell p enqueued at an input. Then according to
Lemma 1, if cell p is not transferred in slot ¢, we have

rank(p,t+ 1) — pos(p,t+1) >
rank(p,t) — pos(p,t) > 0,

(4)

4Otherwise, since cell p is not enqueued at its input the proof
is trivially true.



which concludes the proof. O

Since, by Definition 3, for any cell p which is en-
queued at the beginning of slot ¢ we have pos(p,t) > 1,
from Lemmas 2 and 3 follows the main result of the

paper.

Theorem 1: Under an arbitrary traffic pattern, a
CIOQ switch with speedup S > 2 operating under
JPM behaves identically to an OQ switch that em-
ploys a monotonic and work-conserving scheduling
discipline.

The above results gives a sufficient condition for em-
ulation an OQ switch by using a CIOQ switch. An
equally important question is whether this condition
is also necessary. In other words: Is there any al-
gorithm that can emulate an OQ switch by using a
CIOQ switch with speedup smaller than two 7 In our
model where each slot consists of an integer number of
phases during which only fixed size packets are sent,
the answer is no. This is because in such a model the
speedup is an integer and it can be easily shown that
a speedup of one is not enough. To see this consider
a 2 X 2 switch where during the first slot each input
receives a cell for output 1, and during the second
slot input 2 receives a cell for output 2. In addition,
assume that when two cells arrive during the same
slot for the same output, ties are broken by the in-
put index. In our case this means that the cell that
arrives at input 1 during the first slot should depart
first from output 1. Then it is easy to see that hav-
ing a speedup of one is not sufficient. This is because
during the first slot only the cell from input 1 is trans-
ferred to output 1. This leaves input 2 with two cells
to be transferred during the same slot, which is im-
possible with the speedup of one. Moreover, it can
be shown that even in a more general model where a
phase duration is a fraction of a slot, and where a cell
can be transferred during a phase only if it is already
enqueued at the beginning of that phase, a speedup of
two is an asymptotic lower bound [18]. More precisely,
in [6] it is shown that in a switch model in which a slot
can consists of either one or two phases, a speedup of
2 — 1/N is a necessary condition.

IV. SUMMARY

We have proposed a scheduling algorithm called
JPM that allows a combined input output queueing

(C1OQ) switch to emulate exactly an output queueing
(OQ) switch. We extend previous results in two as-
pects. First, we reduce the internal speedup required
from 4 to 2. Second and more important, while previ-
ous work tries to emulate OQ switches that use FIFO
as output scheduling discipline, our algorithm emu-
lates OQ switches that use a general class of output
scheduling algorithms, including various Fair Queue-
ing algorithms. This enables CIOQ switches not only
to provide the same throughput, but also to support
the same QoS guarantees as OQ switches, while re-
quiring a much lower speed of the internal memory.
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