A Loss Function Analysis for Classification Methods in Text
Categorization

Fan Li, Yiming Yang

HUSTLFQCS.CMU.EDU, YIMINGQCS.CMU.EDU

Carnegie Mellon Univ, 4502 NSH, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Abstract

This paper presents a formal analysis of pop-
ular text classification methods, focusing on
their loss functions whose minimization is es-
sential to the optimization of those methods,
and whose decomposition into the training-
set loss and the model complexity enables
cross-method comparisons on a common ba-
sis from an optimization point of view. Those
methods include Support Vector Machines,
Linear Regression, Logistic Regression, Neu-
ral Network, Naive Bayes, K-Nearest Neigh-
bor, Rocchio-style and Multi-class Prototype
classifiers. Theoretical analysis (including
our new derivations) is provided for each
method, along with evaluation results for all
the methods on the Reuters-21578 bench-
mark corpus. Using linear regression, neural
networks and logistic regression methods as
examples, we show that properly tuning the
balance between the training-set loss and the
complexity penalty would have a significant
impact to the performance of a classifier. In
linear regression, in particular, the tuning of
the complexity penalty yielded a result (mea-
sured using macro-averaged F1) that outper-
formed all text categorization methods ever
evaluated on that benchmark corpus, includ-
ing Support Vector Machines.

1. Introduction

Text categorization is an active research area in ma-
chine learning and information retrieval. A large num-
ber of statistical classification methods have been ap-
plied to this problem, including linear regression, lo-
gistic regression (LR), neural networks (NNet), Naive
Bayes (NB), k-nearest neighbor (kNN), Rocchio-style,
Support Vector Machine (SVM) and other approaches
(Yang & Liu, 1999; Yang, 1999; Joachims, 1998; Mc-
Callum & Nigam; Zhang & Oles, 2001; Lewis et al.,
2003). As more methods are published, we need to
have a sound theoretical framework for cross-method
comparison. Recent work in machine learning focus-
ing on the regularization of classification methods and
on the analysis of their loss functions is a step in this
direction.

Vapnik (Vapnik, 1995) defined the objective function
in SVM as minimizing the expected risk on test exam-
ples, and decomposed that risk into two components:
the empirical risk that reflects the training-set errors
of the classifier, and the inverse of margin width that
reflects how far the positive and negative training ex-
amples of a category are separated by the decision sur-
face. Thus, both the minimization of training-set er-
rors and the maximization of the margin width are the
criteria used in the optimization of SVM. Balancing
between the two criteria has been referred as the regu-
larization of a classifier; the degree of regularization is
often controlled by a parameter in that method (sec-
tion 2). SVM have been extremely successful in text
categorization, often resulting in the best performance
in benchmark evaluations (Joachims, 1998; Yang &
Liu, 1999; Lewis et al., 2003).

Hastie et al. (Hastie et al. 2001) presented a more gen-
eral framework for estimating the potential of a model
in making classification errors, and used a slightly dif-
ferent terminology: loss or generalization error corre-
sponding to the expected risk, training-set loss corre-
sponding to the empirical risk, and model complexity
corresponding to the margin-related risk in SVM. Us-
ing this framework they compared alternative ways to
penalize the model complexity, including the Akaike
Information Criterion (AIC), the Bayesian Informa-
tion Criterion (BIC), and the Minimum Description
Length (MDL) criterion. More interestingly, they
compared the differences in the training-set loss func-
tions for SVM, LLSF, LR and AdaBoost, in a way such
that the sensitivity of those methods with respect to
classification errors on training examples can be easily
compared (section 2).

It would be valuable to analyze a broader range of clas-
sification methods in a similar fashion as presented by
Hestie et al., so that the comparison among methods
can be made explicitly in terms of their inductive bi-
ases with respect to training examples, or in terms of
their penalty functions for model complexity. For this
we need a formal analysis on the optimization criterion
of each method, in the form of a loss function that
decomposes into the training-set error term and the
model complexity term. Such a formal analysis, how-
ever, often is not available in the literature for popular
text categorization methods, such as Nave Bayes, kNN
and Rocchio-style classifiers.

The primary contribution we offer here is a loss-
function based study for eight classifiers popular in
text categorization, including SVM, linear regression,
logistic regression, neural networks, Rocchio-style,
Prototypes, kNN and Nave Bayes. We provide our
own derivations for the loss function decomposition
in Rocchio-style, NB, kNN and multi-class prototypes
(Prototypes), which have not been reported before.
We also show the importance of properly tuning the
amount of regularization by using controlled examina-
tions of LLSF, LR and NNet with and without reg-
ularization. Finally, we compare the performance of
the eight classifiers with properly tuned regulariza-
tion (though validation) using a benchmark corpus
(Reuters-21578) in text categorization.

The organization of the remaining parts of this pa-
per is as follows: Section 2 outlines the classifiers and
provides a formal analysis on their loss functions. Sec-
tion 3 describes the experiment settings and results.
Section 4 summarizes and offers the concluding re-
marks.

2. Loss functions of the classifiers

In order to compare different classifiers on a common
basis, we need to present their loss functions in the

unified form: L. = g1(yif(Z;,3)) + g2(3). We call
the first term ¢ (y;f(Z;, 8)) the training-set loss and
the second term g»(8) the complezity penalty or the

regularizer. The following notation will be used in the
rest of this paper:

e The training data consists of N pairs of

(flayl)a (anyQ)a L) (fN:yN)

e Vector &; = (z;1,...,%p) represents the values of
the p input variables in the ith training example.

e Scalar y; € {—1,1} (unless otherwise specified)
is the class label: “1” for positive examples and
“1” for negative examples of the category in
consideration®.

e Vector 5= (Bi,...,8,)T consists of the parame-
ters in a linear classifier, which are estimated us-
ing the training data.

e Scalar f(&;,) is the classifier’s output given in-
put %;, and the quantity y; f(fi,ﬁ) shows how
much the system’s output agrees with the truth
label: if y; and f(&;, ﬁ) agree completely, then this
quantity is a large positive number; if f(Z;, §) is
a negative number with a large absolute value, it
indicates a poor prediction by the classifier.

e A linear mapping f(Z;, ﬁ) = #;f is a special case
of the mapping from the input to the output,
'For simplicity we only use 2-way classification for our

analysis in this paper; however, our methods and conclu-
sions can be generalized to m-way classification problems.

which will be the focus in our analysis. Accord-

ingly, gl(yifiﬁ) is the form we use to present the
training-set losses for different classifiers.

e The 2-norm of § is represented as ||3|| and the
1-norm of 3 is represented as || 5|1

Note that we purposely chose to define Z; as a hori-
zontal vector and 3 as a vertical vector, so that we can

conveniently write ;3 for the dot product > kB
(and vice versa), which will be frequently seen in our
derivations.

2.1. SVM

SVM has been extremely successful in text categoriza-
tion. Multiple versions of SVM exist; in this paper we
only use linear SVM for our analysis, partly for clarity
and simplicity of our analysis, and partly because lin-
ear SVM performed as well as other versions of SVM in
text categorization evaluations(Joachims, 1998). SVM
emphagsizes the generalization capability of the classi-
fier (Hastie et al. 2001), whose loss function (for class
¢) has the form of

Lo= (1 —yidid)s + MNP 1)
i=1

in which the training-set loss on a single training ex-
ample is defined to be

-

P G ymﬂ when y;Z;0 <
I.=(1 yzmlﬁ)'i‘_{ 0 otherwise

The first term in the right hand side of formula 1 is the
cumulative training-set loss and the second term is the
complex1ty penalty and both are functlons of vector
ﬂ The optimization in SVM is to find ,8 that mini-
mizes the sum of the two terms in formula 1. In other
words, the optimization in SVM is not only driven by
the training-set loss, but also driven by the 2-norm
of vector 3, which is Qetermined by the squared sum
of the coefficients in § and reflects the sensitivity of
the mapping function with respect to the input vari-
ables. The value of A controls the trade-off between
the two terms, that is, it is the weight (algorithmically
determined in the training phase of SVM) of the sec-
ond term relative to the first term. Formula 1 can be
transformed into dual form and solved using quadratic
programming.

This kind of analysis on the loss function in SVM is
not new, of course. In fact, it is a part of the SVM
theory, and has been presented by other researchers
(Vapnik, 1995; Hastie et al. 2001). Our point here
is to start with a good framework and carry out the
formal analysis for the other classifiers chosen for this
study in a consistent fashion; some of those classifiers
have not been formally analyzed in this manner.

2.2. Linear Least Squares Fit (LLSF)

Linear regression, also called Linear Least Squares Fit
(LLSF) in the literature, has performed competitively
to SVM and other high performing classifiers (includ-
ing kNN and logistic regression) in text categorization
evaluations (Yang, 1999). LLSF is similar to linear
SAVM_'in the_’ sense that both learn a linear mapping
f(&,8) = Z6 based on the training data. Its optimiza-
tion criterion in estimating 5, however, is strictly the
minimization of the training-set error in terms of the
sum of squared residuals. Thg loss function is defined
to be: Lysp = Y i, (yi — £i8)%. Expanding the right
hand side and rearranging, we obtain_’the equivalent

formula in the desired form of g1(y;Z;3)

Lussy = Y i+ (@B) — 2:7if
—
l'n/
= Y 1+ @d@iB)’ - 29,78
i=1
n
= Z(l - yzfzﬂ)z
i=1

Adding the regularizer \||3||? to the training-set loss,
we obtain the loss functions of the regularized LLSF
(which is also called Ridge Regression):

L= 31 —yi@id)? + M. (2)
i=1

2.3. Rocchio-style

Rocchio-style classifiers are widely used in text cate-
gorization for their simplicity and relatively good per-
formance(Lewis et al., 2003). They construct a proto-
type vector for each category using both the centroid
of positive training examples and the centroid of nega-
tive training examples. When classifying a new docu-
ment, the Rocchio-style classifier computes either the
dot product or cosine value between the new document
(a vector) and the prototype vector of the category,
and then thresholds on this value for a classification
decision (yes or no) with respect to that category. For
simplicity of the analysis, we restrict our discussion to
dot product, which is equivalent to using cosine sim-
ilarity after both input document and the class pro-
totype vectors are normalized. Using this assumption,
Rocchio-style is a linear classifier with the scoring func-
tion f(&,3) = &6 where [is the prototype vector. Let
@ be the centroid of the positive training examples of
class ¢, and ¥ be the centroid of the negative training
examples then the prototype is defined to be:

Lo, 1 , b "
gr = u—b’uzﬁcdz mz—EZw,
Zi€cj Zi¢c
1 . b o

where b is a parameter in the Rocchio-style method,
whose value is the weight of the negative centroid rel-
ative to the positive centroid, and can be empirically
determined using a held-out subset of training data.
Now we show that the regularized loss function in the
Rocchio-style classifier is

o = ch - 7 Nc 212
L.=— yz::ly,x,ﬁ N y;l YiZi3 + 7||ﬁ|| (4)

In order to minimize the loss function, we need to take
the first order derivative of formula 4 with respect to

ﬁ and set it to zero,

ch - ch - 7
= = — YiT; — YiT; + NS =0
df E; J%yZ;

It is easy to see that ﬁ in formula 3 is just the solu-
tion. In other words, formula 4 is the loss function that
the Rocchio-style classifier is trying to minimize. Pre-
senting its loss function in this fashion enables us to
compare the Rocchio-style approach with other classi-
fication methods on the same basis, i.e., loss-function
based analysis.

Observing formula 4 is interesting. The loss function
consists of three parts, instead of two as in the other
classifiers we analyzed so far. The first part is the
training-set loss on positive examples; The second part
is the training-set loss on negative examples; the third
part is the complexity penalizer ||3||%.

The training-set loss on a single training example de-
pends on whether it is a positive or negative example.
That is,

I —y@;f wheny; =1
“ %;C yiZif when y; = —1

2.4. Multi-class Prototype Classifier

Multi-class Prototype classifier, or just ”Prototype” as
an abbreviation, is even simpler than Rocchio-style. It
is the same as Rocchio-style except that only positive
examples are used to construct the prototype of each
category. That is, the method is defined by setting the
parameter b to zero in the formula 3 and 4. Accord-
ingly, the regularization loss in the Prototype method
is:

-~ N. -
L. =— 2 -'c 2
== w0 (5)

and the training-set loss on a single training example
is:

L. — —y#i3 when y; =1
c 0 otherwise

Including Prototype in this study enables us to com-
pare the differences of using positive training examples

only (in Prototype) as opposed to using both positive
and negative examples (in Rocchio-style). It also al-
lows us to compare the differences of using a fixed cen-
troid (in Prototype) versus using a varied centroid for
each text example in kNN, which we describe next.

2.5. kNN

kNN has been popular in text categorization, both
for its simplicity and for the good performance in
benchmark evaluations(Yang & Liu, 1999; Lewis et al.,
2003). kNN is very similar to Prototype except that
only the training examples inside of the neighborhood
local to each test example have a non-zero loss. The
nearness of each neighbor in kNN is often measured
using the cosine similarity between the test example
and the training example, which is equivalent to using
dot product after both vectors are normalized. For
simplicity of analysis, we restrict our discussion under
the assumption of using normalized vectors. Under
this assumption, kNN has a locally linear classifica-
tion function with the vector of coefficients

= > & (6)

T;ECAT; ER(T)

where Ry (%) is the k training examples nearest to test
example &, and (3, is the local centroid of the positive
examples in category c. The classification decision on
test example F is obtained by thresholding on the dot
product # - 8. Now we need to formally analyze ex-
actly what kNN is optimizing. Defining a loss function
in the following form

Le=— >

yi=1AZ;ERr(T)

I

and setting the first order derivative of the right hand
side to zero yields the coefficient vector in formula 6.
This is to say that the optimization criterion in kNN
is the minimization of loss function L. in formula 7
which has both the training-set error component (the
first term) and the complexity penalization component
(the second term). Accordingly, the training-set loss
on a single training example is:

l. — —yi#if,; when y; = LA € kNN(Z)
“ 0 Otherwise

Analyzing kNN’s optimization criterion in the form
of the loss function presented above has not been re-
ported befo_ye, to our knowledge. Note that we use (3,
instead of § to emphasize the local nature of the clas-
sification in kNN. The loss function depends on each
test example, which strongly differentiates kNN from
the other classifiers.

2.6. Logistic Regression (LR)

Logistic regression methods have also shown good per-
formance (competitive to SVM, LLSF and kNN) in

the evaluations on benchmark collections(Yang, 1999;
Zhang & Oles, 2001). It estimates the conditional
probability of y given Z in the form of

= de 1
P(y|z) = n(yzf) ¥ Tpw—

and learns the regression coefficients /3 in order to max-
imize [, P(y;|Z;). This is equivalent to minimizing
the training-set loss defined in the logarithmic form:

-

n 1 n .
L.= ZIOg ——= Zlog(l + exp(—y:%i0))
i=1 m(yidi i=1

The regularized version of LR (Zhang & Oles, 2001)
has the loss function in the form of

L. =) log(1 + exp(—y:#:f)) + A B]I* 8)

i=1

2.7. Neural Networks (NNet)

Neural networks have also shown competitive perfor-
mance in text categorization evaluations(Yang & Liu,
1999; Yang, 1999). We restrict our analysis to a two-
level (no hidden layers) neural network in this paper.
NNets without hidden layers are very similar to LR in
the sense that they estimate P(y = 1|3, £) in the form
of

. 1 _ o (zF
Pl =13.8) = s = n(7})

However, the_’objective function is to minimize L. =
S (yi — n(Z:8))? where y! is 1 or 0. To make its loss
function in a form consistent and comparable to those
in other classifiers, we need to write it using y; instead
of y; where y; = 1 when y; = 1 and y; = —1 when
y; = 0. The training-set loss is:

L. = Y= W(fzﬁ:))2 when y; =1
S (0—n(&8))? wheny; = -1
= E:'L:l(]' - 7"(7{1‘ -‘))2 when y; = 1
Yimi (n(—y:#:3))*> when y; = -1
= Z(l — (Y %; _‘))2)

Adding an regularization term A||3||? yields the loss
function of the regularized NNet:

Lo =3"(1 = n(y:B)? + MBI (10)
=1

2.8. Naive Bayes (NB)

We restrict our analysis to the most popular multino-
mial NB classifier(McCallum & Nigam). It estimates
the posterior probability of test document D as a mem-
ber of category ¢ using the following formula:

P(c) [Ti—y P(Wile)" D)

p(D)

where P(c) is the prior probability of the category,
P(D) is the probability of D occurring by chance,
P(Wg|c) is the probability of word W}, conditioned on
category ¢, and n(D,W}) is the count of word Wy, in
document D. Taking the logarithm of both sides of
formula 11 yields an alternative scoring function for
category ¢ with respect to document D:

p(c|D) =

(11)

P
log P(c|D) Z (Wi, D) log P(Wi]c)
k=1

g(P(c)) —log(P(D)) (12)
n(Wg, D),

+ lo

Rewriting formula 12 using z = 0, =

P(Wp|c) and B = log 8y, we have

Z 2, 10g 01, + log(P(c)) — log P(D)

log P(c|D) =
=) akB +1log(P(c)) — log P(D)
k=1
= ZB +log(P(c)) —log P(D) (13)

The first term shows that NB is a linear classifier with
respect to the input vector #; the second term (the
logarithm of the prior probability) varies by category,
making common categories more preferable than rare
categories but is invariant with respect to &; the third
term does not effect the scoring or ranking of categories
given Z and thus can be eliminated from consideration.

Optimization in NB regards the estimation of the
model parameters based on training data 2 : P(c) =

JX; and Ok = Scf where N, is the number of positive
training examples for category ¢, F is the frequency
of word W}, in those positive training examples, and
Se = Yh_, Fur, is the total number of word occur-

rences in category c.

We now show how to relate the parameter estimates in
NB to a loss function in the form of L = g (y;%;8) +
g2(B) so that we can compare NB with other classi-
fiers on the same basis. Let us use vector #; to repre-
sent the ith training document whose elements are the
within—documeng term frequencies of individual words,
the vector sum F, = Zzi@ Z; to represent the within-
category term frequencies in category ¢, and 6 to de-

*Now we only consider NB without smoothing for sim-
plicity. We will consider NB with Laplace smoothing next.

note P(Wy|c). We define the loss function in the fol-
lowing form:

p p
== Fulogby+5S.Y 6k (14)
k=1 k=1

To minimize this loss function, we take the first-order
partial derivative with respect to 85 and set it to zero:

oL, 1
— Fy— +8.=0
90, R T

Clearly, 6, = “’“ is just the solution. This means that
the loss functlon in formula 14 is the optimal objec-
tive function NB is using to estimate its parameters
P(Wp|c)(it is also equivalent to maximizing the likeli-

hood []5_, 6;* subject to 3F_, 8 = 1).

We now rewrite foqrmula 14 as a function of F‘; =
(Fa,...,F.;) and 8 = (B1,..., 8,)T where B = log 6.
Since 6, is a word probability, all the elements in s
are positive numbers. This means) }_; 0 = 6], is
the norm-1 of vector . Substituting those terms in 14
yields the loss function in the form of

L.=—F.f+S.|0]h (15)

" . -
Furthermore, from F. = } . _ #; we have F.0 =
#cc Zif3, and from 3 = logd we have 6 = e’ where

el X (eP1,...,eP). Substituting those terms in 15
yields the loss function in the form of

— > @B+ Sl

T;Ec

=" widif + Selle’l (16)

yi=1

L. =

Now we have successfully decomgosed Nl}’s loss func-
tion into the form of L = g; (y;Z;8) + g2(8). Note that
we only discussed NB without any smoothing which is
known to be important for the effectiveness of NB. It
is easy to see in the second term of formula 16 that
|le? |1 would be overly sensitive to estimation errors in
the elements 8y, = log P(W;|c) if those numbers (nega-
tive) have large absolute values, that is, when the word
probabilities are near zero.

We now present the loss function for NB with Laplace
smoothing which is common in NB. Here the estimate
of Oy, is 0, = L let us use 1 to represent vector

p+Se
(1,1,...,1). Note that the elements in 3 are all negative
numbers because 8 = log 6 and 6 are probabilities. So

—14 = ||A]l1. Then we have the loss function for NB
as the following:

p p
Z 1+ Fe) 10g9k+(p+5)2
k=1 k=1

Table 1. The training-set loss functions and the regularizers of eight classifiers

Classifier training-set loss: g; (yzfzﬁ) regularizer: !]2(-,)
Regularized LLSF Yoo (- yi7:5)>? NER
Regularized LR >, log(1 + exp(—y:#if)) NER
Regularized 2-layer NNet S (1 - n(uidif))? NER

SVM Y7 (1 —yZif)+ NER
Rocchio =D yiet yiZiff — bf\};“ Dy 1 yiZ: %”/5”2
Prototype =2yt T L 18]I

kNN D A AR

NB without smoothing =D pimt yiZi3 SC||e/§||1

NB with Laplace smoothing | — Zy,-=1 y,a’c’,ﬁ »+ Sc)||€E||1 + ||3||1

-

F)B+ (p+So)(116]11)
yzfz ﬁ + (p+ Se)”eﬁHl

yi=1

= =Y wdiB+ o+ Sl + 16l (17)

yi=1

= —(I+
I+

Comparing this to formula 16 of NB without smooth-
ing, we can see the correction by Laplace smoothing
in the third term, which prevents the coefficients in 3
from being too large. In other words, it prevents the
classification decisions from being overly sensitive to
small changes in the input.

Also, both formulas 16 and 17 show a unique prop-
erty of NB classifiers, that is, the influence of term
S. in the loss functions, which causes the amounts of
regularization to vary for different categories. To our
knowledge, this is the first time that this property is
made explicit in loss-function based analysis. Whether
this is a theoretical weakness or a desirable property
of NB requires future research.

2.9. Comparative Analysis

The loss functions of the eight classifiers are summa-
rized in Table 1. All the regularized classifiers, except
NB, have their regularizers in the form of the vec-
tor 2-norm ||3||2 multiplied to a constant or a weight
(category-specific). Among those, regularized LLSF,
NNet and LR have exactly the same regularizer as that
in SVM, so the differences among those methods are
only in their training-set loss functions. Prototype and
NB, on the other hand, are exactly the same in terms
of their training-set loss, but fundamentally different
in their regularizer terms.

The curve of the training-set loss on individual train-
ing examples is shown for each classifier in Figure 1;
the 0-1 misclassification loss is also shown for compar-
ison. The Y axis represents the loss, and the X axis
is the value of yﬁ,ﬁ Examples with y;Z;3 > 0 are
those correctly categorized by a classifier assuming the
classification decisions are obtained by thresholding at

zero; examples with _yia':‘iﬁ < 0 are those misclassified.
Examples with y;Z; 8 = 1 are those perfectly scored in

the sense that the scores (;3) by the classifier is in a
total agreement with the true scores of y;.

From Figure 1, we can see that LLSF gives the highest
penalty to the misclassified examples with a negative
and very large absolute value of y;¥; 8 while NNet gives
those errors the lowest penalty. In other words, LLSF
tries very hard to correctly classify such outliers (with
relatively small scores) while NNet does not focus on
those outliers. As for the correctly classified examples
with a large positive value of y;#;3, LLSF is the only
method which penalizes them heavily. SVM, NNet and
LR tend to ignore these examples by giving them zero
or near zero penalties. On the other hand, Rocchio,
NB, Prototype and kNN give these examples minus
loss rather than neglecting them.

It should be noticed that we have two lines for Proto-
type and NB: a linear function with a non-zero slope
for the positive examples, and the other with a flat
slope for the negative examples. This reflects the fact
that only the positive training examples of each cate-
gory are used to train the category-specific models in
those methods. kNN is similar in this sense except that
its loss functions are local, depending on the neighbor-
hood of each input example; we omit the lines of kNN
in this figure. Rocchio-style, on the other hand, uses
both positive and negative examples to construct the
category prototype, should have two linear lines (with
non-zero slopes) as its loss functions. For convenience,
we show a speciﬁc case of Rocchio-style when parame-
ter b = 3£ in this figure, i.e., the two lines for positive
and negatlve examples become the same.

3. Empirical Evaluation

We conducted two sets of experiments: one set was
for the global comparison of the eight classifiers in
text categorization using a benchmark collection, the
Reuters-21578 corpus ApteMod version(Yang & Liu,
1999) (http: //www-2.cs.cmu.edu/~yiming), and the
other set was for examining the effectiveness of regu-

3 3 Y — 3
v L}
2.5 2.5 T 2.5 7
" [}
2 2 [} L] . 2 .
' 1
1.5 1.5 Y n = 1.5 —
'} 1
1+ 1 T 1 7
L}
=
2 o.5 o.5] ! — 0.5 B
=
’
o o o
—0.5 |- —0.5 - — —0.5 - B
= Prototype and NB
_1 —1 - m LLSF —1 N when x is positive
— 2 _layer NNet —— Prototype and NB
—— Missclassification when x is negative
—1.5 | —1.5 B —1.5 =
e —=2 —=2
Za —= o 2 a Za —= o = a Za —= o 2 a
v<p =B y=<pB

Figure 1. The training-set loss functions of eight classifiers

larization in individual classifiers. For the latter, we
chose LLSF, LR and NNet because the regularizer can
be easily implemented as a “plugged-in” term in the
non-regularized versions of those classifiers, while how
to add a tunable regularization component in the other
classifiers (for example, in SVM) is not obvious.

F1 performance of the classifiers
T T T T

T T
Macro a F1
ool v 0.8857

0.8474

0.8748 0.8803 0.8806 4

0.8557

0.8009 0.7989

0.8

orr 06398 |
0.6214 N
0.5014 0.6084

0.5957 0.5975

0.6

F1 value

0.5

0.4

0.3

0.2

0.1

NB Prototype Rocchio SVM KNN Reg LR Reg_NNetReg LLSF

Figure 2. Performance of eight classifers on Reuters-21578

Figure 2 shows the results of the eight classifiers on
the test set of the Reuters corpus. Both macro- and
micro-averaged F1 are reported, which have been the
conventional performance measures in text categoriza-
tion evaluations (Yang & Liu, 1999). All the param-
eters are tuned using five fold cross-validation on the
training data. Feature selection was applied to doc-
uments as a preprocessing step before the training of
the classifiers; the x? criterion was used for feature se-
lection in all the classifiers. For NB, we selected the
top 1000 features. For Rocchio-style (implemented us-
ing the version in (Lewis et al., 2003)) we used the
top 2000 features and set parameter b = —2. For Pro-
totype we used the top 2000 features. For kNN we
set k = 85 and used the top 2000 features that when
micro-avg. F1 was the performance measure, and the
top 1000 features when macro-avg. F1 was the per-

formance measure. For regularized LLSF, LR, NNet
(2-layer) and SVM, we used all the features without
selection. We used cross-validation to tune the classi-
fication threshold for every category (this is probably
the main reason that our SVM results are better than
those reported in (Yang & Liu, 1999; Joachims, 1998)).
We also used T-test to compare the macro F1 scores
of regularized LLSF and SVM and found regularized
LLSF was significantly better.

Figure 3 shows the performance curves of the regular-
ized LLSF, NNet and LR on a validation set (a held-
off subset of the training data), with respect to the
varying value of A that controls the amount of reg-
ularization. Clearly, the performance of those clas-
sifiers depends on the choice of the value for A: all
the curves peak at some A values larger then zero.
For LLSF and NNet, in particular, having regular-
ization (with a properly chosen \) can make a sig-
nificant improvements over the cases of no regulariza-
tion (A = 0). Based on macro-averaged F1 curves, we
chose A = 10~* for regularized LLSF and A = 10~7 for
regularized NNet and LR for the evaluation of those
methods on the test set. We also heuristically tuned
the relative weight between positive examples and neg-
ative examples for the three classifiers: first, we set
the learning rate of positive examples as 0.1 and the
learning rate of negative examples as 1; second, we fur-
ther duplicated the positive examples in each category
so that the number of positive examples and negative
training examples became equal.

Figure 4 compares our results of the regularized LLSF
and regularized NNet with the published results of
LLSF and NNet without regularization on the same
data collection(Yang & Liu, 1999). Clearly, our new
results are significantly better than the previous re-
sults of those methods, and the regularization played
an important role in making the difference. Note that
in (Yang & Liu, 1999), the LLSF used truncated SVD
to get the solution and the NNet had 3 layers. Thus,
those scores are not directly comparable, but rather

just indicative.

o.&:%e/
4 e Reg LLSF
0.6l —— Reg NNet
—a— Reg LR

]

Value ofl

Micro-avg. F1
i

—e— Reg LLSF
—— Reg NNet
—=— Reg LR

10°°
Value of |

Figure 3. Performance of classifers with respect to varying
amounts of regularization

F1 performance of the classifiers

Wl Micro avg. F1
ool 0.8806 [Macro avg. F1 0.8803 i
0.8498
0.8287
0.8 1
0.7 B
0.6398 0.6214

0.6 1
S
= 0.5008
S os| B
e

0.4 0.3765 4

0.3 1

02 B

0.1 1

o
LLSF Reg_LLSF NNet Reg_NNet

Figure 4. Perfromance of LLSF and NNet with and with-
out regularization

4. Concluding Remarks

In this paper, we presented a loss-function based anal-
ysis for eight classifications methods that are popular
in text categorization. Our main research findings are:

e The optimization criteria in all the eight meth-
ods can be presented using a loss function that
consists of two terms: the training-set loss and
the regularizer (i.e., the complexity penalty). The
proofs for four of those methods, Rocchio, Proto-
type, kNN and NB, are new in this paper. Such
decomposition enables an insightful comparison of
classification methods using those two terms.

e Regularized LLSF, NNet and LR have exactly
the same regularizer as that in SVM, so the dif-
ferences among those methods are only in their
training-set loss functions. Our evaluation results
on the Reuters corpus show that the performance
of the four methods are quite competitive, in both

macro- and micro-averaged F1 scores, despite the
theoretical differences in their loss functions.

e Regularization made significant performance im-
provements in LLSF and NNet on Reuters. Reg-
ularized LLSF, in particular, performed surpris-
ingly well although its training-set loss function
is not monotonic, which has been considered as
a weakness of this method in some theoretical
analysis(Hastie et al. 2001). Its macro-averaged
F1 performance (0.6398) is the best score ever
reported on the Reuters-21578 corpus, statisti-
cally significantly outperforming SVM that was
the best until this study.

¢ Our new derivation shows that NB has the regu-
larizer in a form of (p + S.)||€®||1 + ||8]|1, which
is radically different from the ||3||? regularizer in
the other classification methods. Whether or not
this would be an explanation for the suboptimal
performance of NB requires future research.

References

Hastie T., Tibshirani, R. & Friedman, J. (2001) The
Elements of statistical learning, data mining, Infer-
ence, and Prediction. In Springer Series in Statis-
tics.

Joachims, T. (1998) Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. Proceedings of the European Conference
on Machine Learning (ECML), Springer.

Lewis, D., Yang, Y., Rose, T. & Li, F. (2002) RCV1:
A New Text Categorization Test Collection to be
appeared in Journal of Machine Learning Research.

McCallum, A. & Nigam, K. (1998) A comparison of
event models for Naive Bayes text classification. In
AAAI-98 Workshop on Learning for Text Catego-
rization.

Vapnik, V. (1995) The nature of statistical learning
Theory. Springer, New York.

Yang, Y. & Chute, C.G. (1994) An example-based
mapping method for text classification and retrieval.
In ACM Transactions on Information Systems.

Yang, Y. & Liu, X. (1999) A re-examination of text
categorization methods. ACM Conference on Re-

search and Development in Information Retrieval,
pp 42-49.

Yang, Y. (1999) An evaluation of statistical ap-
proaches to text categorization. Journal of Infor-
mation Retrieval, Vol 1, pp 67-88.

Zhang, T. & Oles, F.J. (2001) Text Categorization
Based on Regularized Linear Classification Meth-
ods. In Information Retrieval 4(1): 5-31.

