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Abstract

Learning the structures of large undirected graphs with
thousands of nodes from data has been an open chal-
lenge. In this paper, we use graphical Gaussian model
(GGM) as the underlying model and propose a novel
ARD style Wishart prior for the precision matrix of the
GGM, which encodes the graph structure we want to
learn. With this prior, we can get the MAP estimation of
the precision matrix by solving (a modified version of)
Lasso regressions and achieve a sparse solution. We use
our approach to learn genetic regulatory networks from
genome-wide expression microarray data and protein-
binding location analysis data. Evaluated on the basis of
consistency with the GO annotations, the experiments
show that our approach has a much better performance
than the clustering-based approaches and BN learning
approaches in discovering gene regulatory modules.
Key words: data mining, machine learning, Bayesian
networks.

I ntroduction

Learning the structures of large undirected graphs with thou-
sands of nodes from data is an open challenge in machine
learning and has many potential applications. One recent
promising direction is to use this technique to induct gene
networks from high-throughput microarray data ((Gustafs-
son, Hornquist, & Lombardi 2003), (Schafer & Strimmer
2004),(Wille et al. 2004)).

Graphical Gaussian model (GGM) ((Lauritzen 1996)) is
a popular undirected graphical model that has been fre-
quently used in recent years. Let P be the number of nodes
in the graph. Then in GGM, the vector of the P nodes
X = (x1,..,zp) is assumed to follow multivariate nor-
mal distribution with covariance matrix 3. An edge between
two nodes (variables) in the undirected graph encoded by the
GGM implies that the two variables are NOT conditionally
independent to each other given the rest variables (in other
words, the partial correlation between these two variables is
not zero). Matrix 0 = X~ is often called the Precision ma-
trix. The non-zero entries in matrix €2 are corresponding to
the edges of the undirected graph.
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There are two basic categories of approaches for structure
learning: score-based approaches and constraint-based ap-
proaches. Score based approaches perform a search through
the space of possible structures and attempt to identify the
most probable graph given the data and the prior knowledge.
When the graph is not decomposable, the space of possible
structures that needs to be explored will be extremely large.
Thus directly learning a GGM * with thousands of nodes in
this way is very difficult. Constraint-based approaches use
conditional independence tests to tell whether an edge be-
tween two variables exists or not. When the sample size is
small (which is always the case in microarray data), it is
difficult to test the partial correlation between two variables
given all the other variables. Several possible solutions to
circumvent this problem have been proposed. For example,
(Wille et al. 2004) used GGM to model gene networks and
used order-limited significance test to identify edges (only
first order partial correlations are considered). (Schafer &
Strimmer 2004) did a similar work but used multiple testing
procedures to identify edges in GGM. While these constraint
based approaches are interesting and helpful, they lack an
explicit objective function and do not try to directly find the
GGM with maximal likelihood. Thus they do not fit into the
probabilistic framework as well as score based approaches.

Several researchers have also used regression-based ap-
proaches to identify structures of undirected graphs. The
idea is to apply regression analysis for each variable on the
rest variables and the regression coefficients with relatively
large absolute values are explained as edges in the graph.
Lasso regression ((Tibshirani 1996)) is often preferred in re-
cent years because it gives exactly zero regression coeffi-
cients to most irrelevant or redundant variables (thus leading
to a sparse graph structure). Furthermore, theoretical anal-
ysis in (Ng 2003) and (Meinshausen & Buhlmann 2004)
shows that using L1 regularization, the sample complex-
ity (i.e., the number of training examples required to learn
“well”) grows only logarithmically in the number of irrele-
vant features. This conclusion indicates that L1 regularized

LIn this paper, when we say "learn a GGM" or "learn a DAG”,
we mean learning the parameters of a GGM (precision matrix) or
a DAG (regression coefficients). The graph structures are encoded
by these parameters. The non-zero entries in the precision matrix
correspond to the edges in the undirected graph and the non-zero
regression coefficients correspond to the edges in the DAG.



Lasso regression can be effective even if there are exponen-
tially many irrelevant features as there are training examples
(which is exactly the case in microarray data). (Meinshausen
& Buhlmann 2004) used Lasso regression to estimate undi-
rected graph structures and (Gustafsson, Hornquist, & Lom-
bardi 2003) used similar approaches to recover large scale
transcriptional regulatory network from expression microar-
ray data. However, the network estimated by using ad hoc
regressions does not correspond to a likelihood-based esti-
mator of the GGM. From existing approaches based on the
Lasso regressions, there has been few attempts to explicitly
identify the exact global objective function and the proba-
bilistic framework for the objective. 2.

(Dobra et al. 2004) proposed an alternative way to learn
GGM using score based approach. The idea is that, for
any undirected graph whose variables (nodes) follow a
joint multivariate Gaussian distribution, there must be a di-
rected acyclic graph (DAG) whose variables have exactly
the same joint distribution (because a multivariate Gaussian
distribution can be always decomposed into a set of one-
dimensional Gaussian distributions using chain rule). Thus,
instead of learning the undirected graph directly, we can first
learn a DAG with the largest posterior probability. Once this
DAG is found, the joint multivariate Gaussian distribution of
the variables in this DAG and its associated precision matrix
can be estimated. This precision matrix will be exactly the
one in the GGM we are trying to learn. (Dobra et al. 2004)
defined a prior penalizing the number of edges in the DAG
and they heuristically searched an order of variables in the
DAG so that the MAP estimations of the DAG parameters
have the largest posterior probability. Our work follows the
basic idea of learning GGM by DAGs but uses a very differ-
ent strategy to achieve a sparse estimation of the precision
matrix in GGM.

Note that the ultimate goal of standard Bayesian network
(BN) learning is to find a DAG that best explains the data.
However, the ultimate goal in this paper is to learn a sparse
undirected graph and DAG learning in our approach is only
an intermediate step. Thus there are some important differ-
ences between our way learning the DAG and the standard
BN learning algorithms.

e In our model, the priors of the DAG parameters are de-
rived from a unified global prior for the undirected graph.
Notice that there is not a simple mapping between the
sparsity of an undirected graph and the sparsity of its
corresponding DAGs. The topologies of an undirected
graph and its corresponding DAGs may be very different.
An undirected graph can correspond to many DAGs with
variables in different orders: some DAGs may be sparse
and others may be dense. In fact, some undirected graphs
only have corresponding DAGs with many more edges,
no matter how the variables are ordered. A loop with more
than three nodes is a simple example of that. Thus, con-
ceptually, it is not always a good strategy to enforce spar-

2In fact, ad hoc regressions will not lead to a consistent estima-
tion of the GGM because the regression coefficient of variable ¢ on
j may be zero while the regression coefficient of variable j on ¢
may be non-zero.

sity on the corresponding DAGs in order to obtain the
sparsity in the ultimate undirected graph. A more natural
and consistent approach (and our approach) is to define
a sparsity prior for the precision matrix that encodes the
undirected graph, and then derive the DAG priors corre-
spondingly, instead of defining the DAG priors directly,
which has been typically used in BN learning algorithms.

e In our model, we do not need to search the order of vari-
ables in the DAG because the finial MAP estimation of
the precision matrix does not depend on the variable or-
der in the DAG. In standard BN learning, the ultimate goal
is to learn the topology of the BN, which will be influ-
enced by the order of the variables. Thus this order should
be learned automatically from the data. However, in our
model, the ultimate goal is to learn the undirected graph
structure, which is determined by the precision matrix
of the multivariate Gaussian distribution. A multivariate
Gaussian distribution can be re-written as the product of a
set of one-dimensional Gaussian distributions using chain
rule in an arbitrary order. This implies that, for DAGs with
different variable orders, as far as the DAG parameters
are all learned using MAP estimations and the priors of
the DAG parameters are all derived from a unified global
prior (not depending on the variable order) for the preci-
sion matrix, the finial recovered joint distributions of the
variables in these DAGs should all be the same. In other
words, these DAGs with different variable orders should
all correspond to the same undirected graph, even if the
structures of these DAGs are very different (e.g. some are
sparse while some are dense). Thus, in principle, we can
use an arbitrary variable order in our model. 3 Notice that
if the DAG parameter priors are not corresponding to a
unified global prior of the precision matrix (one example
is the prior directly penalizing the number of edges in the
DAG ), then the MAP estimation of the precision matrix
will become dependent on the variable order in the DAG.

In this paper, we propose an Automatic Relevance Deter-
mination (ARD) style Wishart prior for the precision matrix
Q of the GGM. All the DAG priors are derived from this
unified prior. Thus our approach is conceptually cleaner and
does not depend on the variable order of the corresponding
DAG. We show this prior for the precision matrix is equiv-
alent to the Laplace priors for the regression coefficients in
the corresponding DAGs. Thus, the MAP estimation of the
precision matrix can be found efficiently by solving (a mod-
ified version of) Lasso regressions using fast grafting algo-
rithm (proposed in (Simon, Kevin, & James 2003)). In this
way, we have a consistent probabilistic model to incorporate
Lasso regressions in undirected graph structure learning and
we can share all the benefits of Lasso regression discussed
before. Another important advantage of using 1-norm regu-
larizer (implied by Lasso regression in our approach) than
zero-norm regularizer (implied by the term penalizing the
number of edges in the DAG) is that, in each regression
model in our approach, the solution space is convex and we

3In the real implementation, a sparse DAG still has some ad-
vantages since it requires less computational cost and less space to
store its parameters.



can find the global optimal point efficiently, while the solu-
tion space in the zero-norm regularizer case is very bumpy.
We further designed a method to discover genetic regula-
tory networks with more than 6000 nodes from real biolog-
ical data based on our undirected graph learning algorithm.
Evaluated on the basis of GO annotations, our results are
significantly better than the state-of-art baseline results.

M ethod

We attempt to learn the GGM with maximal posterior prob-
ability from training data. For simplicity, we assume all the
variables have been preprocessed so that each of them fol-
lows a standard normal distribution. Thus the precision ma-
trix of the GGM is all we want to learn. Since there must be
a DAG with exactly the same joint distribution as the GGM,
our task is equivalent to learning the DAG with maximal
posterior probability.

For any DAG, there is a specific ordering of variables,
which we take here for discussion as simply 1,2,...,p with-
out loss of generality. For any variable x;, only variables
whose indexes are larger than i could be considered as x;’s
parents. We use X;1)., to represent these variables. Let’s
use G to represent the regression coefficients of the DAG.
Notice once 3 is known, the DAG is determined. The prob-
ability of data given the DAG parameter 3 is p(Datal3) =
I, P(zi] X (i+1):p), B). For each z;, we can have z; =

Z;;H Bjix;+€; where ¢; ~ N (0,1;). This can be further
written inamatrixform X =T X +¢ and e~ Ny(0,%),
where € = (e1,...,€p)", ¥ = diag(yn,...,1p) and T is the
p X p upper triangular matrix with zero diagonal elements
and upper triangular, non-diagonal entries I';; = 5,i, (j >
i). It is easy to show that the joint distribution of variables in
this DAG is a gaussian distribution with precision matrix

Q=(I-I)y(I-T) @

Notice this precision Q is just the precision matrix of the
undirected graph we are trying to learn and it encodes the
structure of the undirected graph.

prior for Q and prior for g

Now we are trying to find out DAG parameters 3 so that
P(B|Data) x P(Data|B)P() is maximized. Notice that
covariance matrix X (or precision matrix 2) determines re-
gression parameter 3 (and of cause, /3 also determines X and
Q). Thus the prior over X (or €2) defines consistent priors on
any regression parameters 3;;|j > i.

Here, for precision matrix €2, we define a Wishart prior
Q ~ W, (6, T) with ¢ degrees of freedom and diagonal scale
matrix T = diag (61, ..., 0,). Here 6, is a positive hyper prior
and satisfy

P(O) = Jerp(1%) @

This kind of hyper prior distributions have been suggested
by (Figueiredo & Jain 2001) in a single regression model.

Let’s use f3; to represent the (p — i) x 1 matrix 5; =

(B(i+1)i» ---Bpi)'. let’s use T; to represent the sub-matrix of

T corresponding to variables X ;,1).,. From the derivations

in (Geiger & D.Heckerman 2002), we know the associated
prior for 3; is P(B;|vi, 0(i+1):p) = Np—i(0, Titp;). Thus

P(Bjili, 05) = N(0,0;4;) ®3)

From the derivations in (Geiger & D.Heckerman 2002),
we also know the associated prior for v; is

S+p—i 61
—— %) 4)

Following the idea in (Figueiredo & Jain 2001), we can
integrate out the hyper parameter # from prior distribution
of 3;; and get

P(;16;) = Gamma(

P(Bji|i) :/0 P(Bjilwi, 0;)P(8;)db;

_1/y 713,
= 5[5 ©

Let’s suppose there are K samples and we use k to index
them. x; represents the value of the ith variable in the kth
sample. Thus

P(BilYhi, Data) oc Pz X (ig1):ps Bi, Vi) P(Bili)

(Zk(xki = 1 B VA i 1Bl
—i

X exp

and
P(d);1|917ﬁ17Data)
o P(Datalt;*, B;, 0;)P(Bi|w; *, 0;) P(v; t16;)

S+ —2+K
N Gamma(#,
i1 42'1'91'_1 07+ (ki — > i 5ji$kj)2)
2
(7

Parameter estimation of the modified Lasso
regression

From formula 6, we see the MAP estimation of g; is

P p
Bl- = argmin Z(I;ﬂ — Z ﬂjifﬂkj)Q + VY Z 1B5il (8)
k

Jj=i+1 Jj=i+1

Thus ﬁl is the solution of a Lasso regression.

However, we cannot solve formula 8 as a standard Lasso
regression. The reason is that «; with different i values are
generally not the same. Thus the regularization parameter
v7; can not be treated as a single parameter. In order to
estimate 3; using Lasso regression in formula 8, we need to
first estimate the regularization parameter/~1);.

Formula 6 and 8 provide the posterior distribution of g;
conditioned on ¢; while formula 7 provides us the poste-
rior distribution of 4; conditioned on 3; (the effect of 6;
in formula 7 can be numerically integrated out by sampling



method 4). Thus we can use an iterative procedure to esti-
mate 3; and v);. We start from an initial guess ¢; = 0. Using
this % value, we can estimate ﬁz Then using the estimated
$3;, we estimate ); agaln This procedure is iterated until the
estimation ¢); and 3; do not change This process converges

quickly in our experlments Once v; and 3; are known, we
can estimate 2 using formula 1 easily. Thus the graph struc-
ture is learned.

In the real implementation, we can incorporate the itera-
tive procedure into the fast grafting algorithm that is used to
solve Lasso regression ®. Thus the computational cost can be
significantly reduced.

We further note that from formula 8, for an arbitrary
variable z, that ¢ > 1, we can guarantee 2|, (zx; —
Z‘;?:Hl BjiTrj)Trq] < +/v¥: where equality only holds
when variable ¢ has a non-zero weight (see (Simon, Kevin,
& James 2003)). Note we have pre-processed data so that
x; has a standard normal distribution. This implies that

cor(r;, xq) < [ where cor(r;, z,) means the correlation
coefficient between 7 (the residual of variable ¢) and z,.
This gives us an |ntU|t|ve way when we want to decide the
value of the hyper prior v

Experiments

Discovering regulatory networks is an important application
of undirected graph learning. We first give a brief introduc-
tion in this field before we compare the empirical results by
our approach and by other approaches.

Figure 1 shows an example of a small genetic regula-
tory network. Microarray data provides the mRNA levels of
thousands of genes under various conditions. If two genes
are co-regulated by the same proteins (the genes encoding
these proteins are called regulator genes and the genes reg-
ulated by these protein are called regulatee genes), they will
tend to have similar patterns of mRNA levels in different
conditions. Thus it is possible to estimate the gene regula-
tory network from microarray data if we treat each gene as
a variable and each condition as a sample.

“#1deally, we’d like to multiply formula 2 and formula 7 and ana-
lytically integrate out 6;. However, it’s unclear to us whether 6; can
be integrated out in a close form. Thus we just sample 6; values un-
der the distribution in formula 2 and use these values to simulate
the integration operation. Since 6; (with different i values) all fol-
low the same distribution in formula 2, the sampled 6; values can
be used repeatedly with different i values.

SFast grafting is a kind of stage-wise gradient descent algo-
rithm. It uses the sparseness property of LASSO regression to ac-
celerate the optimization. The algorithm starts with two feature
sets: free feature set F and fixed zero feature set Z. Then it grad-
ually moves features from Z to F while training a predictor model
only using features in F. The details of this algorithm are referred to
(Simon, Kevin, & James 2003). In order to incorporate the iterative
procedure adjusting the regularization parameter into the fast graft-
ing algorithm, our implementation is a little different from (Simon,
Kevin, & James 2003). We initialize 1); as zero value. In the end
of each iteration in the fast grafting algorithm, v); and the regular-
ization parameter are re-estimated based on the current regression
coefficients ;.
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Figure 1: A typical sample of genetic regulatory network

Hierarchical and K-means clustering algorithms have
been used to find co-regulated genes from microarray
data. (Bar-Joseph et al. 2003) and (Segal, Yelensky, &
Koller 2003) developed more advanced clustering-based ap-
proaches to discover regulatory networks from multiple data
sources. A major problem of clustering approaches is that
they cannot model the partial correlations between variables.

Bayesian networks (BNs) have also been used to analyze
microarray data((Friedman et al. 1996)). One problem of
modeling a regulatory network as a BN lies on the fact that
the protein levels are unobservable from microarray data.
Most BNs proposed so far only include mRNA levels of
genes as nodes, but not protein levels. While the mRNA lev-
els of co-regulated genes are often correlated, the mRNA
levels of the regulated genes and regulator genes may not al-
ways correlate to each other because the mRNA expression
levels of regulator genes are not always good indicators of
their protein levels and activities. Even when the mRNA lev-
els of regulator genes and regulated genes do correlate, the
mRNA levels of co-regulated genes are generally not con-
ditionally independent to each other given the mRNA lev-
els of the regulator genes. Thus the estimated BN may con-
found the regulator-regulatee dependencies and co-regulated
dependencies among genes. (Hartemink et al. 2001) and
(Bernard & Hartemink 2005) have used genome wide lo-
cation analysis data © as priors to constrain the structures of
BNs so that they could filter out the edges corresponding
to co-regulated dependencies among genes. However, they
still have to assume (relatively strong) correlations between
mRNA levels of the regulator genes and the regulatee genes.
Furthermore, they did not make use of the co-regulated de-
pendencies among genes, which are the strongest signals in
microarray data and may be very useful.

In this paper, we integrate the microarray data and lo-
cation analysis data in a different way. Instead of directly
modeling the regulator-regulatee dependencies using BN,

8_ocation analysis identifies physical interactions between reg-
ulators and motifs on the regulatory regions of the genes. How-
ever, physical binding is not equivalent to regulatory interaction.
Furthermore, location analysis itself is also very noisy. Thus, by
combining these two data sources, we may recover modules more
accurately than using either one alone.
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Figure 2: Comparison between our approach and Hierarchy
clustering (in the first row) and K-means clustering (in the
second row), with k=50 (first column), 100 (second column),
600 (third column) respectively. In the up left figure, there
are 109 dots on the Y axis and 22 dots on the X axis. In the
up middle figure there are 121 dots on the Y axis and 19 dots
on the X axis. In the up right figure, there are 91 dots on the
Y axis and 22 dots on the X axis. In the down left figure,
there are 119 dots on the Y axis and 29 dots on the X axis.
In the down middle figure, there are 112 dots on the Y axis
and 27 dots on the X axis. In the down right figure, there are
92 dots on the Y axis and 39 dots on the X axis.

we only attempt to model the co-regulated dependencies us-
ing GGM in the first stage. The structure of the undirected
graph is learned from microarray data and each edge in the
undirected graph corresponds to a co-regulated gene pair. In
the second stage, we developed a post-processing algorithm
to identify the co-regulated gene modules and their cor-
responding regulator genes from the estimated undirected
graph with the help of location analysis data. The advan-
tage of our approach lies on the fact that the co-regulated
dependencies are often much stronger than the regulator-
regulatee dependencies in microarray data. Thus by using
the co-regulated dependency information, which is not used
in BNs, we may discover more regulatory patterns.

We applied our method on the Yeast Saccharomyces cere-
visiae dataset. The expression microarray data we used
comes from (Spellman et al. 1998). The mRNA expression
levels of 6177 genes are measured under 76 conditions. The
location analysis data we used comes from (Lee et al. 2002).
It gives the p-values of genes regulated by each of the 106
regulators. When a p-value is lower than 0.05, we would as-
sume the gene is regulated by the regulator. The value of the
hyperprior  is assigned to be 2.31 so that the correlation co-
efficients between zero weighted variables and the residuals
are no larger than 0.01.

Directly evaluating the estimated gene regulatory network

—log(pvalue) for Kmeans, K=600

Figure 3: The left graph is the comparison between our
method and Gram algorithm. There are 93 dots on the Y axis
and 61 dots on the X axis. The right graph is the comparison
between our method and BN learning algorithm. There are
88 dots on the Y axis and 29 dots on the X axis.

is difficult because the true gene network is usually un-
known. One possible solution is that, instead of directly
evaluating the estimated gene regulatory network, we eval-
uate the gene regulatory modules in the estimated gene net-
work. A gene regulatory module is defined to be a set of
co-regulated genes sharing the same set of regulator genes.
Genes in the same module are likely to attend the same cel-
lular processes and have similar biological functions. Most
yeast genes have been annotated with certain cellular pro-
cesses or functions in GO database((Ashburner et al. 2000)).
Thus it is possible to use this information as an external ev-
idence to evaluate the estimated gene regulatory modules.
In fact, such evaluation strategies have been widely used in
recent years ((Segal, Yelensky, & Koller 2003)).

The details of the evaluation strategy are as following.
For each gene module and each GO annotation, we calcu-
lated the fraction of genes in that module associated with
that GO annotation and used the hypergeometric distribution
to calculate a p-value for this fraction (by SGD Term Finder
Toolkit((Ashburner et al. 2000)), and took p-value < 0.05 to
be significant. We compared the enrichment of modules for
GO annotations between results achieved by our approach
and results achieved by other baseline approaches. We only
consider GO annotations in ”Process” category.

(Bar-Joseph et al. 2003) has used GRAM algorithm,
which can be thought as a kind of clustering algorithm, to
extract gene regulatory modules from expression microar-
ray data and location analysis data. In particular, they have
used the same genome-wide location analysis data as the
one we used. However, their expression microarray data is
over 500 experimental conditions and our microarray data,
with 76 conditions, is only a subset of theirs. We will use
their result as a baseline result. The p-value threshold of our
post-processing algorithm, which can be used to control the
number of output gene modules, is set to be 0.04 so that the
number of output gene modules is 106, which is exactly the
same as the number of gene modules in the results reported
by (Bar-Joseph et al. 2003). In this way, we can compare our



results with (Bar-Joseph et al. 2003) conveniently.

We also compared our results to the results achieved by
hierarchical clustering (agglomerative average linkage ver-
sion) and k-means clustering algorithms (with 5 random
restarts). We tried several settings (k=50, 100, and 600) for
the number of clusters in these two algorithms. We can treat
the clustering results as a disjoint undirected graph (genes in
same clusters form complete sub-graphs and genes in differ-
ent clusters are disconnected with each other) so that we can
directly use our post-processing algorithm to combine the
clustering results with location analysis data. In order to be
fair in comparing the two module extraction methods using
this evaluation strategy, the number of gene regulatory mod-
ules found by these two methods should be the same. Thus
for the two clustering methods, we tuned the p-value thresh-
old of the post-processing algorithm so that it also returns
106 modules. In this way, we can give a fair comparison.

We further compared our approach with the BN learn-
ing approach that used the location analysis data as priors
to constrain the BN structure. We used sparse candidate hill
climbing as the search algorithm and only allowed an edge
from a regulator gene to a regulatee gene when the p-value
between them is lower than 0.05 in location analysis data.
We tuned the weight of the penalizer for the number of edges
in the BN so that it also generated 106 regulatory modules.

The results are shown in figure 2 and 3. Each dot repre-
sents a GO annotation. If it is on the Y-axis, it means that
the GO annotation has been enriched in our results but not
in the baseline results. If it is on the X-axis, it means that the
GO annotation has been enriched in the baseline results but
not in our results. We can see that there are many more dots
on the Y-axis than on the X-axis in figure 2 and 3, which im-
plies our method achieved much better performance. Notice
the microarray data used in (Bar-Joseph et al. 2003) contains
richer information than our data, but their results are still not
as good as ours, as reflected in figure 3.

Conclusions

In this paper, we propose a new approach to learn large
undirected graphs in GGM. By introducing an ARD style
Wishart prior for the precision matrix, the MAP estima-
tion of the precision matrix, which encodes the sparse graph
structure we want to learn, can be solved efficiently by mod-
ified Lasso regressions. We used our approach to learn ge-
netic regulatory networks from microarray data and location
analysis data. An evaluation on the basis of consistency with
the GO annotations shows that our approach significantly
outperforms clustering-based approaches and BN learning
approaches in discovering regulatory modules.
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