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ABSTRACT
Finding most predictive features for statistical classification
is a challenging problem and has important applications.
Support Vector Machines (SVMs), for example, have been
found successful with a recursive procedure in selecting most
important genes for cancer prediction. It is not well under-
stood, however, how much the success depends on the choice
of the classifier, and how much on the recursive procedure.
We answer this question by examining multiple classifiers
(SVM, ridge regression and Rocchio) with feature selection
in recursive and non-recursive settings, on a DNA microar-
ray dataset (AMLALL) and a text categorization bench-
mark (Reuters-21578). We found recursive ridge regression
most effective: its best classification performance (zero er-
ror) on the AMLALL dataset was obtained when using only
3 genes (selected from over 7000), which is more impressive
than the best published result on the same benchmark – zero
error of recursive SVM using 8 genes. On Reuters-21578,
recursive ridge regression also achieves the best result ever
published (the improvement was verified in a significance
test). An in-depth analysis of the experimental results shows
that the choice of classifier heavily influences the recursive
feature selection process: the ridge regression classifier tends
to penalize redundant features to a much larger extent than
the SVM does.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.5.1 [Pattern Recognition]: Models-statistical; I.5.4 [Pattern
Recognition]: Application-Text processing

General Terms
Algorithms Performance
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1. INTRODUCTION
Finding a small subset of most predictive features in a

high dimensional feature space is an interesting problem in
statistical classification, motivated for more accurate mod-
eling, less costly computation, and/or better explanations
about the relations among input and output variables. Text
categorization, for example, is an area where automated fea-
ture selection is often useful. A large document collection
typically contains hundred thousands of unique words in its
vocabulary, i.e., the feature space. Training a classifier with
such a high-dimensional space tends to have the problems of
over-fitting and costly computing. Feature selection, there-
fore, has been commonly used for dimensionality reduction.
In the recent NIPS feature selection workshop [3], feature
selection improved the classification performance on three
of the five datasets(including a text dataset). Note that im-
proving the classification performance is not the only pur-
pose of feature selection. In DNA microarray data analysis,
for example, biologists measure the expression levels of genes
(thousands of them) in the tissue samples from patients, and
seek explanations about how the genes of patients relate to
the types of cancers they had. Many genes could be strongly
correlated to a particular type of cancer; however, biologists
prefer to focus on a small subset of genes which dominates
the outcomes before conducting in-depth analysis and ex-
pensive experiments with a larger set of genes. Automated
discovery of this small subset, therefore, is highly desirable.

Methods for automated feature selection can be roughly
divided into two categories: filtering approaches, meaning
that feature selection is done in a prepossessing step of clas-
sification, independent from the choice of the classification
method and wrapper approaches, meaning that a classifier is
used to generate scores for features in the selection process
and feature selection depends on the choice of the classifier.

Both types of approaches have been applied to the extrac-
tion of gene subsets from DNA microarray data. Filtering
methods like “correlation coefficient ranking” [2] are obvi-
ously not the best choices because they score the importance
of features independently, ignoring the correlations among
them. More complex filtering methods like Markov Blanket
filtering [14] has also been tried. However it has not achieved
the level of the best results of wrapper approaches [4, 13] (we
will compare the detailed results in section 2). As a specific
wrapper approach, recursive feature elimination using SVM
(SVM-REF) has been found very successful. On the AM-
LALL benchmark collection (Section 2), for example, the
best result ever published was by recursive SVM, with an
error rate of zero when selecting 8 genes from thousands in



the original feature space [4].
Automated feature selection has also been studied inten-

sively in text categorization. Because of the scaling problem
in text data, most researchers have focused on filtering-style
feature selection methods [9, ?, 11]. In a recent evaluation of
those methods with KNN, Naive Bayes, Rocchio and SVM
classifiers on a text evaluation benchmark (Reuters-21578)
[11], it was observed that although feature selection did sig-
nificantly improve the performance of some classifiers such
as Naive Bayes, it did not improve the results of the best
performing classifiers such as SVM. This observation is con-
sistent to an early report by [5] who found that even the
features ranked the lowest still contain considerable infor-
mation for SVM, and that removing those features tends
to hurt the performance of SVM. Both experiments, how-
ever, were conducted only with filtering-style feature selec-
tion, leaving the question open for the performance of SVM
with recursive feature selection in text categorization. A
more complicated feature selection method (filtering-style),
using Markov blankets, was also examined by [6] on the
Reuters dataset with a Naive Bayes classifier. They ob-
served a smaller performance improvement, compared to the
improvement reported for Naive Bayes classifier in [11]

[10] has investigated the feature selection problem using
various SVM-based criteria. His work can be seen as a gen-
eralization of the SVM-REF algorithm. [12] discussed the
influence of norm-2, norm-1 and norm zero regularizers in
feature selection. However, neither of them explored the in-
fluence of the choice of the classifier in the recursive feature
selection process.

While the above research findings provide useful insights,
deeper understanding and analysis are needed. We would
like to know, for instance, how much does the success of
SVM in recursive feature selection on the microarray dataset
come from the recursive process, and how much does it de-
pend on the choice of the classifier or the dataset? And,
more generally, what property of a classifier would make it
successful in recursive feature selection? Presenting such a
study is the main contribution of this paper.

In section 2, we report our feature selection experiments
with SVM, ridge regression and a Rocchio-style classifier
on the AMLALL microarray dataset and the Reuters-21578
text categorization corpus. In section 3 we analyze the ef-
fect of correlated features in the process of recursive feature
elimination given a classifier, and compare the differences
among the classifiers with respect to their preferences for
independent features against redundant features. Section 4
provides analysis on the classification models with respect
to feature selection. Section 5 concludes the main findings.

2. OBSERVATIONS ON THREE CLASSIFIERS
WITH FEATURE SELECTION

We conducted a set of experiments for wrapper-style fea-
ture selection with three classifiers, in both recursive and
non-recursive ways. The three classifiers are Rocchio, SVM
and Ridge Regression (RR). More specifically we choose to
examine the linear version of those classification methods,
since linear classifiers are relatively simple, easy to interpret,
and can be enriched through the use of kernel functions for
solving non-linear problems. Details about these classifiers
can be found in a previous paper[8].

The recursive wrapper procedure (the training part) is de-

fined below1.

Algorithm 1 . Recursive Wrapper for Feature Selection

1. Let m be the initial number of features and t be the
number of features we want to get.

2. While (m ≥ t)

(a) Train the classifier and get feature weights wi for
i = 1, 2, . . . , m (i.e., the regression coefficients in
the linear model)

(b) Delete the feature with the smallest weight in ab-
solute value and set m← m− 1

By non-recursive wrapper approach, we mean that we stop
the above procedure after the first iteration and select the
t top-ranking features based on their weights in absolute
value.

2.1 Empirical Findings on a Microarray Dataset
The first data set is named AMLALL [1], consisting of a

matrix of DNA microarray data. The rows of the matrix
are genes, the columns are cancerous patients having one of
the two different types of leukemia ,AML or ALL, and the
elements of the matrix are the gene expression levels in the
corresponding patients. There are a total of 7129 genes (fea-
tures) and 72 patients (examples), split into a training set of
38 examples (27 belong to ALL and 11 belong to AML), and
a test set of 34 examples (20 belong to ALL and 14 belong
to AML). The classification task is to predict the disease
type (ALL or AML) for an arbitrary patient, given the gene
expression levels in the tissue sample from that patient. Dif-
ferent feature selection methods have been evaluated on this
dataset, including the markov blanket algorithm ([14]) and
SVM based feature selection ([13, 4]); the best result so far
(zero error rate) was obtained by recursive SVM, using 8
features only[4].
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Figure 1: Performance of three classifiers on
AMLALL: with recursive(upper graph) and non-
recursive(lower graph) feature selection

We conducted experiments using the three classifiers on
the AMLALL dataset. Figure 1 shows the classification re-
sults on the test data. We use cross-validation on training
data to tune the value of a parameter, λ, the coefficient of

1In the real Microarray data and text data, the number of
features is too large. Thus we delete m

2
features, instead of

only deleting one feature in each iteration.



the regularization component in each classifier [8]. As a re-
sult, the λ value was set to 0.00001 for all the classifiers.
When we use all the 7129 genes as features, SVM made
3 errors and Rocchio made 1 error on the test set. The
other three classifiers classified all the test examples cor-
rectly. The results with these classifiers are shown in figure
1. These results show that the choice of classifier matters
for the effectiveness, and that recursive ridge regression is
the best in the sense of using the minimum number of fea-
tures to obtain the lowest error rate in the classification.
It is quite impressive that only three genes (selected from
over 7,000) were needed for this classifier to achieve the er-
ror rate of zero, outperforming the best result for recursive
SVM ever reported on the same data2. Detailed information
about those three genes (M27891, X51521 and Y00787) can
be found from the Gene Bank database, for those who are
interested (these three genes is not a subset of the 8 genes
[4] reported).

2.2 Empirical Findings on Reuters 21578 Bench-
mark corpus

The second data set we tried is the Reuters-21578 cor-
pus ApteMod version, which has been a benchmark in text
classification evaluations. It contains 7769 training docu-
ments and 3019 testing documents. Many classifiers and fea-
ture selection methods have been evaluated on this dataset.
Among those, Ridge Regression without feature selection
had the best performance in macro-averaged F1 (a standard
measure for text categorization performance) ever published
on this corpus [8]. Support Vector Machines (SVM) also had
competitive performance when using all the features.
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Figure 2: Macro- and micro- avg. F1 scores of RR
and SVM on Reuters21578. Each classifier has three
versions: the baseline version (without any feature
selection), the non-recursive feature selection ver-
sion and recursive feature selection version

Figure 2 shows the results of these two classifiers with
feature selection in both the recursive and non-recursive set-
tings, respectively; the results of the two classifiers without
any feature selection (i.e., using all the features) are also pro-
vided as the baselines. We tuned the number of features and
the classification thresholds (for converting system-generated

2Note that the results we had for recursive SVM are not
exactly the same as those reported by [4], possibly because
they used a different implementation for the SVM classifier.
The SVM classifier we used is SVM-light, downloaded from
http://svmlight.joachims.org.
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Figure 3: F1 scores of baseline RR and recursive
RR on 90 categories in Reuters21578. X axis is
category frequency. Two local regression curves
(window width=30) are also plotted, showing the
smoothed F1 values.

confidence scores to binary decisions) on a per-category ba-
sis using two fold cross validation on the training data. We
also tuned the regularization parameter (shared by all the
categories) in the same manner. We did a t-test to compare
the macro-averaged F1 scores of the baseline RR and the
recursive RR, and found that the latter was significantly
better than the former with a p-value of 0.0372. On the
other hand , we did not find the recursion with SVM im-
proving the average performance over the case of using the
baseline SVM on this dataset.

One thing to be noticed is that the F1 scores of the base-
line RR and SVM in those figures are slightly different from
those reported before on the same benchmark. The rea-
son is that when we use k-fold cross-validation to tune the
SCUT thresholds, we split the training documents into k
folders with equal size for each category, while [8] split train-
ing documents into k folders randomly(not necessarily with
equal size). Nevertheless, the scores represented here are
very close to the best results published for RR and SVM
on the Reuters-21578 corpus [8], making them valid as the
baselines for comparison.

Figure 3 compare the macro- and micro-averaged perfor-
mance curves of RR and SVM in both the recursive and
non-recursive settings, with respect to a varying number of
features. Notice that when we produce results in figure 3, we
force all the categories to have the same number of features
in each point so that we can plot a single feature selection
curve for all 90 categories. This is why the results in figure
3 are not as good as the results in figure 2, where we tune
the number of features per category.

From the two figures, we can see that when using all the
features, RR and SVM had a performance very close to each
other. However, when using less features, recursive RR out-
performed recursive SVM constantly, for the entire range of
the x-axis, and in both macro- and micro-averaged F1 scores.
This is a surprising observation that was not reported before
on this benchmark dataset; we will discuss the implications
further in Sections 3 and 4.

In the non-recursive settings, RR is better than SVM
in macro-averaged F1 (which is dominated by the results
on rare categories). When comparing their performance in
micro-averaged F1 (which is dominated by the results on



common categories), which one is better is not so clear, de-
pending on the ranges in the x-axis.

Figure 3 compares the performance of recursive RR with
the baseline RR on individual categories. The x-axis cor-
responds to categories (90) sorted by the training-set fre-
quency; the y-axis corresponds to the magnitude of the F1
measure. We plot both the F1 values on individual cate-
gories, and the interpolated and smoothed curves for the
average performance. An interesting observation is that re-
cursive RR mainly improves the performance on rare cate-
gories. In fact, the average of the F1 values was improved
from 0.379 to 0.447 on the 30 most rare categories (whose
training-set frequencies are less than ten) when using recur-
sive RR instead of the baseline RR on this corpus.

3. CORRELATION AMONG SELECTED FEA-
TURES

To visualize the differences among the three classifiers in
selecting features, we show the correlation matrix for the
top 32 features selected by each classifier on the AMLALL
dataset (in figure 4). The correlation matrices constructed
from Reuster21578 also show similar patterns.

In each matrix, the features are sorted according to the or-
der (dependent on the classifier) of features being eliminated
in the recursive process. The (i, j) element of the matrix is
the absolute value of the correlation coefficient between the
ith feature vector and the jth feature vector; those feature
vectors come from the training data, i.e., the row vectors
in the DNA microarray for the training examples define the
gene vectors. The color intensity in those graphs reflects the
magnitude of gene-gene correlation coefficients: the brighter
the color, the stronger the correlation for either positively
or negatively correlated genes.
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Figure 4: The correlation matrix of three different
classifiers (non-recursive) on ALLAML dataset

There are two things from these graphs which we should
notice. First, we can easily see a major difference between
recursive Rocchio and recursive ridge regression (RR): the
former has more bright pixels in the upper-left corner of its
matrix, while the latter has more evenly distributed bright
pixels. This means that recursive Rocchio tends to reserve
correlated features among its choices during the feature elim-
ination process, and that RR tends to reserve non-correlated
features during the process. This observation gives an in-

tuitive explanation for the superior performance of RR in
figure 1. That is, the fewer redundant features a small sub-
set includes, the more information it would offer for accurate
prediction. From these graphs we can also see that SVM is
worse than RR but better than Rocchio, with respect to
their preference in choosing non-redundant features over re-
dundant ones.

Second, if we compare the recursive version and non-
recursive version of these three classifiers, we can see from
figure 4 that in recursive version, the bright pixels tend
to evenly distribute , which means that the recursive pro-
cess will increase the tendency of the classifiers to choose
non-redundant features over redundant ones. In fact, this is
the reason why recursive feature selection is often preferred
than the non-recursive version. Figure 1 compares the per-
formance curves of RR and SVM in the recursive setting
and the non-recursive setting on AMLALL dataset. Clearly,
the recursive process helped to improve the performance for
both RR and SVM, particularly when the size of the fea-
ture subset is small. Rocchio is the only exception, whose
recursive version and non-recursive version are exactly the
same(which we will explain later).

Generally speaking, for the recursive feature selection to
succeed, eliminated features at certain point in the pro-
cess must have some influence on the re-adjusted weights
of the remaining features, and that the influence, desir-
ably, should penalize redundant features and promote non-
redundant ones. The influence depends on the choice of the
classifier: some are better than others in this aspect. In the
next section, we analyze Rocchio, ridge regression and SVM
in detail, exploring why they have different influences in the
recursive feature selection process.

4. LOSS FUNCTION ANALYSIS
Rocchio-style classifiers are commonly used for their sim-

plicity, efficiency and reasonable performance [7]. A proto-

type vector is constructed for each class in the form ~β =
~u− b~v where ~u and ~v are the centroids of positive and neg-
ative training examples respectively, and b is the weight of
the negative centroid relative to the positive centroid. By
centroid we mean the vector average of training examples.

The weight of the pth feature can be computed as

βp =
1

n+

∑

yi=1

yixip +
b

n−

∑

yi=−1

yixip.

Obviously, the weight of each feature only depends on the
training examples, and remains constant during the recur-
sive process. In other words, feature weights and their ranks
relative to each other are not influenced by the iterative fea-
ture elimination process, thus the recursive and non-recursive
settings do not make any difference for Rocchio, as long as
the size of the feature subset is fixed.

Term weights in ridge regression are determined by the
minimization of its loss function, defined as:

LRR =
n∑

i=1

(1− yi〈~β, ~xi〉)
2 + λ‖~β‖2

To minimize LRR we need to set its partial derivative with
respect to each term weight (βq) to zero, which yields:

βq =

∑n

i=1
xiqyi −

∑
p 6=q

∑n

i=1
xiqxipβp∑n

i=1
x2

iq − λ



Now focus on the second term in the numerator of the
above formula. Notice that

∑n

i=1
xiqxip is the dot-product

of two “feature vectors”, reflecting the similarity between
features p and q in the n training examples, which can
be replaced by token sim(p, q), and that

∑n

i=1
xiqxipβp =

sim(p, q)βp reflects how much the correlation and the weight
of feature p jointly deduct the weight of feature q. To be
clearer, we can write the above formula as

βq =

∑n

i=1
xiqyi −

∑
p 6=q

sim(p, q)βp∑n

i=1
x2

iq − λ

Clearly, without the second term in the numerator of the
formula for βq, ridge regression is very similar to Rocchio;
with the second term, however, the elimination of features
during the recursive process has the effect of boosting the re-
maining features that are correlated to the eliminated ones.
In other words, the iterative process has the effect of boost-
ing the weights for relatively non-redundant features in the
remaining set.

Although SVM has been widely used, not much work has
been reported for explicit analysis of how SVM penalizes
redundant features. In this section, we will show that SVM
may or may not penalize redundant features. The extent of
penalization depends on the specific distribution of support
vectors.

The loss function of SVM has the form:

Lc =
n∑

i=1

(1− yi〈~β, ~xi〉)+ + λ‖~β‖2

It appears to be similar to the loss function of ridge regres-
sion except that the first term on the right hand side. This
non-differentiable term gives SVM a special property: only a
small portion of training examples (which are called support
vectors) are really used to train the classification boundary
and calculate coefficients for features. Most other training
examples which are non-support vectors would not be used
at all. Although this strategy leads to a sparse solution
in the example space and has several advantages in classi-
fication tasks, it is not always a good choice in a feature
selection task. We know support vectors is often a small
portion of training examples and contain all the informa-
tion about the classification boundary in SVM framework.
However, this does not mean they also contain all the infor-
mation about the redundancy relationship among features.
The non-support vectors may also contain useful informa-
tion reflecting the redundancy relationship among features
and this part of information would be lost since non-support
vectors are not used in SVM.

5. CONCLUSIONS
In this paper, we addressed a key question for wrapper-

style feature selection: what property of a classifier would
lead to the success of recursive feature elimination? By an-
alyzing three different classifiers, we reached the following
conclusions. The ability of a classifier for penalizing cor-
related features and promoting independent features in the
recursive process has a strong influence on its success. Ridge
regression, having an explicit penalty of correlated features
in its loss function minimization, is a good choice for re-
cursive feature selection. Our experimental results strongly
support this point. SVM is not as effective as ridge regres-
sion in terms of finding non-redundant features because it

ignores non-support vectors that often contain important
information about correlated features. Rocchio, with a con-
stant feature weighting (or ranking) scheme, makes a re-
cursive process not effective, i.e., not different from using a
non-recursive approach. Correlation matrices with features
sorted in the order of elimination during the recursive pro-
cess are useful for visualizing the strengths/weaknesses of
classifiers in finding non-redundant features.
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