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Introduction

Informally, a Pseudorandom function family 
(PRF) is a collection of functions which are 
indistinguishable from random functions.
PRFs are enormously useful for 
cryptography.  But they are also useful for 
several algorithmic applications.
We’ll show two equivalent characterizations 
of PRFs, and give a construction of a PRF 
from a secure PRG.  (Thus we will have that 
if OWFs exist, then PRFs exist)

Notations

A collection of functions is a set {ƒs}s∈{0,1}*
where each ƒs:{0,1}p(|s|) → {0,1}q(|s|), for 
polynomials  p(.), q(.).  ƒ is efficiently 
computable if there exists a PPT F such that 
F(s,x) = ƒs(x) for all s, x∈{0,1}p(|s|).
We denote by Fp,q the set of all functions from 
{0,1}p → {0,1}q.
Given a PRG G: {0,1}k → {0,1}2k we define 
G0, G1 : {0,1}k→{0,1}k so that G(x) = 
G0(x),G1(x).

PRFs: Statistical Test formulation

An efficiently computable collection ƒs is 
statistical-test pseudorandom if for every 
probabilistic polynomial time oracle TM T,

Adv(T,k) = | Pr[Tf(1k) = 1] – Pr[Tg(1k) = 1] |
is negligible, where f denotes an oracle for ƒs
for s ← Uk and g denotes an oracle drawn 
uniformly from Fp(k),q(k). 
We call Adv(T,k) the advantage of T.

PRFs: Polynomial inference formulation

Consider an experiment with t+1 stages:
First, choose s←Uk.
Stage 1: A produces a query x1.  
Stage j, 1<j<t+1: A is given xi,ƒs(xi), for 0 < i < j, 
and produces query xj≠xi.  
Stage t+1: Choose b←U1. Choose y1-b←Uq(k).  
Let yb = ƒs(xt).  A is given xi, ƒs(xi), xt,y0,y1.
We say that PPTM A Q(k)-infers ƒ if

Pr[A(ƒs(x1),…,ƒs(xt-1),y0,y1) = b] > ½ + 1/Q(k)

Equivalence

Theorem: ƒ cannot be polynomially inferred 
if and only if it is statistical-test 
pseudorandom.
Proof: both directions in the contrapositive:

(a) if ƒ can be Q(k) inferred, then there is a statistical 
test T which distinguishes between ƒS and Fp,q
with advantage 1/Q(k).

(b) if there is a statistical test T for ƒ that has 
advantage 1/Q(k) and makes P(k) queries then ƒ
can be 2P(k)Q(k) inferred.
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Proof of (a)

Let A be the algorithm that Q-infers ƒ.  Then the 
oracle PPTM TA

O works as follows:
Stage 1:  run A to get query x1, respond with O(x1).
Stage j:  Let xj = A(O(x1)…O(xj-1)).
Stage t+1: Choose b←U1, let yb=O(xt), draw y1-b ←Uq(k).  If 
A(O(x1)…O(xt-1),y0,y1) = b, output 1, else output 0.

Notice that Pr[TA
g(1k) = 1] = ½

But since A Q(k)-infers ƒ, Pr[TA
f(1k)=1] > ½ + 1/Q(k).

So TA has advantage 1/Q(k) as claimed.

Proof of (b)

Suppose there is a statistical test T that has 
advantage 1/Q(k) against ƒ and makes P(k) 
(wlog, distinct) oracle queries.  We will 
construct an algorithm AT that 2P(k)Q(k) 
infers ƒ.

Definition of AT

Choose j∈U {0,1,…P(k)-1}
Stage i < j: Respond to T’s query qi-1 with ƒs(xi-1); run 
T until it makes query qi and return xi=qi. 
Stage j: Respond to T’s query qj-1 with ƒs(xi-1). Run T 
to get query qj.  Return xj ← Up(k).
Stage i, j<i<P(k): Return xi ← Up(|s|).
Stage P(k): Return xP(k) = qj.
Stage P(k)+1: Run T with y0 as O(qj)  Respond to 
additional queries from T with uniform bits, until T 
outputs bit b’.  Return 1-b’.

Proof that this works:

Consider doing an (k,j,ƒs) experiment: Run T, 
and on query qi, respond with:

ƒs(qi), if i < j.
yi ← Uq(k) otherwise.

Let pj(k) denote the probability that T outputs 
1 in an (k,j,ƒs) experiment.  Then p0(k) = 
Pr[Tg(1k) = 1] and pP(k)(k) = Pr[Tf(1k) = 1].
So we also have Σj(pj(k) – pj-1(k)) = Adv(T,k)

…

…

Then Pr[1-b’ = b] 
= ΣiPr[j=i]Pr[1-b’ = b | j=i] 
= 1/P(k) Σi Pr[1-b’ = b | j=i]
= 1/P(k) Σi (Pr[b=1|j=i] Pr[b’=0|y0←Uq(k)&j=i]

+ Pr[b=0|j=i] Pr[b’=1|y0=ƒs(qi)&j=i])
= 1/P(k) Σi (½ Pr[T outputs 0 in (k,i,ƒs) exp]

+½ Pr[T outputs 1 in (k,i+1,ƒs) exp])
= 1/2P(k) Σi ((1-pi(k)) + pi+1(k)) 
= ½ + 1/2P(k)Q(k), QED.

Recap

So a function family is statistical test 
pseudorandom iff it is polynomially
uninferrable.  (Proof by Hybrid method!)
From now on, we will just say that a function 
family is pseudorandom if it is statistical test 
pseudorandom.
That is, a pseudorandom function family 
(PRF) is a function family which is statistical 
test pseudorandom. 
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Constructing PRFs from PRGs

Let G:{0,1}k → {0,1}2k be a PRG.
Define ƒs: {0,1}k → {0,1}k by
ƒs(x1x2…xk) = Gxk(Gxk-1(…(Gx2(Gx1(s)))…))

Theorem: ƒs is a PRF. 
Proof: Suppose that there is a statistical test 
T that makes Q(k) queries and has Adv(T,k) 
= 1/P(k).  We will construct a distinguisher for 
G with advantage 1/kQ(k)P(k).    

Proof of Theorem…

Define a sequence of PPTs A0…Ak.
Ai: 

Let L be an associative array.
Run T, responding to queries (y1…yk):

If (y1…yi)  ∈L, let r = L(y1…yi)
Else choose r←Uk and set L(y1…yi) = r
respond with ƒr(yi+1…yk)

Return output of T.
Notice: Pr[A0 = 1] = Pr[Tf(1k) = 1], Pr[Ak = 1] = 
Pr[Tg(1k) = 1]; Ei[Ai – Ai-1] = 1/kP(k)

Proof, continued

Construct adversary AT(r1,…rQ(k))  (ri∈{0,1}2k):
AT(r1,…,rQ(k))=

Choose i∈U {0,…k-1}. Let L be as in Aj. Set j = 0. 
Run T, responding to queries (y1,…,yk):

If (y1…yi+1) ∈ L, Let r = L(y1…yi+1).
Else: increment j; 

L(y1…yi0) = Left-Half(rj);L(y1…yi1) = Right-Half(rj)
r = L(y1…yi+1)

Respond with ƒr(yi+2…yk)
Return output of T.

Properties of AT

Notice that 
Pr[AT(U2kq(k)) = 1] – Pr[AT(G(Ukq(k)))] = 
Ei[Ai-Ai-1] = 1/kP(k)

That is, if T distinguishes ƒs from Fp,q with 
advantage 1/P(k), AT distinguishes Q(k) 
samples of G(Uk) from q(k) samples of U2k
with advantage at least 1/kP(k).
But then AT can distinguish between a single 
sample of G(Uk) and U2k with advantage 
1/kQ(k)P(k), QED.

Pseudorandom permutations

A Pseudorandom Permutation family (PRP) is a 
PRF where every element ƒs is a bijection on 
{0,1}p(|s|).  (PRPs have inverses)
Typically for P: {0,1}k × {0,1}L(k) →{0,1}L(k) there is an 
efficient algorithm to compute 
PK

-1(x), given K.
A Strong Pseudorandom Permutation family (SPRP) 
is a PRP which remains pseudorandom even when 
the adversary is given access to an oracle for PK
and PK

-1.
Naor and Reingold show that given a PRF ƒs: {0,1}k

→ {0,1}k we can construct a SPRP Pƒ on {0,1}2k.

Notation, definitions

Let ΠL denote the uniform distribution on 
permutations on {0,1}L.
Define the Advantage of A against 
permutation family P on {0,1}l(k) by:
Adv(A,k) = |Pr[AP(K,.)(1k) = 1] – Pr[AΠl(k)(1k)=1]|
For any function f: {0,1}k→{0,1}k, define the 
permutation Df: {0,1}2k by Df(l,r) = (r, l⊕f(r))
Note that Df

-1 is easy to compute.
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Intuition behind construction

Let ƒ1, ƒ2 be chosen from a PRF family on 
{0,1}k.  Then P = Dƒ2◦ Dƒ1 is indistinguishable 
from a random permutation on uniformly 
chosen inputs. 
There is a distinguisher for P on chosen 
inputs:  Left-half(P(L1,R) ⊕ P(L2,R)) = L1⊕L2
whereas this holds with probability only 2-n for 
a random permutation. 
But if we can insure that the inputs to P, P-1

are unique (whp), then we get what we need.

Construction: SPRP

Let h1,h2 be chosen from a pairwise-
independent family of permutations on {0,1}2k

Let ƒ1, ƒ2 :{0,1}k→{0,1}k be chosen from a 
PRF family. 
Define the permutation P = h2

-1◦ Dƒ2◦ Dƒ1◦h1.
SPRP Lemma: If ƒ1, ƒ2 are chosen according 
to Fk,k, then P is statistically close to a 
random permutation.
SPRP Theorem: P is a SPRP.

Proof tools

Let M be a deterministic, unbounded oracle 
machine.  M makes two types of queries:

(+,x): Querying G(x) 
(-, y): Querying G-1(y)

Denote the ith query-answer pair of M by (xi,yi).
Wlog, assume M makes exactly m queries.
Denote by {(x1,y1),…,(xm,ym)} the transcript of M with 
oracle G.
Denote by CM[{(x1,y1),…,(xi-1,yj-1)}] the deterministic 
function for the ith query of M, and let 
CM[{(x1,y1)…(xm,ym)}] the output of M.

Proof tools, cont’d.

Call σ = {(x1,y1)…(xm,ym)} a possible M 
transcript if for every 1< i < m, 
CM[{(x1,y1),…,(xi-1,yi-1)}] ∈{(+,xi),(-,yi)}
Let TP be a random variable denoting the 
transcript of M with an oracle for P.
Let TΠ be a random variable denoting the 
transcript of M with an oracle chosen from 
Π2k.

More Proof Tools.

Let TR be a random variable denoting transcripts 
from a random process which responds to M’s ith
query as follows:

If the query is (+,x) and for some j < i there is a query-
answer pair (x,yj), return yj.
If the query is (-,y) and for some j < i there is a query-
answer pair (xj,y) return xj
Otherwise, return a uniformly chosen 2k-bit string.

TR might contain responses inconsistent with a 
permutation: Call a possible M-transcript σ = 
{(x1,y1),…(xm,ym)} inconsistent if for some 1 < j < i < 
m, xi=xj and yi ≠ yj or yi=yj and xi ≠ xj. 

Lemma 1

Pr[CM(TR) = 1] – Pr[CM(TΠ) = 1] ≤ m2/22k+1.
Proof:

Pr[TR = σ | TR is consistent] = Pr[TΠ=σ]  (because 
a consistent transcript is a permutation, and TR
chooses uniformly from transcripts)
So Pr[CM(TR) = 1] – Pr[CM(TΠ) = 1] ≤ Pr[TR is 
inconsistent]
Pr[TR is inconsistent] ≤
Σi,j Pr[xi=xj and yi≠yj or yi=yj and xi≠xj] =
(m(m-1)/2)2-2k ≤ m2/22k+1.
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BAD set

For a fixed h1,h2, define the set BAD(h1,h2) to 
be the set of possible and consistent M-
transcripts {(x1,y1),…,(xm,ym)} such that:

There exist i<j with h1(xi)|R = h1(xj)|R. OR
There exist i<j with h2(yi)|L = h2(yj)|L .

Lemma 2.  Fix a possible, consistent M-
transcript σ.  Then 

Prh1,h2[σ ∈ BAD(h1,h2)] < m2/2k.

Lemma 2 proof.

σ ∈ BAD(h1,h2) if there exist i < j with h1(xi)|R
= h2(xj) |R (Ri,j) or h2(yi)|L = h2(yj)|L (Li,j).
So Pr[σ ∈ BAD(h1,h2)] ≤Σi<j(Pr[Ri,j]  + Pr[Li,j])

≤Σi<j (2-k + 2-k)
<m2/2k, QED.

Key Lemma

Lemma 3: Let σ = {(x1,y1),…,(xm,ym)} be possible 
and consistent.  Then
Pr[TP = σ | σ ∉ BAD(h1,h2) ] = Pr[TR= σ].
Proof: Given σ is consistent, 

Pr[TR = σ] = 2-2km.
But suppose σ ∉ BAD(h1,h2).  Then for the ith query-
answer pair, yi = P(xi) exactly when:

h1(xi) = (Li
0,Ri

0), Li
2 = Li

0⊕ƒ1(Ri
0), 

Ri
2 = Ri

0 ⊕ƒ2(Li
2), and Li

2,Ri
2 = h2(yi).

i.e., when ƒ1(Ri
0) = Li

0⊕ Li
2, and ƒ2(Li

2) = Ri
0 ⊕ Ri

2

Lemma Proof, Cont’d.

We get yi = P(xi) when ƒ1(Ri
0) = Li

0⊕ Li
2, and 

ƒ2(Li
2) = Ri

0 ⊕ Ri
2.

But since we never have Li
2= Lj

2 or Ri
0=Rj

0

(otherwise σ is bad), these probabilities are 
independent.  And since ƒ1,ƒ2 are chosen 
randomly we get that Pr[TP = σ | σ ∉
BAD(h1,h2) ] = 2-2km, QED.

SPRP Lemma: Proof

SPRP Lemma: if ƒ1,ƒ2←Fk,k then for any 
oracle adversary M which makes at most m 
queries,
|Pr[MP(1k) = 1] – Pr[MΠ2k(1k) = 1]| ≤

m2/22k+1+m2/2k

Proof: composition of previous three lemmas.

SPRP Theorem: Proof

SPRP Theorem: If ƒ1,ƒ2←ƒs, where ƒs is a 
PRF, then P is a SPRP.
Proof:  Assume not.  Let M be an efficient 
oracle machine distinguishing P from a 
randomly chosen permutation.  Consider the 
hybrid distribution H where ƒ1←Fk,k, and 
ƒ2←ƒs.
Recall Pr[MP=1] – Pr[MΠ=1] > 1/poly(k).
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SPRP proof

Then we must have either:
(a) |Pr[MP=1] – Pr[MH=1]| > 1/poly; OR
(b) |Pr[MH=1] – Pr[MΠ=1]| > 1/poly.
This gives a statistical test against ƒs: run M, 
answering queries using P with either :

(a) a random function; or
(b) a pseudrandom function

for ƒ1,  and the function oracle for ƒ2. 
Then in either case, we distinguish ƒs with the same 
gap as M in distinguishing H from P or Π.


