

Pseudorandom functions and permutations

15-859I
Spring 2003

Introduction

- Informally, a Pseudorandom function family (PRF) is a collection of functions which are indistinguishable from random functions.
- PRFs are enormously useful for cryptography. But they are also useful for several algorithmic applications.
- We'll show two equivalent characterizations of PRFs, and give a construction of a PRF from a secure PRG. (Thus we will have that if OWFs exist, then PRFs exist)

Notations

- A collection of functions is a set $\{f_s\}_{s \in \{0,1\}^*}$ where each $f_s: \{0,1\}^{p(|s|)} \rightarrow \{0,1\}^{q(|s|)}$, for polynomials $p(\cdot), q(\cdot)$. f is efficiently computable if there exists a PPT F such that $F(s, x) = f_s(x)$ for all $s, x \in \{0,1\}^{p(|s|)}$.
- We denote by $F_{p,q}$ the set of all functions from $\{0,1\}^p \rightarrow \{0,1\}^q$.
- Given a PRG $G: \{0,1\}^k \rightarrow \{0,1\}^{2k}$ we define $G_0, G_1: \{0,1\}^k \rightarrow \{0,1\}^k$ so that $G(x) = G_0(x), G_1(x)$.

PRFs: Statistical Test formulation

An efficiently computable collection f_s is statistical-test pseudorandom if for every probabilistic polynomial time oracle TM T ,

$\text{Adv}(T, k) = |\Pr[T^f(1^k) = 1] - \Pr[T^g(1^k) = 1]|$ is negligible, where f denotes an oracle for f_s for $s \leftarrow U_k$ and g denotes an oracle drawn uniformly from $F_{p(k), q(k)}$.

We call $\text{Adv}(T, k)$ the *advantage* of T .

PRFs: Polynomial inference formulation

Consider an experiment with $t+1$ stages:

First, choose $s \leftarrow U_k$.

Stage 1: A produces a query x_1 .

Stage j , $1 < j < t+1$: A is given $x_i, f_s(x_i)$, for $0 < i < j$, and produces query $x_j \neq x_i$.

Stage $t+1$: Choose $b \leftarrow U_1$. Choose $y_{1-b} \leftarrow U_{q(k)}$. Let $y_b = f_s(x_t)$. A is given $x_i, f_s(x_i), x_t, y_0, y_1$.

We say that PPTM A $Q(k)$ -*infers* f if

$$\Pr[A(f_s(x_1), \dots, f_s(x_{t-1}), y_0, y_1) = b] > \frac{1}{2} + 1/Q(k)$$

Equivalence

- Theorem: f cannot be polynomially inferred if and only if it is statistical-test pseudorandom.
- Proof: both directions in the contrapositive:
 - (a) if f can be $Q(k)$ inferred, then there is a statistical test T which distinguishes between f_s and $F_{p,q}$ with advantage $1/Q(k)$.
 - (b) if there is a statistical test T for f that has advantage $1/Q(k)$ and makes $P(k)$ queries then f can be $2P(k)Q(k)$ inferred.

Proof of (a)

- Let A be the algorithm that Q -infers f . Then the oracle PPTM T_A^Q works as follows:
 - Stage 1: run A to get query x_1 , respond with $O(x_1)$.
 - Stage j : Let $x_j = A(O(x_1) \dots O(x_{j-1}))$.
 - Stage $t+1$: Choose $b \leftarrow U_1$, let $y_b = O(x_t)$, draw $y_{1-b} \leftarrow U_{Q(k)}$. If $A(O(x_1) \dots O(x_{t-1}), y_0, y_1) = b$, output 1, else output 0.
- Notice that $\Pr[T_A^Q(1^k) = 1] = \frac{1}{2}$
- But since A $Q(k)$ -infers f , $\Pr[T_A^f(1^k) = 1] > \frac{1}{2} + 1/Q(k)$.
- So T_A has advantage $1/Q(k)$ as claimed.

Proof of (b)

- Suppose there is a statistical test T that has advantage $1/Q(k)$ against f and makes $P(k)$ (wlog, distinct) oracle queries. We will construct an algorithm A_T that $2P(k)Q(k)$ infers f .

Definition of A_T

- Choose $j \in \cup \{0, 1, \dots, P(k)-1\}$
- Stage $i < j$: Respond to T 's query q_{i-1} with $f_s(x_{i-1})$; run T until it makes query q_i and return $x_i = q_i$.
- Stage j : Respond to T 's query q_{j-1} with $f_s(x_{j-1})$. Run T to get query q_j . Return $x_j \leftarrow U_{p(k)}$.
- Stage $i, j < P(k)$: Return $x_i \leftarrow U_{p(|S|)}$.
- Stage $P(k)$: Return $x_{P(k)} = q_j$.
- Stage $P(k)+1$: Run T with y_0 as $O(q_j)$. Respond to additional queries from T with uniform bits, until T outputs bit b' . Return $1-b'$.

Proof that this works:

- Consider doing an (k, j, f_s) experiment: Run T , and on query q_i , respond with:
 - $f_s(q_i)$, if $i < j$.
 - $y_i \leftarrow U_{Q(k)}$ otherwise.
- Let $p^i(k)$ denote the probability that T outputs 1 in an (k, j, f_s) experiment. Then $p^0(k) = \Pr[T^Q(1^k) = 1]$ and $p^{P(k)}(k) = \Pr[T^f(1^k) = 1]$.
- So we also have $\sum_i (p^i(k) - p^{i-1}(k)) = \text{Adv}(T, k)$
- ...

...

Then $\Pr[1-b' = b]$

$$\begin{aligned}
 &= \sum_i \Pr[j=i] \Pr[1-b' = b \mid j=i] \\
 &= 1/P(k) \sum_i \Pr[1-b' = b \mid j=i] \\
 &= 1/P(k) \sum_i (\Pr[b=1 \mid j=i] \Pr[b'=0 \mid y_0 \leftarrow U_{Q(k)} \& j=i] \\
 &\quad + \Pr[b=0 \mid j=i] \Pr[b'=1 \mid y_0 = f_s(q_i) \& j=i]) \\
 &= 1/P(k) \sum_i (\frac{1}{2} \Pr[T \text{ outputs 0 in } (k, i, f_s) \text{ exp}] \\
 &\quad + \frac{1}{2} \Pr[T \text{ outputs 1 in } (k, i+1, f_s) \text{ exp}]) \\
 &= 1/2P(k) \sum_i ((1-p^i(k)) + p^{i+1}(k)) \\
 &= \frac{1}{2} + 1/2P(k)Q(k), \text{ QED.}
 \end{aligned}$$

Recap

- So a function family is statistical test pseudorandom iff it is polynomially uninferrable. (Proof by Hybrid method!)
- From now on, we will just say that a function family is pseudorandom if it is statistical test pseudorandom.
- That is, a pseudorandom function family (PRF) is a function family which is statistical test pseudorandom.

Constructing PRFs from PRGs

- Let $G: \{0,1\}^k \rightarrow \{0,1\}^{2k}$ be a PRG.
- Define $f_s: \{0,1\}^k \rightarrow \{0,1\}^k$ by

$$f_s(x_1 x_2 \dots x_k) = G_{x_k}(G_{x_{k-1}}(\dots(G_{x_2}(G_{x_1}(s))\dots)))$$
- Theorem: f_s is a PRF.
- Proof: Suppose that there is a statistical test T that makes $Q(k)$ queries and has $\text{Adv}(T, k) = 1/P(k)$. We will construct a distinguisher for G with advantage $1/kQ(k)P(k)$.

Proof of Theorem...

- Define a sequence of PPTs $A_0 \dots A_k$.
- A_i :
 - Let L be an associative array.
 - Run T , responding to queries $(y_1 \dots y_k)$:
 - If $(y_1 \dots y_i) \in L$, let $r = L(y_1 \dots y_i)$
 - Else choose $r \leftarrow U_k$ and set $L(y_1 \dots y_i) = r$
 - respond with $f_r(y_{i+1} \dots y_k)$
 - Return output of T .
- Notice: $\Pr[A_0 = 1] = \Pr[T^f(1^k) = 1]$, $\Pr[A_k = 1] = \Pr[T^g(1^k) = 1]$; $E_i[A_i - A_{i-1}] = 1/kP(k)$

Proof, continued

- Construct adversary $A_T(r_1, \dots, r_{Q(k)})$ ($r_i \in \{0,1\}^{2k}$):
- $A_T(r_1, \dots, r_{Q(k)}) =$
 - Choose $i \in \{0, \dots, k-1\}$. Let L be as in A_i . Set $j = 0$.
 - Run T , responding to queries (y_1, \dots, y_k) :
 - If $(y_1 \dots y_{i+1}) \in L$, Let $r = L(y_1 \dots y_{i+1})$.
 - Else: increment j :
 - $L(y_1 \dots y_0) = \text{Left-Half}(r)$; $L(y_1 \dots y_1) = \text{Right-Half}(r)$
 - $r = L(y_1 \dots y_{i+1})$
 - Respond with $f_r(y_{i+2} \dots y_k)$
 - Return output of T .

Properties of A_T

- Notice that
 - $\Pr[A_T(U_{2kQ(k)}) = 1] - \Pr[A_T(G(U_{kQ(k)})) = 1]$
 - $E_i[A_i - A_{i-1}] = 1/kP(k)$
- That is, if T distinguishes f_s from $F_{p,q}$ with advantage $1/P(k)$, A_T distinguishes $Q(k)$ samples of $G(U_k)$ from $Q(k)$ samples of U_{2k} with advantage at least $1/kP(k)$.
- But then A_T can distinguish between a single sample of $G(U_k)$ and U_{2k} with advantage $1/kQ(k)P(k)$, QED.

Pseudorandom permutations

- A Pseudorandom Permutation family (PRP) is a PRF where every element f_s is a bijection on $\{0,1\}^{p(|s|)}$. (PRPs have inverses)
- Typically for $P: \{0,1\}^k \times \{0,1\}^{L(k)} \rightarrow \{0,1\}^{L(k)}$ there is an efficient algorithm to compute $P_K^{-1}(x)$, given K .
- A Strong Pseudorandom Permutation family (SPRP) is a PRP which remains pseudorandom even when the adversary is given access to an oracle for P_K and P_K^{-1} .
- Naor and Reingold show that given a PRF $f: \{0,1\}^k \rightarrow \{0,1\}^k$ we can construct a SPRP P_f on $\{0,1\}^{2k}$.

Notation, definitions

- Let Π_L denote the uniform distribution on permutations on $\{0,1\}^L$.
- Define the Advantage of A against permutation family P on $\{0,1\}^{L(k)}$ by:

$$\text{Adv}(A, k) = |\Pr[A^P(K, \cdot)(1^k) = 1] - \Pr[A^{\Pi_L}(1^k) = 1]|$$
- For any function $f: \{0,1\}^k \rightarrow \{0,1\}^k$, define the permutation $D_f: \{0,1\}^{2k} \rightarrow \{0,1\}^{2k}$ by $D_f(l, r) = (r, l \oplus f(r))$
- Note that D_f^{-1} is easy to compute.

Intuition behind construction

- Let f_1, f_2 be chosen from a PRF family on $\{0,1\}^k$. Then $P = D_{f_2} \circ D_{f_1}$ is indistinguishable from a random permutation *on uniformly chosen inputs*.
- There is a distinguisher for P on chosen inputs: $\text{Left-half}(P(L_1, R) \oplus P(L_2, R)) = L_1 \oplus L_2$, whereas this holds with probability only 2^{-n} for a random permutation.
- But if we can insure that the inputs to P, P^{-1} are unique (whp), then we get what we need.

Construction: SPRP

- Let h_1, h_2 be chosen from a pairwise-independent family of permutations on $\{0,1\}^{2k}$
- Let $f_1, f_2 : \{0,1\}^k \rightarrow \{0,1\}^k$ be chosen from a PRF family.
- Define the permutation $P = h_2^{-1} \circ D_{f_2} \circ D_{f_1} \circ h_1$.
- SPRP Lemma:** If f_1, f_2 are chosen according to $F_{k,k}$, then P is statistically close to a random permutation.
- SPRP Theorem:** P is a SPRP.

Proof tools

- Let M be a deterministic, unbounded oracle machine. M makes two types of queries:
 - $(+, x)$: Querying $G(x)$
 - $(-, y)$: Querying $G^{-1}(y)$
- Denote the i^{th} query-answer pair of M by (x_i, y_i) .
- Wlog, assume M makes exactly m queries.
- Denote by $\{(x_1, y_1), \dots, (x_m, y_m)\}$ the *transcript* of M with oracle G .
- Denote by $C_M[\{(x_1, y_1), \dots, (x_{i-1}, y_{i-1})\}]$ the deterministic function for the i^{th} query of M , and let $C_M[\{(x_1, y_1) \dots (x_m, y_m)\}]$ the output of M .

Proof tools, cont'd.

- Call $\sigma = \{(x_1, y_1) \dots (x_m, y_m)\}$ a *possible M transcript* if for every $1 < i < m$, $C_M[\{(x_1, y_1), \dots, (x_{i-1}, y_{i-1})\}] \in \{(+, x_i), (-, y_i)\}$
- Let T_P be a random variable denoting the transcript of M with an oracle for P .
- Let T_{Π} be a random variable denoting the transcript of M with an oracle chosen from Π_{2k} .

More Proof Tools.

- Let T_R be a random variable denoting transcripts from a random process which responds to M 's i^{th} query as follows:
 - If the query is $(+, x)$ and for some $j < i$ there is a query-answer pair (x, y_j) , return y_j .
 - If the query is $(-, y)$ and for some $j < i$ there is a query-answer pair (x_j, y) return x_j .
 - Otherwise, return a uniformly chosen $2k$ -bit string.
- T_R might contain responses inconsistent with a permutation: Call a possible M -transcript $\sigma = \{(x_1, y_1), \dots, (x_m, y_m)\}$ inconsistent if for some $1 < j < i < m$, $x_i = x_j$ and $y_i \neq y_j$ or $y_i = y_j$ and $x_i \neq x_j$.

Lemma 1

- $\Pr[C_M(T_R) = 1] - \Pr[C_M(T_{\Pi}) = 1] \leq m^2/2^{2k+1}$.
- Proof:**
 - $\Pr[T_R = \sigma \mid T_R \text{ is consistent}] = \Pr[T_{\Pi} = \sigma]$ (because a consistent transcript is a permutation, and T_R chooses uniformly from transcripts)
 - So $\Pr[C_M(T_R) = 1] - \Pr[C_M(T_{\Pi}) = 1] \leq \Pr[T_R \text{ is inconsistent}]$
 - $\Pr[T_R \text{ is inconsistent}] \leq \sum_{i,j} \Pr[x_i = x_j \text{ and } y_i \neq y_j \text{ or } y_i = y_j \text{ and } x_i \neq x_j] = (m(m-1)/2)2^{-2k} \leq m^2/2^{2k+1}$.

BAD set

- For a fixed h_1, h_2 , define the set $BAD(h_1, h_2)$ to be the set of possible and consistent M-transcripts $\{(x_1, y_1), \dots, (x_m, y_m)\}$ such that:
 - There exist $i < j$ with $h_1(x_i)|_R = h_1(x_j)|_R$. OR
 - There exist $i < j$ with $h_2(y_i)|_L = h_2(y_j)|_L$.
- Lemma 2. Fix a possible, consistent M-transcript σ . Then

$$\Pr_{h_1, h_2}[\sigma \in BAD(h_1, h_2)] < m^2/2^k.$$

Lemma 2 proof.

- $\sigma \in BAD(h_1, h_2)$ if there exist $i < j$ with $h_1(x_i)|_R = h_2(x_j)|_R$ (or $h_2(y_i)|_L = h_1(y_j)|_L$).
- So $\Pr[\sigma \in BAD(h_1, h_2)] \leq \sum_{i < j} (\Pr[R_{i,j}] + \Pr[L_{i,j}])$

$$\leq \sum_{i < j} (2^k + 2^k) < m^2/2^k, \text{ QED.}$$

Key Lemma

- Lemma 3: Let $\sigma = \{(x_1, y_1), \dots, (x_m, y_m)\}$ be possible and consistent. Then $\Pr[T_P = \sigma | \sigma \notin BAD(h_1, h_2)] = \Pr[T_R = \sigma]$.
- Proof: Given σ is consistent,

$$\Pr[T_R = \sigma] = 2^{-2km}.$$
 But suppose $\sigma \notin BAD(h_1, h_2)$. Then for the i^{th} query-answer pair, $y_i = P(x_i)$ exactly when:

$$h_1(x_i) = (L_i^0, R_i^0), L_i^2 = L_i^0 \oplus f_1(R_i^0),$$

$$R_i^2 = R_i^0 \oplus f_2(L_i^2), \text{ and } L_i^2, R_i^2 = h_2(y_i).$$
 i.e., when $f_1(R_i^0) = L_i^0 \oplus L_i^2$, and $f_2(L_i^2) = R_i^0 \oplus R_i^2$

Lemma Proof, Cont'd.

We get $y_i = P(x_i)$ when $f_1(R_i^0) = L_i^0 \oplus L_i^2$, and $f_2(L_i^2) = R_i^0 \oplus R_i^2$.
 But since we never have $L_i^2 = L_j^2$ or $R_i^0 = R_j^0$ (otherwise σ is bad), these probabilities are independent. And since f_1, f_2 are chosen randomly we get that $\Pr[T_P = \sigma | \sigma \notin BAD(h_1, h_2)] = 2^{-2km}$, QED.

SPRP Lemma: Proof

- SPRP Lemma: if $f_1, f_2 \leftarrow F_{k,k}$ then for any oracle adversary M which makes at most m queries,

$$|\Pr[M^P(1^k) = 1] - \Pr[M^{\Pi_{2k}}(1^k) = 1]| \leq m^2/2^{2k+1} + m^2/2^k$$
- Proof: composition of previous three lemmas.

SPRP Theorem: Proof

- SPRP Theorem: If $f_1, f_2 \leftarrow f_s$, where f_s is a PRF, then P is a SPRP.
- Proof: Assume not. Let M be an efficient oracle machine distinguishing P from a randomly chosen permutation. Consider the hybrid distribution H where $f_1 \leftarrow F_{k,k}$, and $f_2 \leftarrow f_s$.
 Recall $\Pr[M^P=1] - \Pr[M^{\Pi}=1] > 1/\text{poly}(k)$.

SPRP proof

- Then we must have either:
 - $|\Pr[M^F=1] - \Pr[M^H=1]| > 1/\text{poly}$; OR
 - $|\Pr[M^H=1] - \Pr[M^\Pi=1]| > 1/\text{poly}$.
- This gives a statistical test against f_s ; run M , answering queries using P with either :
 - (a) a random function; or
 - (b) a pseudorandom functionfor f_1 , and the function oracle for f_2 .
- Then in either case, we distinguish f_s with the same gap as M in distinguishing H from P or Π .