Pseudorandom generators from general one-way functions III

Review:
- Our goal is to construct a PRG from any OWF.
- A False Entropy Generator is a function $f: \{0,1\}^n \rightarrow \{0,1\}^m$ that has $f(U_n)$ computationally indistinguishable from some ptc ensemble $D_n: \{0,1\}^m$ where $H(D) > H(f(U))$.
- Using universal hash functions and product distributions, we can construct a PRG from a F.E.G. (4 pages from [HILL99]).

Review: f' construction
- Let $f: \{0,1\}^n \rightarrow \{0,1\}^m$ be a one-way function, and let $h: \{0,1\}^p \times \{0,1\}^n \rightarrow \{0,1\}^{n \log 2n}$ be a universal hash function. Define $f'(x,i,r) = (f(x), hr(x)|1…i+ \log 2n, i, r)$.
- Let $Y \leftarrow U_n$, then when $I < D_\tilde{f}(f(X))$, we will have $(f'(X,I,R), Y, X \cdot Y) \cong (f''(X,I,R), Y, U_1)$.
- To formalize, define two sets:
 - $T = \{(x,i) : x \in \{0,1\}^n, i \in \{0,\ldots, D_\tilde{f}(f(x))\}\}$
 - $T^c = \{(x,i) : x \in \{0,1\}^n, i \in \{D_\tilde{f}(f(x)) + 1, \ldots, n-1\}\}$

Review: FEG Construction
- Let $k(n) \geq 125n^3$, $I \in U \{0,\ldots,n-1\}$, and define $p_n = \Pr[I \leq D_\tilde{f}(f(x))]$.
- Define $m(n) = k(n)p_n - 2k(n)^{2/3}$.
- Let $X, Y' \leftarrow U_{k(n)p(n)}$, $I' \in U \{0,\ldots,n-1\}$, $R' \leftarrow U_{k(n)p(n)}$.
- Let $h': \{0,1\}^p \times \{0,1\}^n \rightarrow \{0,1\}^m$ be a universal hash function, and $V \leftarrow U_{p(n)}$.
- Define $g(p_n, X', Y', I', R', V) = (h'(X', Y'), f'_{k(n)}(X', I', R'), V, Y')$.

Review: Main Theorem
- False Entropy Theorem: g is a mildly nonuniform false entropy generator.
- Proof: Delayed...
- Main Theorem: If there exists a one-way function, then there exists a pseudorandom generator.
- Proof: Compose previous theorems: False Entropy Theorem, FEG \rightarrow (mildly nonuniform) PEG theorem, PEG \rightarrow PRG theorem, mildly nonuniform PRG \rightarrow PRG theorem.
- We're done! Oh wait, that pesky False entropy theorem...

Review: False Entropy Theorem
- Proof: Consider the distributions:
 - $D = g(p_n, X, Y, I, R, V)$ and $E = (Z, f'_{k(n)}(X, I, R'), V, Y')$.
- Lemma 1: $H(E) \geq H(D) + 10n^2$.
- Lemma 2: $D \equiv E$.
- Thus, g is a false entropy generator given p_n. We will show in the proof of lemma 2 that it is OK to use a value p with $p_n \leq p \leq p_n^{1/n}$. Therefore we only need log n bits of advice. So g is a mildly nonuniform false entropy generator. QED
Lemma 2: \(D \cong E \)

- Recall:
 \[
 D = h_v(X' \cdot Y'), f^{(k(n))}(X', I', R'), V, Y'
 \]
 \[
 E = (Z, f^{(k(n))}(X', I', R'), V, Y')
 \]
- Another way to describe D:
 - For each \(j \), choose \(C_j = 1 \) with probability \(p_n \)
 - When \(C_j = 1 \), choose \((X_j', I_j') \in T\), else \((X_j', I_j') \in T^C\)
- Define the distribution \(D' \):
 - Same as \(D \), except when \(C_j = 1 \) replace \(j \)th input to \(h_v(X'_j \cdot Y'_j) \) by \(B_j \leftarrow U_1 \).

Lemma 2 intuition...

- Notice that by the Leftover Hash Lemma, \(L_1(D', E) \leq 2^{-k(n)/5} = 2^{-\delta n} \), so \(D' \cong E \).
- Intuitively, in \(D' \) we just replace \(X'_j \cdot Y'_j \) by \(B_j \) when \((X'_j, I'_j) \in T\); and we have already shown that in this case \(X'_j \cdot Y'_j \cong B_j \). So we would expect \(D \cong D' \), giving \(D \cong E \).
- The hybrid argument fails, however, because we can’t efficiently sample from \(D' \).

Hybrid argument for \(D \cong D' \)

- Suppose we have \(A \) such that
 \[
 \Pr[A(D) = 1] - \Pr[A(D') = 1] = \delta(n)
 \]
- Define the hybrid distributions \(F^{(i)} \) so that \(F^{(i)} \) is distributed identically to \(D' \) up to position \(j \) and \(D \) afterwards, i.e., \(F^{(i)} \) is chosen like \(D \) except that for isj, when \(C_j = 1 \) we replace \(X'_j \cdot Y'_j \) by \(B_j \). Thus \(F^{(i)} = D \), \(F^{(k(n))} = D' \).
- If \(j \in \{1, \ldots, k(n)\} \), then we have that
 \[
 E_{j}[(A(F^{(j-1)}) - A(F^{(j)}))] = \delta(n)/k(n)
 \]
- How to fix our Hybrid argument?
 - Notice that when \(C_j = 0 \), \(A \) has no advantage, yet when \(C_j = 1 \) \(A \) has significant advantage.
 - So \(A \) “knows” when an element \(W \in T \), given \(f'(W, R) \).
 - We will take advantage of this to build hybrid distributions which are “close” to \(F^{(i)} \) allowing us to get by the problem.
 - This is the last 4 technical pages of [HILL99]

New Hybrids...

- We will define two sets of hybrid distributions, \(E^{(0)}, D^{(0)} \) for \(j \in \{0, \ldots, k(n)\} \).
- We will have \(E^{(0)} = E, D^{(0)} = D \), and \(E^{(k(n))} = D^{(k(n))} \).
- Define \(\delta^{(0)} = \Pr[A(D^{(0)}) = 1] - \Pr[A(E^{(0)}) = 1] \).
- Then \(\delta^{(0)} = \delta(n) \) and \(\delta^{(k(n))} = 0 \).
- We will also have: \(E_{j}[(\delta^{(j-1)} - \delta^{(j)})] \geq \delta(n)/k(n) \).
- This will allow us to (indirectly) invert \(f' \) later.

Definition of \(D^{(0)}, E^{(0)} \)

- Define parameters:
 - \(\rho = \delta(n)/(16k(n)) \)
 - \(\tau = 64n^2/\rho \)
- Define: \(D^{(0)} = D; E^{(0)} = E; B \leftarrow U_{k(n)} \).
- Suppose \(D^{(j-1)} \) is defined. Then to sample from \(D^{(j)} \):
 - Choose \(C_j \in \{0,1\} \) so that \(\Pr[C_j = 1] = p_n \).
 - Sample \(x_m \leftarrow U_n, l_m \in \{1, \ldots, n\} \), let \(w_m = (x_m, l_m) \), \(1 \leq m \leq \tau \).
D(j-1)(c_j,w_m) = \Pr[A(D(j-1)(c_j,w_m)) = 1] - \Pr[A(E(j-1)(w_m)) = 1].

Define \(\delta(j-1)(c_j,w_m)\) to be the same as \(\delta(j-1)\) except that \((X_j',I_j')\) is fixed to \(w_m\) and the \(j\)th input bit of \(h'\) is set to \(x_m\) if \(c_j=0\) and \(B_j\) otherwise.

Define \(\delta^\oplus(j)(c_j,w_m)\) to be \(\delta(j)(c_j,w_m)\) except \((X_j',I_j')\) is fixed to \(w_m\).

Using our hybrids

Define \(D(j)(w,r,b,y)\) to be \(D(j)\) with \(f'(X_{j+1}',Y_{j+1}',R_{j+1}')\) replaced by \(f'(w,r)\), the \(j+1\) input bit to \(h'\) replaced by \(b\), and \(Y_{j+1}'\) replaced by \(y\); Same for \(E(j)(w,r,y)\).

Define \(\epsilon(j) = E\left[\delta(j)(0,W) - \delta(j)(1,W)\right]\)

Define \(\epsilon^\oplus(j) = E\left[\delta^\oplus(0,W) - \delta^\oplus(1,W)\right]\)

So we just need to show that \(E[\epsilon(j)] \geq \delta(n)/8k(n)\)

Proof, con’t...

Notice that:

- \(E[d(j,w,R,x\cdot Y,Y) - e(j,w,R,Y)] = \delta^\oplus(0,w)\)
- \(E[d(j,w,R,B,Y) - e(j,w,R,Y)] = \delta^\oplus(1,w)\)

Define \(g(j) = E[\delta^\oplus(0,W) - \delta^\oplus(1,W)]\)

Then the advantage of \(M^A\) is:

\(E[M^A(f'(W,R),X\cdot Y,Y) - E[M^A(f'(W,R),B,Y)] = E[g(j)] - E[g(j)]/2 = E[\epsilon(j)]/2\)

So we just need to show that \(E[\epsilon(j)] \geq \delta(n)/8k(n)\)
Alternatively…

- Alternatively we can show that
 \(E[\delta(\epsilon^0)] \geq 2\rho k(n) \)
- We will prove this by showing that:
 a) \(E[\delta(k(n))] \leq 2^{-n+1} \)
 b) \(E[\delta(j) - \delta(j+1)] \leq \epsilon(j) + 4\rho \)
- This will give us:
 \[8\rho k(n) = \delta(n)/2 < \delta(n) - E[\delta(k(n))] = \sum_j E[\delta(j) - \delta(j+1)] \leq 4k(n)\rho + E[\sum_j \epsilon(j)]. \]

Proof of (a) \(E[\delta(k(n))] \leq 2^{-n+1} \)

- Notice that \(E[k(n)] \) and \(D[k(n)] \) are identical except that the first \(m(n) \) bits of \(E[k(n)] \) are Z and the first \(m(n) \) bits of \(D[k(n)] \) are the output of \(h' \).
- But \(H_n(input to h') \) rest of \(D[k(n)] \) \(\geq \sum_c \epsilon_c \).
- A Chernoff bound gives us that with probability at least \(1-2^{-n} \),
 \[\sum_j \epsilon(j) \geq k(n)p_j - k(n)2^3 = m(n) + k(n)2^3 \]
- When this is true, we get from the Leftover hash lemma that
 \[L_1(D[k(n)],E[k(n)]) \leq 2^{-k(n)/2} < 2^{-n}. \]
- This gives us \(E[\delta(k(n))] \leq 2^{-n+1}. \)

Proof of (b) \(E[\delta(j) - \delta(j+1)] \leq \epsilon(j) + 4\rho \)

- Recall that \(W \in U \). Define \(W \in U^T \).
- Then since the \(j+1 \) input to \(h' \) in \(D^0 \) is always \(X_j' \cdot Y_j' \), we have
 \[\delta(j) = p_j E[\delta(j)(0, W)] + (1-p_j) E[\delta(j)(0, W^c)] \]
- We will complete the proof by showing that
 \[E[\delta(j)] + 4\rho \geq p_j E[\delta(j)(1, W)] + (1-p_j) E[\delta(j)(1, W^c)]. \]

To show:
\[E[\delta(j)] + 4\rho \geq p_j E[\delta(j)(1, W)] + (1-p_j) E[\delta(j)(1, W^c)] \]

- A Chernoff Bound gives us that with probability at least \(1-2^{-n} \), for stage \(j \), at least \(n/\rho \) of the \(w_m \) are in \(T \) and at least \(n/\rho \) of the \(w_m \) are in \(T^c \).
- Thus with probability at least \(1-2^{-n} \), we have:
 \[\max_m \{ \delta(j)(c, w_m) \} \geq \max_m \{ E[\delta(j)(c, W)] \}, E[\delta(j)(c, W^c)] \} - \rho \]
- Also recall that with probability at least \(1-2^{-n} \), we have \(|\Delta(j)(c, w_m) - \delta(j)(c, w_m)| < \rho \)
- With probability at least \(1 - 3\cdot2^{-n} \). Thus:
 \[E[\delta(j)] = E[\delta(j)(c, W)] \]
 \[\geq \max \{ E[\delta(j)(c, W)], E[\delta(j)(c, W^c)] \} - 4\rho \]
 Giving the required inequality.

So we are done

- This completes the proof that \(A \) distinguishes \(f'(w, r), x \cdot y, y \) from \(f'(w, r), b \cdot y \).
- Thus completing the proof that a F.E. Generator can be constructed from any one-way function.
- HUGE issue: suppose we compose the various constructions to get a pseudorandom generator. Then to get inputs to \(f \) of size \(n \), the inputs to the resulting generator will have size \(n^{34} \). [HILL99]
Open problem

- Now we don’t actually require all of the intermediate product distributions… [HILL99] claim that the same techniques can chip it down to inputs of size n^4.
- Open problem: construct a pseudorandom generator from any one-way function f such that the security of f on inputs of size n is related to the security of g on inputs of size n^2 or n^3.