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Abstract. Current approaches to electronic implementations of voting protocols involve translating legal text
to source code of an imperative programming language. Because the gap between legal text and source code is
very large, it is difficult to trust that the program meets its legal specification. In response, we promote linear
logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifi-
cation of the single transferable vote protocol demonstrates that this approach leads to concise implementations
that closely correspond to their legal specification, thereby increasing trust.

1 Introduction

Determining the outcome of an election is rarely as straightforward as simply counting the votes and declaring
the candidate with the most votes to be the winner. Even for relatively simple voting protocols, such as first-past-
the-post, election laws prescribe the detailed provisions for tallying votes and computing the final result. Legal
language is precise enough to be used in courts of law to settle debates about the lawfulness of a traditional election
implementation (e.g., one that uses paper ballots), but computer-based implementations pose unique challenges.

Because election laws are not written in a formal language, they cannot be directly executed by a computer.
Instead, humans translate the legal text to source code of a programming language; typically a general-purpose
imperative language, such as Java or C, is the target.

However, this approach to computer-based implementations is problematic: it is unreasonable to expect that
the translation from the informal specification in legal text to its implementation as source code will be trusted
outright. In large part, this is because programs written in general-purpose imperative languages are comparatively
low-level and complex. To verify that such programs correctly implement their legal specifications, one must
reason about concrete data structures, exotic language features (e.g., inheritance and method overloading), and
vast third-party libraries. Certifying all of these components in full detail is extremely challenging and costly, if
not impossible—the gap between legal text and source code is simply much too large.

In response to these problems, this paper proposes to use formal logic—more specifically, linear logic—as a
foundation for electronic elections. First, logic will serve as an intermediate, formal specification language: rather
than translating the legal text to low-level source code, it will be translated to a set of logical formulas. Because
the logic allows a high level of abstraction, these formulas will be in close correspondence with the legal text
from which they were derived. This resemblance minimizes the conceptual distance between the two, thereby
increasing trustworthiness.

Second, by way of logic programming languages like the well-known Prolog [6], formal logic also provides
a means of programming voting protocols declaratively. The declarative programming paradigm has the advan-
tage of narrowing the gap between the formal specification and its implementation. In logic programming, for
instance, the specification’s logical formulas and the program’s source code are one and the same; the operational
behavior of the program is derived from a fixed proof-search strategy for the logical connectives that comprise the
specification.

Thus, the trusted components of this approach are: I) that the formal, logical specification adequately reflects
the informal, legal specification; and 2) that the logic programming engine is correctly implemented. Requiring
some degree of trust in the adequacy of the logical specification is unavoidable; however, as described above,
because the logical specification is in close correspondence with the legal text, the conceptual gap to be bridged
by adequacy is minimized and trustworthiness increases. Moreover, instead of trusting the logic programming
engine, one can choose to trust a much simpler proof checker that validates the explicit proof objects produced by
the engine; these proof objects are essentially human-readable abstract execution traces, and therefore can also be
audited.



To meet the above goals, first-order logic (and its corresponding logic programming language, Prolog) would
indeed be a technically adequate choice of logic. But, we contend that it is not an ideal choice. This paper instead
advocates the use of linear logic [12l4], a logic in which assumptions are treated as resources that must be used
exactly once. (Sect.[2] provides a brief introduction to linear logic and contrasts it with first-order logic.)

To illustrate the benefits of linear logic as a foundation for electronic elections, this paper presents full linear
logical specifications of two voting protocols: single-winner first-past-the-post (Sect. [3) and proportional repre-
sentation through the single transferable vote (Sect. [5). Both protocols are widely used in practice: for example,
first-past-the-post (also known as winner-take-all) for national elections in the United States and single transferable
vote for parliamentary elections in Ireland, Malta, and Australia. More importantly, these protocols are valuable
benchmarks because they represent two extremes of protocol complexity. That elegant characterizations of two
such diverse protocols are possible in linear logic speaks to the logic’s robustness as a specification language.

Linear logical specifications of these protocols can be transliterated, in a fully syntactic way, to source code
of linear logic programming languages, such as LolliMon [13] and Celf [14]. To provide intuition about the
operational behavior of specifications, Sect. [ of this paper sketches a typical Celf execution of the single-winner
first-past-the-post protocol. The transliterations of both protocols to Celf syntax are available at|http://www.
itu.dk/~carsten/files/voteid2011.tgz, if the reader wishes to experiment further.

Finally, it is also important to clarify what this paper does not set out to accomplish. First, this paper concen-
trates on verified elections wherein an a priori static analysis verifies that the election software meets its specifica-
tion. This is in contrast with voter-verifiable elections, which use end-to-end techniques, such as Prét a Voter [3]],
whereby voters can convince themselves that the final tally is correct. In general, we believe that the two ap-
proaches are complementary: even with end-to-end techniques for detecting anomalies, one should still strive to
minimize the occurrence of such costly errors beforehand by running verified software.

Second, beyond operational correctness, voters expect voting protocols to possess security properties such as
privacy and coercion-resistance. Although we contend that linear logical protocol specifications will be readily
amenable to reasoning about such meta-theoretic properties, we leave this to future work.

Related Work. In the past, there have been some attempts to prove the implementation of an electronic vote-
tallying algorithm mechanically correct. Using the applied m-calculus, Delaune, Kremer, and Ryan [8] modeled a
simple voting protocol and proved its fairness, eligibility, privacy, receipt-freeness, and coercion-resistance with
Blanchet’s ProVerif tool. Their work differs from ours in that they concentrate on the security of the protocol
whereas we are interested in the auditable correctness of implementations. Perhaps most closely related is the
work by Cochran and Kiniry on specifying STV in JML and ESC/Java [7]. Unfortunately, JML and ESC/Java
are logically unsound. Program verification must be supplemented by testing to guarantee a reasonable level of
program correctness. In contrast, our logical approach to implementing STV guarantees correctness automatically,
thereby rendering testing superfluous. Aside from implementation concerns, the literature also contains proposals
to improve the security of the STV voting protocol using cryptography [2]. Those ideas are largely orthogonal to
the ambitions of this paper.

2 A Brief Introduction to Linear Logid

Traditional first-order logic is concerned solely with truth. Being an abstract idea, truth is inherently free. Con-
sequently, in traditional logic, each logical assumption may be used as many or as few times (including none) as
desired—it has no cost.

On the other hand, linear logic admits that, unlike truth, not everything is free. It instead concerns itself with
consumable, valuable resources. Because resources are consumable, they may not be freely duplicated and may
be used at most once; because resources are also valuable, they may not be freely disposed and must be used at
least once. To reflect this, linear logic represents resources as logical assumptions that must be used exactly once.
We term this requirement the resource discipline. With the resource discipline, linear logic is able to express—
more elegantly and concisely than can traditional first-order logic—operations that must occur only once. Because
voting protocols, in particular, rely significantly on the one-occurrence idiom (e.g., registering each voter only once
or counting each ballot only once), the elegance is crucial to minimizing the conceptual gap between the informal,
legal specification and the formal, logical specification.

3We encourage the reader who is interested in a more complete introduction to linear logic to refer to Philip Wadler’s
excellent tutorial [15].
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2.1 Connectives of Linear Logic

Full linear logic contains a rich set of connectives for building formulas. To assign a logic programming interpre-
tation, restrictions must be placed on the ways in which these connectives fit together so that proof search becomes
more deterministic. Thus, in Celf [[14] and its predecessor, LolliMon [13|], the formulas of linear logic are polarized
into positive and negative classes [[1]] and a monad is used to prevent interference between the two classes [16].
For the examples in this paper, only the following fragment of polarized monadic linear logic is needed:

Negative Formulas A~, B~ ©:= P~ |Va:1. A~ | AT — {B*}
Positive Formulas A+, BT := AT @ BT |1 |14~ | A~

The fragment includes atomic formulas P, universal quantification Va:7. A~, linear implication At — {B*},
simultaneous conjunction A™ ® BT and its algebraic unit 1, the unrestricted modality ! A~, and an inclusion, A~,
of negative formulas as positive formulas.

To present the meanings of these connectives, we will now develop a specification of voter check-in at a
polling place. Prior to election day, each voter receives a voting authorization card in the mail. To check in at her
designated polling place on election day, the voter exchanges her voting authorization card for a blank ballot form.
Because each voter receives only one authorization card, the card thus helps prevent ballot stuffing.

In traditional logic, one might try to specify this check-in process by taking as an axiom the formula

voting-auth-card — blank-ballot

if a voter has a voting authorization card, then she may have a blank ballot form. However, this specification
would allow proofs of such nonsense as voting-auth-card — blank-ballot N\ voting-auth-card: if a voter has a
voting authorization card, she can receive a blank ballot and keep her authorization card. By iterating this proof,
one can show that, under this specification, ballot stuffing is possible: voting-auth-card — blank-ballot N\ - - - N\
blank-ballot N\ voting-auth-card. Therefore, this specification of the check-in procedure is clearly unsound.

Linear Implication, —. The problem is one of expressivity—traditional implication does not express that the
check-in process consumes the voter’s authorization card. But, as a logic of resources, linear logic provides just
the right expressive power. It includes the linear implication formula AT — {B™}, which, like the traditional
implication, is a procedure for producing resource BT if given A™; unlike the traditional implication, however,
this procedure consumes resource A™ as part of the production

Thus, a sound specification of voter check-in is given by taking as an axiom the linear logical formula

voting-auth-card — {blank-ballot} :

the check-in process consumes the voter’s authorization card and gives her a blank ballot in exchange.

Simultaneous Conjunction, ®, and Its Unit, 1. Now suppose that voters are also required to present a photo ID
during check-in. The specification will have the same basic structure: “a voting authorization card and a photo ID”
—o {blank-ballot}. But how can we express the “a voting authorization card and a photo ID” resource as a formula
of linear logic?
Fortunately, linear logic provides a simultaneous conjunction, AT ® B™ (read ‘both resources A™ and B1).
Thus, a specification of the revised check-in process can be given by the formula

voting-auth-card ® photo-ID —o {blank-ballot} :

when a voter gives a voting authorization card and a photo ID, she receives a blank ballot form in exchange. (Note
that ® binds more tightly than —o.)

Linear logic also includes an algebraic unit for simultaneous conjunction, 1 (read ‘nothing’), which represents
the empty collection of resources. The proposition 1 is primarily used in the idiom AT —o {1}, which consumes
resource AT and produces nothing in return.

“The braces around B denote a monad that is not found in conventional presentations of linear logic. It is used to give a
committed-choice operational semantics for the logic programming interpretation [[13]] that is important to our work.



Unrestricted Modality, !. The prior specification of the check-in process,
voting-auth-card ® photo-ID —o {blank-ballot} |

is not fully satisfactory, however. Because photo-ID is treated as a resource and linear implication (which consumes
the resources it is given) is used, this axiom specifies a check-in process in which voters must relinquish their photo
IDs to vote! This is not the intent; voters should always retain their photo IDs. And so, at first glance, photo-ID
does not appear to fit into the resource discipline of linear logic.

However, the unrestricted modality, ! A, of linear logic provides a way out. The proposition ! A~ is a version
of A~ that is not subject to the resource discipline—an assumption ! A~ can be used an unlimited number of times
(including none). Alternatively, one may think of ! A~ as stating that A~ is a fact that will remain true regardless
of how the system evolves.

Using the ! modality, the revised specification can therefore be given by

voting-auth-card ® \photo-1D —o {blank-ballot} :

when a voter gives an authorization card and shows a photo ID, she receives a blank ballot form. (Note that ! binds
more tightly than ® and —o.)

Universal Quantification, Vx:7. Strictly speaking, the current specification of voter check-in does not capture
the requirement that the name on the authorization card must match the name on the photo ID.

Using universal quantification, this problem can be resolved. In linear logic, multi-sorted universal quantifica-
tion, Vz:7. A~ , behaves just as in traditional logic. In particular, the members of the domain of quantification are
not subject to a resource discipline. Thus, the specification may be revised to

Vu:voter. (voting-auth-card(v) ® \photo-ID(v) —o {blank-ballot})

when a voter v gives her authorization card and shows her photo ID, she receives a blank ballot form.

3 A Linear Logical Specification of First-Past-the-Post

To demonstrate how linear logic can be used to specify voting systems, we now present a concise, elegant spec-
ification of single-winner first-past-the-post voting (SW-FPTP). In SW-FPTP voting, each voter casts a ballot on
which she has selected a single candidate. After all ballots have been counted, the candidate with greatest vote
total is determined; this candidate is declared the winner. Because SW-FPTP voting is relatively simple, it makes
an ideal initial example.

For our specification of SW-FPTP, we must introduce several predicates, which are summarized in Table
The uncounted-ballot, hopeful, defeated, and elected predicates are used to characterize the ballot box and the
candidates’ electoral statuses, and the count-ballots and determine-max predicates indicate progress through the
algorithm’s two phases. We also assume the existence of the usual ordering predicates on natural numbers, such
as |(N > N').

SW-FPTP voting is specified by the collection of linear logical axioms shown in Fig. [T] (For conciseness,
we follow the standard convention that universal quantification is implicit for all variables written in upper case.)
The count/run and count/done axioms specify how the ballot counting phase of SW-FPTP works, whereas
max/run and max/done characterize a random tournament for finding the candidate who has the greatest vote
total. Although it would be straightforward to add tie-breaking, for simplicity of presentation we will assume that
no ties occur.

3.1 Counting Ballots with count/run and count/done
An intuitive reading of the axioms used to specify SW-FPTP ballot counting is:

count/run: ‘If we are in the process of counting ballots (count-ballots(U, H)) and there is an uncounted ballot for
some candidate C' (uncounted-ballot(C')) and C’s vote count is currently N (hopeful(C, N)), then C’s vote
count is updated to N+1 (hopeful(C, N+1)) and we continue counting ballots (count-ballots(U—1, H)).’

count/done: ‘If we are in the process of counting ballots and no uncounted ballots remain (count-ballots(0, H)),
then we have finished counting ballots and should now begin determining which candidate has the greatest
vote total (determine-max(H)).

There are several key observations to be made.



Table 1: Descriptions of predicates used in the SW-FPTP specification.

Predicate Meaning

uncounted-ballot(C))  An uncounted ballot for candidate C.

hopeful(C, N) Candidate C' is not yet defeated nor elected, and N ballots have
been counted for C' thus far.

ldefeated(C) Candidate C has been (and will remain) defeated.

lelected(C') Candidate C has been (and will remain) elected.

count-ballots(U, H)  Token to indicate that the algorithm is in the process of counting
ballots; there are U uncounted ballots remaining, and H candidates
are hopefuls.

determine-max(H)  Token to indicate that the algorithm is in the process of determining
which candidate has the greatest vote total; there are H hopeful
candidates remaining.

count/run : count-ballots(U, H) ®
uncounted-ballot(C') @ hopeful(C, N')
—o {hopeful(C, N+1) ® count-ballots(U—1, H)}

count/done : count-ballots(0, H)
—o {determine-max(H)}

max/run : determine-max(H) ®
hopeful(C, N) ® hopeful(C',N') ® (N > N’)
—o {hopeful(C, N) ® \defeated(C") ® determine-max(H—1)}

max/done : determine-max(1) @ hopeful(C, N')
—o {lelected(C)}

Fig. 1: A specification of single-winner first-past-the-post voting as a collection of linear logical axioms.

Use of Linearity. The linear resource discipline is crucial for the count/run and count/done axioms to adequately
specify SW-FPTP ballot counting.

First, the hopeful propositions that record candidates’ vote counts are treated as linear resources. That is,
they are not prefixed with the unrestricted modality, !, which would escape the resource discipline. Being linear
resources allows the vote counts to be mutable. This is fundamental to the correctness of the count/run axiom:
whenever a ballot for candidate C is counted, the record of C’s vote count (hopeful(C, N)) is consumed and is
replaced with a new, updated record (hopeful(C, N+1)). If these hopeful records were not linear resources, then
they would not be consumed; the old vote counts would persist alongside the new count, causing untold confusion.

Second, and equally crucial, uncounted-ballot(C) is treated as a linear resource. Consequently, ballots are
consumed whenever they are counted by the count/run axiom. Were ballots not linear, they would not be con-
sumed upon being counted; they would effectively remain in the ballot box, leaving open the possibility that a
ballot could be counted more than once. (Note that we need not preserve the ballot in a counted form, e.g., as in
counted-ballot(C); the candidate’s vote count is sufficient to reconstruct the ballots that were cast.)

Treating uncounted ballots as linear resources also provides a further benefit. Because linear logic demands
that resources be used at least once, the specification framework itself ensures that all ballots are eventually
counted by count/run. This is a strong guarantee that is provided to the specification for free!

Tracking the Number of Uncounted Ballots. The reader may wonder why we bother to maintain the invariant
that there are U uncounted ballots and H hopeful candidates remaining whenever count-ballots(U, H) holds. For
example, couldn’t one just use

count-ballots' ®
uncounted-ballot(C') ® hopeful(C, N)
—o {hopeful(C, N+1) ® count-ballots'}



in place of the count/run axiom?

The answer is that this invariant makes it possible to determine when there are no more ballots to count:
there are no more ballots exactly when count-ballots(0, H) holds. This forms the basis for count/done. Without
tracking this information, count/done would need to rely on extra-logical machinery, such as negation-as-failure,
to check for the absence of uncounted-ballot(C'). And, extra-logical machinery would forfeit the benefits of a
purely logical specification as discussed in Sect.

The count-ballots and determine-max predicates track the number of remaining hopefuls for similar reasons.
Doing so provides a purely logical way to determine when exactly one hopeful remains, forming the basis for
max/done, as described below.

3.2 Determining the Winner with max/run and max/done

The max/run and max/done axioms characterize a random tournament for determining which candidate has the
greatest vote total. An intuitive reading of the axioms is as follows:

max/run: ‘If we are in the process of determining who has the greatest vote total (determine-max(H)) and
there are (at least) two candidates C and C’ that remain hopefuls, with vote totals N and N’ respectively,
(hopeful(C, N) ® hopeful(C', N')) and C’s vote total is larger (!(N > N')), then C remains a hopeful can-
didate (hopeful(C, N)) and C" is defeated (!defeated(C")) and we continue determining who has the greatest
vote total (determine-max(H—1)).

max/done: ‘If we are in the process of determining who has the greatest vote total and only one candidate
remains a hopeful (determine-max(1)) and that candidate is C' (hopeful(C, N)), then C is declared the winner
(lelected(C)).

Two key points benefit from further explanation.

Use of the Unrestricted Modality, !. The unrestricted modality is used strategically at three points in the max/run
and max/done axioms.

First, the max/run axiom includes !(N > N’) to ensure that C’s vote total is larger than that of C’. As
presented in Sect. the unrestricted modality, !, denotes a fact that remains true regardless of how the system’s
state evolves. Because natural number inequalities are true independent of the voting system’s state, the use of !
here is justified.

Second and third, the max/run and max/done axioms use !defeated(C") and lelected(C'), respectively, to
reflect changes in a candidate’s status. Just as ! denotes a fact that remains true regardless of how the system’s
state evolves, these uses of ! express that, once a candidate is either defeated or elected, her status (in that election)
never changes.

No Axiom Dual to max/run. At first glance, it may be surprising that there is no axiom, dual to max/run,
for the case !(N < N). In fact, max/run itself handles this case. For a fixed pair of hopeful assumptions, the
premise hopeful(C, N) ® hopeful(C’, N') can be instantiated in two ways: one for each permutation of those two
assumptions. Because we assume that there are no ties, at least one of these will satisfy the inequality !(N > N').
And so, the single max/run axiom suffices.

4 Viewing Specifications as Linear Logic Programs

Thus far we have given a static specification of SW-FPTP as a collection of linear logical axioms. However,
viewed through the lens of linear logic programming, such specifications can also be seen as rules defining a
forward-chaining, committed-choice linear logic program [13l14]. Thus, specifications can be directly executed
using a logic programming engine. (As a demonstration, a transliteration of the SW-FPTP specification into Celf
source code is available at http://www.itu.dk/~carsten/files/voteid2011.tgzl)

Rules of such logic programs are essentially multiset rewriting rules [3]]. For instance, max/run can be seen as
the following multiset rewriting rule: choose any two hopeful terms and replace the one having a smaller vote count
with a corresponding !defeated term. Given similar interpretations of the other axioms, the SW-FPTP algorithm
can be run by issuing logic programming queries.
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Example 1. Consider the following election scenario. Three candidates, a, b, and c, are running for office. We
model this with three linear resources that initialize the candidates’ vote counts to 0: hopeful(a, 0), hopeful(b, 0),
and hopeful(c, 0). Each uncounted ballot is also modeled as a linear resource:

uncounted-ballot(a), uncounted-ballot(b), uncounted-ballot(a),
uncounted-ballot(c), uncounted-ballot(b), uncounted-ballot(a).

To initiate the execution, we add the resource count-ballots(6, 3), which is indexed by the number of uncounted
ballots and the number of hopefuls. The execution consists of two phases: in the first phase, the votes are tallied,
and in the second phase, the candidate who has the most votes is determined. At each step of the execution, one of
the SW-FPTP axioms is applied as a multiset rewriting rule, following the rules of linear logic. First, count/run
fires exactly six times, once for each ballot. Next, the rule count/done fires, and the execution commences with
the second phase. Determining the winner requires two comparisons, which means that max/run fires twice. And
finally, the max/done rule fires, announcing a as the winner and concluding the execution.

The logic programming approach therefore provides two key benefits. First, and most importantly, there is
no need to verify the executable code against a separate formal specification: the code and specification are one
and the same! (Only a linear logic proof engine needs to be trusted as an interpreter.) This benefit cannot be
overemphasized, and is a direct result of choosing linear logic as the high-level, yet fully rigorous, specification
language.

Second, the traces of rewriting steps that are produced by the logic programming engine provide an immediate
means for auditing the election. Because the traces are, in fact, proof objects in linear logic, auditing is easy: a
lightweight linear logic proof checker can formally verify the validity of a trace. In particular, costly recounts
become unnecessary because the verifiable traces record each step of vote counting.

5 Single Transferable Vote in Linear Logic

To show that linear logic is robust enough to be used for specifying complex voting systems, we now turn our
attention to single transferable vote (STV).

In STV, each voter casts a ballot that lists candidates in order of the voter’s preference. To be elected, a
candidate must reach a threshold, or quota, of votes. For the purposes of this paper, the particular choice of quota
is arbitrary. Because it is commonly used in practice, we choose the Droop quota,

. #ballots n

uota = ———

q #seats + 1 ’

however any quota could easily be substituted. Once the quota is computed, the ballots are counted and the fol-
lowing rules are repeated until all open seats are filled.

1. If a candidate has enough votes to meet the quota, she is declared elected. Any surplus votes for this candidate
are transferred.

2. If all ballots have been assigned to candidates and no candidate meets the quota, then the candidate with the
fewest votes is eliminated and her votes are transferred. If several candidates tie for the fewest votes, one is
eliminated at random.

3. When a vote is transferred, it is assigned to the hopeful candidate with the next highest preference listed on
that ballot. That is, candidates that are already elected or defeated do not receive transferred votes.

4. If, at any point, there are at least as many open seats as hopeful candidates remaining, then all remaining
hopefuls become elected.

5.1 A Linear Logical Specification of Single Transferable Vote

For our specification of STV, we must introduce several predicates, which are summarized in Table 2] The
uncounted-ballot, counted-ballot, hopeful, defeated, elected, quota, and winners predicates characterize the bal-
lot box, candidates’ statuses, and the election’s state. The defeat-all, elect-all, defeat-min, defeat—min' , transfer,
and begin predicates are used to indicate progress through the STV algorithm’s phases. Finally, minimum is an



Table 2: Descriptions of predicates used in the STV specification.

Predicate

Meaning

uncounted-ballot(C, L)

counted-ballot(C, L)
hopeful(C, N)

ldefeated(C)

lelected(C')

lquota(Q)
winners(W)

count-ballots(S, H,U)

\defeat-all
lelect-all

defeat-min(S, H, M)

defeat-min’ (S, H, M)

minimum(C, N)
transfer(C, N, S, H,U)

begin(S,H,U)

An uncounted ballot with highest preference for candidate C' and list L of
lower preferences.

A ballot counted for candidate C', with list L of lower preferences.
Candidate C' is not yet defeated nor elected, and N ballots have been
counted for C' thus far.

Candidate C' has been (and will remain) defeated.

Candidate C' has been (and will remain) elected.

Q votes are needed to be elected.

The candidates in list W have been elected thus far.

Token to indicate that the algorithm is counting ballots, and that there are S
open seats, H hopeful candidates, and U uncounted ballots remaining, with
0<H<S.

Token to indicate that there are no more open seats; all remaining hopefuls
should become defeated.

Token to indicate that there are more open seats than hopefuls remaining;
all remaining hopefuls should become elected.

Token to indicate that the algorithm is in the first step of determining a
candidate who has the fewest votes. There are S open seats, H hopeful
candidates, and M potential minimums remaining.

Token to indicate that the algorithm is in the second step of determining
a candidate who has the fewest votes. There are S open seats, H hopeful
candidates, and M potential minimums remaining.

Candidate C’s vote count of N is a potential minimum.

Token to indicate that newly defeated candidate C”’s remaining N votes are
being transferred. There are S open seats, H hopeful candidates, and U
uncounted ballots.

Token to signal that the STV algorithm should begin running. There are S
seats up for election, H hopeful candidates, and U ballots cast.




auxiliary predicate used in determining a candidate with the fewest votes. (We again assume the usual ordering
predicates on natural numbers, such as !(N > N').)

The linear logical axioms that specify STV are given in Fig. [2| Several of these axioms pattern-match on the
shape of a list of candidates. Following standard convention, we use [ ] to stand for the empty list and [C' | L] to
stand for the non-empty list with head C' and tail L. (As for the SW-FPTP axioms, we also follow the convention
that universal quantification is implicit for variables written in upper case.)

These axioms faithfully encode STV in a concise and elegant fashion. To make plain the close correspondence
of the axioms with the natural language description of STV used in current practice, we will now walk through
their meanings.

Beginning the STV Algorithm. The begin/1 axiom describes the initial step of the STV algorithm: the Droop
quota is computed and recorded. Ballot counting is initiated, with no candidates having been declared winners.

begin/1 : begin(S,H,U) @ (Q =U/(S+1) +1)
—o {lquota(Q) ® winners([]) ® count-ballots(S, H,U)}

count/1 : count-ballots(S, H,U) @
uncounted-ballot(C, L) ® hopeful(C, N) ®
lquota(Q) @ I(N+1 < Q)
—o {counted-ballot(C, L) ® hopeful(C, N+1) ®
count-ballots(S, H,U—1)}

count/2 : count-ballots(S, H,U) ®
uncounted-ballot(C, L) ® hopeful(C, N) ®
lquota(Q) @ (N+1 > Q) ® winners(W) ®
1(S—1 > 0)
—o {counted-ballot(C, L) @ lelected(C) ®
winners([C' | W) ® count-ballots(S—1, H—1,U—1)}

count/3 : count-ballots(S, H,U) @
uncounted-ballot(C, L) ® hopeful(C, N) ®
lquota(Q) @ (N+1 > Q) ® winners(W) @
I(S-1=0)
—o {counted-ballot(C, L) ® lelected(C) ®
winners([C' | W) ® \defeat-all}

count/4.1 : count-ballots(S, H,U) @
uncounted-ballot(C, [C' | L]) ® lelected(C')
—o {uncounted-ballot(C', L) ® count-ballots(S, H,U)}

count/4.2 : count-ballots(S, H,U) ®
uncounted-ballot(C, [C' | L]) ® \defeated(C)
—o {uncounted-ballot(C', L) ® count-ballots(S, H,U)}

count/5.1 : count-ballots(S, H,U) @
uncounted-ballot(C, [ ]) ® lelected(C)
—o {count-ballots(S, H,U—1)}

count/5.2 : count-ballots(S, H,U) @
uncounted-ballot(C, [ ]) @ \defeated(C')
—o {count-ballots(S, H,U—1)}

count/6 : count-ballots(S, H, 0)
—o {defear-min(S, H,0)}

Fig. 2: A specification of single transferable vote as a collection of linear logical axioms.



defeat-min/1 : defeat-min(S, H, M') @ hopeful(C, N)
—o {minimum(C, N) ® defeat-min(S, H—1, M+1)}

defeat-min/2 : defeat-min(S, 0, M)
—o {defeat-min' (5,0, M)}

defeat-min'/1 : defeat-min’ (S, H, M) ®
minimum(C, N) ® minimum(C’', N') ® /(N < N')
—o {minimum(C, N) ® hopeful(C', N') ®
defeat-min' (S, H+1, M —1)}

defeat-min'/2 : defeat-min’ (S, H, 1) ® minimum(C, N)
—o {!defeated(C) ® transfer(C, N, S, H,0)}

transfer/1 : transfer(C, N, S, H,U) ® counted-ballot(C, [C" | L])
—o {uncounted-ballot(C', L) & transfer(C, N—1, S, H U+1)}

transfer/2 : transfer(C, N, S, H,U) ® counted-ballot(C,[])
—o {transfer(C,N—1,S,H,U)}

transfer/3 : transfer(C,0,S, H,U) ® |(S < H)
—o {count-ballots(S, H,U)}

transfer/4 : transfer(C,0,S, H,U) ® (S > H)
—o {lelect-all}

defeat-all/1 : !defeat-all ® hopeful(C, N)
—o {!defeated(C)}

elect-all/1 : lelect-all @ hopeful(C, N) ® winners(W)
—o {lelected(C) @ winners([C' | W])}

cleanup/1 : \defeat-all ® uncounted-ballot(C, L)
— {1}

cleanup/2 : \defeat-all @ counted-ballot(C, L)
— {1}

cleanup/3 : lelect-all ® uncounted-ballot(C, L)
— {1}

cleanup/4 : lelect-all ® counted-ballot(C, L)
— {1}

Fig.2: A specification of single transferable vote as a collection of linear logical axioms, cont.
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Counting the Ballots.

— count/1 describes counting a ballot that does not cause its candidate, C, to reach the quota: C’s vote total
increases and ballot counting continues.

— count/2 and count/3 describe counting a ballot that causes its candidate, C, to finally reach the quota. C be-
comes elected, being a hopeful no longer, and is added to the list of winners. Any ballots remaining uncounted
for C constitute C’s vote surplus; the surplus is randomly selected because ballots are counted in a random
order. If after C' is elected, some seats remain up for election (count/2), then ballots continue to be counted.
Otherwise, if no seats remain (count/3), then all remaining hopefuls should be defeated.

— count/4.1, count/4.2, count/5.1, and count/5.2 express that no more ballots are counted for candidates that
are already either elected or defeated. The ballots transfer to the next highest preference; if none exists, the
ballot is consumed, that is, the vote is wasted.

— Finally, count/6 expresses that a candidate having the fewest votes is defeated if there are no more ballots to
count and there are still seats to fill. The count/6 axiom introduces the defeat-min token to begin this process.

Defeating a Candidate with the Fewest Votes.

— defeat-min/1 labels all hopeful candidates as potential minimums. When there are no more hopefuls to label
(i.e., when the H counter reaches 0), the defeat-min/2 rule transitions to the second phase of defeating a
candidate with the fewest votes.

— defeat-min’/1 and defeat-min’/2 describe a random tournament for finding, among the potential minimums,
a candidate with the fewest votes. Candidates not selected as the minimum are restored to their hopeful status
(defeat-min’/1). When only one candidate is a potential minimum (i.e., when the M counter reaches 1), that
candidate must have the fewest votes; she is therefore defeated and the process of transferring her votes begins
(defeat-min’/2).

Transferring a Defeated Candidate’s Votes.

— transfer/1 expresses that ballots counted for C' are returned to the ballot box as uncounted ballots for the
next highest preference, C’. These will be counted for C” or further reassigned, as necessary, when count-
ing resumes. Otherwise, if no other preferences were listed, then the ballot is exhausted, as expressed by
transfer/2.

— When the N counter reaches 0, no ballots remain to be transferred. If there are fewer open seats than hopefuls
remaining, counting of ballots then resumes (transfer/3). Otherwise, if there are at least as many seats as
hopefuls, all remaining hopefuls should become elected (transfer/4).

Finishing the STV Election.

- defeat-all/1 and elect-all/1 axioms express the two ways in which the STV algorithm can finish: all remaining
hopefuls are either defeated or elected. Because these represent the last step of the STV algorithm, we may
think of this step as continuing forever, idling when all hopefuls have been defeated or elected. This justifies
the presence of the ! modality here and also in the count/3 and transfer/4 axioms.

— When the STV algorithm finishes, the counted ballots will remain as linear resources. In some cases, it is
also possible that some uncounted ballots remain. The resource discipline of linear logic demands that these
be used once. Therefore, the cleanup/ axioms consume any remaining ballots. This is safe because the STV
algorithm has already filled all seats.

5.2 Proving Properties of the STV Specification

From the preceding discussion of the axioms, it should be clear that the specification corresponds to STV. Unfor-
tunately, we cannot make this correspondence rigorous: because it is written in natural language, the legal text that
describes STV is inherently informal.
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However, we can prove properties that we expect the specification, being an STV algorithm, to possess. For
instance, when the STV algorithm finishes, it should be that the number of elected candidates exactly equals the
number of seats, SEATS, that were to be filled by the election. Following ideas for other logical specifications [9]],
we can prove such properties by straightforward induction on the specification’s operational semantics.

For example, to prove that our specification possesses this STV property, let #elected and #hopeful be the
number of candidates C for which !elected(C') and hopeful(C, N') (for some N) hold, respectively. Then, because
either !defeat-all or lelect-all holds when the STV algorithm concludes, it is enough to show that all axioms
preserve the following invariants:

If begin(S, H,U), then S = SEATS, #elected = 0, H = #hopeful,and 0 < S < H.

If count-ballots(S, H,U), then S = SEATS — #elected, H = #hopeful, and 0 < S < H.

If defeat-min(S, H, M) or defeat-min’ (S, H, M), then S = SEATS — #elected, H = #hopeful,
and0 < S < H+ M.

If transfer(C, N, S, H,U), then S = SEATS — #-elected, H = #hopeful,and 0 < S < H.

If !defeat-all, then #elected = SEATS.

If lelect-all, then #elected + #hopeful = SEATS.

5.3 Viewing the STV Specification as a Linear Logic Program

As we did for SW-FPTP (Sect. [)), we can view the STV specification as a linear logic program. This pro-
vides executable code for STV with the same benefits as for SW-FPTP before: a close correspondence be-
tween code and specification, with no separate verification needed, and verifiable traces for auditing the elec-
tion. As a demonstration, a transliteration of the STV specification into Celf source code is available at http:
//www.itu.dk/~carsten/files/voteid2011.tgz.

For STV, because of the coercion problem [2]], only trusted individuals should be given access to these traces.
Determining the right way to adapt the cryptographic solutions of the coercion problem to the logic programming
approach is an intriguing area for future work.

6 Conclusion

With this paper, we have promoted linear logic as a practical mathematical language for the rigorous specification
and implementation of voting protocols. We demonstrated this new methodology on two voting protocols: SW-
FPTP and STV. The choice of linear logic leads to more concise specifications, implementations for free, and,
perhaps most importantly, auditable executions.

In future work, we plan to extend our linear logic and its logic programming engine with modalities for
knowledge, possession, and secrecy, which will greatly increase the expressive strength of the logic. For example,
a secrecy modality would express the logical properties of encryption. Modal logics of Garg et al. [1O/11] will
serve as a foundation on which to build. We also intend to develop techniques for reasoning about voting protocols
specified in linear logic, such as for proving privacy and coercion-resistance.
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