Session-Typed Concurrent
Logical Specifications

Henry DeYoung
hdeyoung@cs.cmu.edu

February 5, 2015
Minor revisions on March 15, 2015

Abstract

Concurrency arises naturally in a proof-construction-as-computation interpreta-
tion of intuitionistic linear logic: following concurrent equality, if all permutations
of independent proof steps in a logical specification are treated as indistinguish-
able, then those proof steps appear to happen concurrently. Concurrency also
arises naturally in proof-reduction-as-computation: there is a Curry-Howard
isomorphism due to Caires and Pfenning between sequent proofs in intuitionistic
linear logic and session-typed processes in the 7-calculus, between principal cut
reductions and process reductions.

In this proposal, we put forward the thesis that session types form a bridge
between these two apparently disparate notions of concurrency. Specifically, we
propose to show that, given an assignment of process and message roles to atomic
propositions, a class of concurrent linear logical specifications can be translated
to session-typed processes. In addition to the practical benefits of generating
well-typed implementations from logical specifications, the proposed work can be
seen as giving a proof-theoretic reconstruction of work on multiparty session types;
as assigning behavioral types to a class of logical specifications, thereby ensuring
deadlock freedom for those specifications; and as furthering an understanding of
the relationship between proof construction and proof reduction.

This document aims to establish the thesis’s plausibility by defending it in the
restricted setting of intuitionistic ordered logic. The primary area of proposed
research will then be to relax that restriction, extending the ideas in this document
to linear logic.

Keywords: substructural logics, proof reduction, proof construction, concurrency,
session types

Contents

1

Introduction

2 Background: Concurrent ordered logical specifications 6
2.1 Example: Binary counter L L L L. 7

2.2 CONCUITENCY v v v vt i e i et et e e et e e e e 8

2.3 Example: Binary counter with decrements 8

2.4 Infinite traces 9

2.5 Technicaldetails 10
2.5.1 Propositions, terms, and traces 10

2.5.2 Concurrentequality 13

3 Choreographies 14
3.1 Choreographiesby example 14
3.1.1 Thebinarycounter 14

3.1.2 Messages can flow in one of two directions 15

3.1.3 Choreographies are not always unique 16

3.1.4 Twonon-choreographies. 17

3.2 Choreographies, formally 18
3.2.1 Locality 18

3.2.2 Specification-preserving L. 19

4 Session-typed processes from singleton linear logic 20
4.1 Toward singleton linearlogic 20

4.2 Cutascomposition 22

4.3 Additive conjunction as branching 0oL 23

4.4 Recursive session types and process definitions 24

4.5 Example: Binarycounter oL 25

4.6 Additive disjunction as choice oL 26

4.7 Example: Binary counter with decrements 27

4.8 Identity asforwarding L L oL 28

4.9 Othersessiontypes 28
4.10 CONCUITENCY . . o v v v v it it it et et et et e e e 29

5 From ordered logical specifications to processes 29
5.1 Translation of choreographies to process chains 30

5.2 Correctness of the translation 31

5.3 Well-typed choreographies translate to well-typed processes 32

6 Proposed work 34
6.1 From ordered logical to linear logical specifications 34

6.2 Generative invariants as sessiontypes 37

6.3 Translating untyped choreographies to untyped processes 39

6.4 Session-typed Turing machines 39

A Turing-machine-like addition process 40

1 Introduction

With the increasingly complex, distributed nature of today’s software systems, concur-
rency is ubiquitous. Concurrency facilitates distributed computation by structuring
systems as nondeterministic compositions of simpler subsystems. But, concomitant
with nondeterminism, concurrent systems are notoriously tricky to get right: subtle
races and deadlocks can occur even in the most rigorously tested of systems.

At the same time, decades of research into connections between proof theory
and programming languages have firmly established the principle of computation as
deduction as the gold standard framework for clear, expressive, and provably correct
programs. Examples abound: lax logic for effectful computation (Benton et al. 1998),
temporal logic for functional reactive programming (Jeffrey 2012), and linear logic for
graph-based algorithms (Cruz et al. 2014), to name just a few.

Can a computation-as-deduction approach make it similarly easier to clearly and
concisely specify, as well as correctly implement, concurrent programs?

+

Computation-as-deduction comes in two flavors: proof-construction-as-computation
and proof-reduction-as-computation. Proof-construction-as-computation views the
search for a proof, according to a fixed strategy, as the basis of computation; it is the
foundation for logic programming (Miller et al. 1991; Andreoli 1992). Proof-reduction-
as-computation, on the other hand, revolves around a correspondence, known as the
Curry-Howard Isomorphism (Howard 1980), between propositions and types, proofs
and programs, and proof simplification, or reduction, and program evaluation; it is the
foundation for typed functional programming (Martin-Lof 1980).

Both the proof-construction and proof-reduction approaches have been applied to
concurrent programming, stemming from Girard’s (1987) suggestion of connections
between linear logic and concurrency. In the proof-construction vein, the Concurrent
Logical Framework (CLF; Watkins et al. 2002) treats the permutability of inference
rules as a source of concurrency. CLF has been used to specify a variety of concurrent
systems, ranging from the z-calculus to security protocols and even emergent story
narratives (Cervesato and Scedrov 2009; Martens et al. 2013). Although these same
concurrent systems can be simulated according to their CLF specifications by the Lol-
limon (Lopez et al. 2005) and Celf (Schack-Nielsen 2011) logic programming engines,
the programs ultimately remain specifications, not actual decentralized implementa-
tions.

Taking the other, proof-reduction tack, Abramsky (1993), Bellin and Scott (1994),
and later Caires and Pfenning (2010) with Toninho (2012, 2013), among others, have
given correspondences between sequent calculus proofs or proof nets in linear logic
and concurrent processes, between cut elimination and concurrent process execution.
Moreover, in Caires et al’s work, the correspondence is a true Curry-Howard isomor-
phism in that intuitionistic linear propositions are also types—session types (Honda
1993) that describe the interaction protocol to which a process adheres. Unlike proof
construction, the proof-reduction approach more naturally yields actual decentralized
implementations (Toninho et al. 2013; Griffith and Pfenning 2014).

In spite of their common basis in linear logic, the proof-construction and proof-

reduction approaches to concurrent computation appear at first glance to be strikingly
disparate. They have different dynamics; they offer different guarantees (session fi-
delity, behavioral type preservation, and deadlock freedom for the proof-reduction
approach, but only non-behavioral type preservation for the proof-construction ap-
proach); and, perhaps most importantly, they serve very different roles in programming
practice. Proof construction is better suited to system specification and reasoning,
whereas proof reduction is better suited to implementation.

To reduce the possibility of error when building an implementation from a specifi-
cation, we’d like to minimize the gap between the two. Despite the apparent disparity
between proof construction and proof reduction, is there a class of concurrent spec-
ifications from which distributed concurrent implementations can be automatically
extracted? Stated differently, is there perhaps some fragment of linear logic in which
the computational nature of proof construction and proof reduction correspond?

+

The thesis is that, yes, thanks to session types, we can have our cake and eat it too:

Thesis statement. Session types form a bridge between distinct notions of
concurrency in computational interpretations of intuitionistic linear logic
based on proof construction, on one hand, and proof reduction, on the other
hand.

The remainder of this proposal document aims to establish this thesis as a plausible
one. To do so, we turn our attention from intuitionistic linear logic to propositional
intuitionistic ordered logic (Lambek 1958; Polakow and Pfenning 1999)—a restriction
of linear logic in which the context of hypotheses forms a list rather than a multiset or
bag—and defend the thesis in this restricted setting. The primary area of proposed thesis
research will then be to relax this restriction, extending the ideas in this document to
intuitionistic linear logic.

Specifically, in defending the thesis for ordered logic, this document breaks down
the problem into several pieces, as depicted in Fig. 1. First, Section 2 reviews a string
rewriting interpretation of proof construction in a non-modal fragment of intuitionistic
ordered logic (Simmons 2012). These ordered logical specifications are equipped with a
natural notion of concurrency based on treating as equivalent the different interleavings
of independent rewriting steps—essentially CLF’s concurrent equality (Watkins et al.
2002; Cervesato et al. 2012) adapted to the ordered setting.

Despite being concurrent, ordered logical specifications lack an immediate notion
of process or process identity. Toward this end, Section 3 introduces choreographies, a
further restriction of ordered logical specifications in which atomic propositions are
assigned roles as either process-like atoms or message-like atoms. (By convention,
message-like atoms, such as inc in Fig. 1, are indicated with an arrow decoration.)
A specification may admit several choreographies, but, as described in Section 3.2, a
well-formed choreography must be lock-step equivalent with the specification once
the role annotations are erased.

However, even with process- and message-like atoms and the notion of process
that they confer, choreographies remain specifications rather than full-fledged pro-
cess implementations. Choreographies are nevertheless the crucial stepping-stone.

Proof construction

bit1 e inc — {inc e bit0} . bit1 e inc — {inc e bit0}
role assignment (Sec. 3.2) <« «—
Ordered logical specifications (Sec. 2) Choreographies (Sec. 3)

Fragment of propositional ordered logic ~ Tole erasure (Sec. 3.2) Fragment of propositional ordered logic

Proof reduction

bit1 = caseR (inc = selectL inc; bit0)
<« <«
Session-typed processes (Sec. 4)

Propositional singleton linear logic

Figure 1: Proof construction to proof reduction

Section 4 presents a variant of linear logic in which sequents are restricted to use at
most one linear hypothesis'; we dub it singleton linear logic. When viewed through a
Curry-Howard lens, singleton linear logic becomes a session-typed process calculus
in which well-typed process networks are “linear” chains of processes: following the
example of Caires et al’s SILL (2013), propositions are session types, proofs are process
chains, and proof reductions are process chain reductions.

Process chains prove to be just the right match for the ordered contexts used by
ordered logical specifications and their choreographies. By giving process chains
a substructural operational semantics (SSOS; Pfenning 2004) using ordered logical
specifications, it’s fairly straightforward to relate proof reduction to proof construction.
What’s surprising, however, is that the converse is also possible—as we show in
Section 5, the choreographies of Section 3 (which are ordered logical specifications)
may be translated to process chains. And this translation is correct, in the sense that it
is a weak bisimulation: a choreography’s transitions and its corresponding process’s
reductions (as defined by the SSOS) match quite closely (Section 5.2).

4+

To summarize, the proposed thesis is that, for a class of concurrent linear logical
specifications, we can establish a correspondence with session-typed processes and
thereby relate the proof-construction approach to concurrent computation to the
proof-reduction approach.

The contributions of this proposed thesis can be viewed from several perspectives.

« This work can be seen as a proof-theoretic reconstruction of multiparty ses-
sion types (Honda et al. 2008). In multiparty session types, binary sessions
are generalized to conversations among several parties. Programmers specify

'Note that such contexts are trivially ordered, meaning that the logic is also a variant of ordered logic.

conversations in their entirety using global session types. However, rather than
building implementations of the participants directly from the global session
type, a collection of local, binary session types—one for each pair of participants—
is automatically projected from the global type. The programmer then builds a
local implementation of each participant from its much simpler local type.

Intuitively, global types for multiparty sessions serve the same purpose as our
choreographies: both describe the conversation as a whole. And, because both
extract local information from a global description, the projection of local types
from global types is related to our translation of well-typed processes from
choreographies. Moreover, our framework has the advantage of generating im-
plementations directly from choreographies, whereas the multiparty session type
discipline generates only local types that programmers must then implement.

« Unlike those based on proof reduction, computations based on proof construction
may fail, essentially because the goal may not be provable. Computations based
on proof construction therefore do not generally enjoy the same progress and
(strong) type preservation properties as those based on proof reduction. For con-
current logical specifications, this means that computations may deadlock—the
notion of a computational state is simply too permissive.

This work can be seen as assigning behavioral types to a class of specifications:
the type of a specification is the type of the process to which it corresponds
under the translation described in Section 5. In this way, those specifications do
enjoy strong safety properties, such as type preservation and deadlock freedom.

« Finally, this work can be seen as furthering an understanding of the relationship
between proof construction and proof reduction. To the best of our knowl-
edge, there has been relatively little work on relating these two proof-theoretic
approaches to computation.

In the functional logic programming paradigm, languages such as Curry (Hanus
2013) and Mercury (Somogyi et al. 1996) combine the functional and top-down
logic programming paradigms (which derive from proof reduction and top-down
proof construction), but the combination is arguably more of an amalgamation
than a connection between the paradigms. Felleisen (1985) and Spivey and Seres
(1999) give shallow embeddings of the Prolog logic programming language into
the Scheme and Haskell functional languages, respectively.

None of these works deals with concurrency or bottom-up proof construction,
in contrast with our proposal; even more importantly, none of these works treat
proof-theoretic aspects.

2 Background: Concurrent ordered logical specifications

Viewed through a computational lens, proof construction in a fragment of ordered
logic becomes a bottom-up logic programming language (Pfenning and Simmons 2009).
It can be seen as a logically motivated generalization of string rewriting (see, e.g., Book

and Otto 1993), an analogy which we will exploit to provide some intuition for this
form of ordered logic programming.

From the perspective of string rewriting, an ordered logical specification’s atomic
propositions are letters; ordered conjunctions (or ordered contexts) of these atoms are
strings; and, under a focused proof construction strategy (Andreoli 1992), the ordered
implications that serve as specification clauses are string rewriting rules. An example
will help to clarify.

2.1 Example: Binary counter

Using ordered logic, we can specify the behavior of an incrementable binary counter.
The counter is represented as a string of bit0 and bit1 atoms terminated at the most
significant end by an eps. For instance, the ordered conjunction eps o bit1 e bit0 is a
string that represents a counter with value 2. Increment instructions are represented
by inc atoms at the counter’s least significant end. Thus, eps ® bit1 e inc represents a
counter with value 1 that has been instructed to increment once.

Operationally, increments are described by three clauses, which together constitute
the specification’s signature, Zinc. The first of these clauses is

bit1 e inc — {inc e bit0}.

From a string rewriting perspective, this implication is a rule for rewriting the (sub)string
bit1einc as inc e bit0, an interpretation which is justified logically because implications
are transformations.> By rewriting bit1 e inc as inc e bit0, this clause serves to carry
the inc up past any bit1s that may exist at the counter’s least significant end.

Whenever the carried inc reaches the eps or right-most bit0, the carry is resolved
by one of the other two clauses:

eps ® inc — {eps o bit1}
bit0 e inc — {bit1}.

By rewriting eps @ inc as eps e bit1, this second clause ensures that in the eps case the
carry becomes a new most significant bit1; similarly, by rewriting bit0 e inc as bit1, the
third clause ensures that in the bit0 case the carry flips the bit0 to bit1.

For example, under the X, signature} the counter eps bit1einc can be maximally
rewritten as in the trace

eps o bitl e inc —5, _eps @ inc @ bit0 — 5, eps o bit1 e bit0 —-5,

inc

where at each step the sites amenable to rewriting have been underlined. This trace
computes 1 + 1 = 2 in binary representation. More generally, the above clauses
adequately specify the increment operation on binary numbers.

>The braces around incebit0 are a monad (or lax modality), a technical device borrowed from CLF (Watkins
et al. 2002) to separate top-down proof construction from bottom-up proof construction. The reader who is
unfamiliar with CLF can safely gloss over the monad when reading the specifications in this section.

3For precision, the rewriting relation, —, is indexed by the signature of clauses that may contribute to
the rewriting, such as X, in —s; . here. We frequently omit the index when it is clear from the context.

2.2 Concurrency

Some strings contain more than one site that is amenable to rewriting. For instance,
the binary counter eps e bit1 e inc e inc has two incs in flight, which, after one step,
give rise to two disjoint rewrite sites:

eps e inc e bit0 e inc.

The rewritings at these sites can be interleaved in two ways: either according to the
upper path or the lower path in the following diagram.

eps o bit1 e bit0 e inc

eps e inc e bit0 e inc eps o bit1 e bit1 —

epseince bit1

However, because these two rewritings are independent, they should be consid-
ered concurrent. Rather than giving a semantics for string rewriting based on true
concurrency, we use interleaved concurrency. We treat different interleavings of
independent steps as indistinguishable?, and then, because we can’t observe which
rewriting occurred first, the two rewritings appear to happen concurrently. This is
the idea of concurrent equality (Watkins et al. 2002; Cervesato et al. 2012) from the
CLF framework for linear logical specifications, later adapted by Simmons (2012) for
ordered logical specifications.

2.3 Example: Binary counter with decrements

As a further example, it’s possible to extend the binary counter specification with
support for decrements. Like increments, a decrement instruction is represented by
a dec atom at the counter’s least significant end. To perform the decrement, a dec
begins propagating up the counter. As it passes over any bit0Os at the least significant
end, they are marked as bit0’ atoms to indicate that they are waiting to borrow from
their more significant neighbors:

bit0 @ dec — {dec e bit0’}.

Whenever the dec reaches the eps or right-most bit1, it is replaced with either fail or
ok, respectively, to show whether the borrow was possible; in the case of bit1, the
borrow is also effected:

eps o dec — {eps o fail}

bit1 e dec — {bit0 e ok} .
Then the fail or ok travels back over all of the bit0” atoms that were waiting to borrow.
In the case of fail, the bits are returned to their original bit0 state because no borrow
was possible; in the case of ok, a borrow was performed and so the bits are set to bit1:

fail » bit0” > {bit0 e fail}
ok e bit0” — {bit1 e ok} .

4In the above example, indistinguishability of the two different interleavings is tantamount to commuta-
tivity of the diagram.

Yinc = bit1 @ inc — {inc e bit0}, Ydec = bit0 e dec — {dec e bit0’},
eps ® inc — {eps o bit1}, eps @ dec — {eps o fail},
bit0 @ inc — {bit1} bit1 e dec — {bit0 e ok},

fail ® bit0” — {bit0 e fail},
ok e bit0” — {bit1 e ok}

(a) Increments (b) Decrements

Figure 2: Summary of binary counter example

For example, the counter eps e bit1 e bit0 e dec can be maximally rewritten as

eps o bit1 e bit0 e dec
— eps o bit1 e dec o bit0’
—> eps o bit0 e ok e bit0’
—> eps @ bit0 e bit1 e ok
.
Once again, there are possibilities for concurrency. For example, the following two

traces are indistinguishable because they differ only in the order of independent
rewritings:

eps bit1 e bit0 e dec

7

eps ® inc @ bit0 e dec eps o bit1 e dec ® bit0’ — - --

\
eps e inc e dec bit0’ /

This justifies treating the two rewritings as concurrent.
Figure 2 summarizes the increment and decrement programs.

2.4 Infinite traces

Thus far, all traces have been finite, but this is not necessarily so. Consider adding an
atom, incs, that generates a stream of inc atoms:

incs — {inc e incs} .
Among the infinite traces now possible is
eps @ incs — eps e inc e incs — --- —> epseinceince---einceincs — --- .

Notice that this trace never rewrites the infinitely available eps e inc substring, instead
always choosing to rewrite incs. Because of its scheduling bias against rewriting
eps e inc, we say that the trace is (weakly) transition-unfair.

Transition unfairness is fundamentally at odds with concurrency because it ad-
mits the possibility that one event precludes another, independent event—just as the
persistent rewriting of incs precludes the rewriting of the independent eps e inc here.
Therefore, we will implicitly assume that all traces are weakly transition-fair.

2.5 Technical details

The previous sections have hopefully provided an intuition for ordered logical specifi-
cations. In this section, we review the technical details, generally following the lead
of Simmons’s SLS framework (2012), but confining ourselves to a propositional frag-
ment and using a weakly focused proof-construction strategy (Simmons and Pfenning
2011b) instead. The reader should feel free to skim or skip this section (especially
if he is familiar with ordered logic), since the technical details are not critical to an
understanding of the rest of this proposal.

2.5.1 Propositions, terms, and traces

Propositions. Propositions are polarized into positive and negative classes:

Positive propositions A* = p* |A” | AT e B | 1
Negative propositions A~ := A* » B~ | A*»» B~ | A~ & B~ | {A*}

The negative propositions, A™, are those whose right rules are invertible, whereas the
strictly positive propositions, A (but not A~), are those whose left rules are invertible.

Positive atomic propositions, p*, stand in for arbitrary positive propositions. Neg-
ative propositions, A7, are implicitly included in positive ones. The lax modality, or
monad, {A*}, will be responsible for typing traces; it gives logical force to the sepa-
ration of the two classes of propositions, yet still allows positive propositions to be
explicitly included in negative ones.

Contexts. The set of all ordered contexts, Q, forms the free monoid over the alphabet
of hypotheses x:A™ and x:A™. Concatenation is written as Q,,Q, and its unit is the
empty context, -.

Ordered contexts Q == | x:A" | x:A™ | Q1,Q,

Notice that because the proof-construction strategy is weakly focused, non-atomic
positive propositions, such as A* e B, are indeed permissible hypotheses.

In addition to ordered contexts, we include frames. Frames, ©, can be thought of
as ordered contexts with one hole; i.e., think of © as Q;,0, Qp, for some Q; and Qp.
The hole may be filled with an ordered context, so that ®{Q} is the ordered context
Qr,Q,Qp. To ease the notational clutter in typing rules, we also allow contexts to be
matched against filled frames. (We must be careful to distinguish the syntax for the
monad, {A*}, from filled frames, @{Q}.)

The reader familiar with substructural logics will note that we have chosen not to
include unrestricted contexts or persistent hypotheses. Specification clauses, such as
bit1einc—{inc e bit0}, should indeed be persistent, but they are handled by signatures.

Signatures. Signatures X are collections of clauses. Each clause is a constant ¢ with
type of the form p* — A~.

Signatures X u=- |3, c:pt — A7

10

Traces T:u=o|T;T,|S

T, =:Q—"Q" T,:Q —*Q” S:Q — QO
o Q —*Q T,;T, = Q —* Q" S Q —*Q

Figure 3: Traces

S:Q— Qf
Steps S:u={x}<R|y;ey,<x|1l<x
QFrR:{{A"})
{x} <R :0{Q} — 6{x:A"}
y; o Yy < x = Of{x:AT @ AT} — Of{y;:AT,y,: AL} 1ex:: 0{x:1} — O{-}

Figure 4: Steps

This is a slight departure from the example clauses in Sections 2.1 and 2.3 that were of
the more general form B* — A~. However, clauses of the form p* — A~ can express
the previous examples (in curried form) and will turn out to be a better fit for the
choreographies to be introduced in Section 3.

Although it looks like a proposition, p*—A™ is treated as a judgment that represents
a persistent implication. Because the implication is persistent and therefore can be
copied to any point in the context, — is simultaneously both a left implication and a
right implication.

Another way to think of p* — A~ is as syntactic sugar for either !(p* » A7) or
I(p* » A7), since both have the same derived rules in ordered logic.

Terms. As previously mentioned, a focused proof-construction strategy (Andreoli
1992) forms the basis of ordered logical specifications. Specifically, we choose a weakly
focused strategy (Simmons and Pfenning 2011b). Each form of sequent in the weakly
focused calculus corresponds to a syntactic class of terms.

We begin in Fig. 3 with traces, T, which are typed with a judgment T :: Q@ —* Q'
that describes the change of state that the trace effects. Traces are either empty, o, or
the (nominally) sequential composition of two traces, T;; T,, or a single step, S. The
empty trace effects no change to the state; the sequential composition T;; T, first carries
out trace Ty, and then continues with the remainder of the trace, T,. A single step is
also typed by the change of state that it effects: S :: Q — Q’ (Fig. 4). Each step is
either a left-focusing phase, with term {x} «< R, or one of two inversion steps, with
terms y; ® y, < x and 1 « x. In a left-focusing phase, if some piece of state Q within

11

QFR:(C)
Atomic terms Ru=c-(x;5p) | x- Sp

cpt A" €S O{AT]}rSp:{C) O{[A7]}F Sp:(C)
O{x:p*} ke (x;Sp) : (C7) O{x: A"} Fx-Sp:(C7)

Figure 5: Atomic terms

[o{la]} F Sp: ()]

Spines Sp == nil | V;Sp | 7y; Sp | 7095 Sp

[A7] F nil : (A7)

QrV:[A*] O{[B7]}*+Sp:(C7) QrV:[AT] O{B]}+Sp:(C)
Of[AT » B7],Q} - V;Sp: (C7) O{Q,[A* > BT} FV;Sp: (CT)
O{[A1]} + Sp: (C7) O{[Az]} F Sp: (CT)

O{[A7 & Ay]} k3 Sp : (CT) O{[AT & Az} F my; Sp : {CT)

Figure 6: Spines

©{Q} satisfies the requirements imposed by atomic term R of type {A*}, then Q is
replaced with x:A"—no inversion is performed because the proof-construction strategy
is weakly focused. The inversion occurs as discrete steps that decompose non-atomic
positive propositions.

The typing rules for atomic terms, R, according to the judgment Q + R : (C™) are
shown in Fig. 5. These rules correspond to those for beginning a left-focusing phase
from a stable sequent. Atomic terms consist of a head—either a constant ¢ or variable
x—followed by a spine, Sp, that completes the focusing phase.

Spines, as shown in Fig. 6, are either empty (nil), a value application followed by a
spine (V; Sp), or a projection followed by a spine (iry; Sp or 7,; Sp). The spine typing
judgment ©{[A™]} + Sp : (C™) corresponds to the left-focused sequent form. Notice
that spine typing can succeed even at non-atomic propositions, provided that the
proposition under focus matches the consequent. Also, value applications require that
values, V, be typed by positive propositions under focus.

The value typing judgment, Q + V : [A*], is shown in Fig. 7. Of particular note is
that normal terms, N, are included as values that type negative propositions that are
included as positive ones.

Normal terms, N, are typed by negative propositions, A~, under the judgment
Q F N : A" shown in Fig. 8. Each normal term is either an abstraction (Ax.N), a pair
((N71,N,)), or a trace capped by a value ({let T in V}). The typing judgment for normal

12

QFV:[AT]
Values Viu=x|N|VieV,|1

QFN:A- Q- Vi [AT] Qyr Vi [A7]
xptFx o [pt] QrN:[A7] Q,Q F VeV, : [AT o A}] “rF1:[1]

Figure 7: Values
Normal terms N == Ax.N | (N,N,) | {let Tin V}

Q,x:A*+ N: B~ x:AT,QFN: B QFN; Al QFN,: A,
QF Ax.N:A* » B~ QF Ax.N: A" » B~ QF(N;,Ny) : AT & AZ

T:Q—*"Q" Q' +V:[AY]
Qr{letTinV}:{A"}

Figure 8: Normal terms

terms corresponds to eager inversion on the right.

2.5.2 Concurrent equality

As described in Section 2.2, concurrent equality formalizes the idea that different
interleavings of independent rewritings should be indistinguishable. Traces T thus
form a trace monoid in which independent rewriting steps commute. Following
Cervesato et al. (2012), this independence relation is defined on the sets of input and
output variables, *S and S°, of a step S.

Specifically, *S and S* are given by:

“(x} =R =FV(R) ({x} = R)* = {x}

.(yl oy, < x)={x} (Y1 ® Y < x)°* = {y1,y2}
1ex) = {x} (1<x)=0

Consider the trace S;; S,. These two neighboring steps are independent and com-
mute if $;°* N *S, = 0. In other words, if $;* N *S, = 0, then S;;S, = Q@ —* Q" if and
only if S,;5; = Q@ —* Q”. (Notice that bound variables can always be renamed to be
distinct from the input and output variables of previous steps in the trace.) Concurrent
equality is the congruence relation on traces that is obtained by associativity and unit
axioms and this partial commutativity.

13

3 Choreographies

As the binary counter from Sections 2.1 and 2.2 exemplifies, a notion of concurrency,
based on indistinguishable interleavings of independent rewritings, arises naturally
in ordered logical specifications. And, under a forward-chaining logic programming
interpretation, these specifications can be executed by a central, omniscient “puppeteer”
that rewrites the state globally.

In contrast, concurrency is traditionally phrased in formal calculi as the compo-
sition of communicating processes: processes are not omniscient but instead execute
independently, with interaction between them limited to the exchange of messages.
How are these two seemingly distinct notions of concurrency related? Are there
processes hidden within ordered logical specifications—processes that would allow us
to reconcile these two views?

Inspired by the process-as-formula view of linear logic (Miller 1992; Cervesato
and Scedrov 2009), we propose that each atomic proposition in an ordered logical
specification be assigned one (and only one) of two roles: an atom is either process-
like or message-like. These role assignments, or choreographies, refine the original
specification: whereas the original specification describes globally what are the valid
interactions among atoms, a choreography?® of that specification® describes how those
interactions are achieved locally by asynchronous message passing.

For example, we might choose to choreograph increments in the binary counter
specification by treating eps, bit0, and bit1 as process-like atoms and inc as a message-
like atom. Using an arrow decoration to indicate the message-like atoms, the choreog-
raphy clause

bit1 e inc — {inc e bit0}

specifies a bit1 process that, upon receiving an inc message at its right side, asyn-
chronously sends an inc message to the left and then continues as a bit0 process.

Ideally, choreographies would be mechanically generated from specifications. But
this appears to be quite difficult: Different specifications often require different patterns
of communication, and therefore different choreographies. And some specifications
even admit several choreographies, among which the programmer should choose the
one that best fits the situation. Therefore, we’ll assume that the programmer himself
supplies the choreography.

It’s also important to point out that not all role assignments are valid choreogra-
phies. We’ll now describe what counts as a choreography, first with informal examples
and then with formal definitions.

3.1 Choreographies by example
3.1.1 The binary counter

In giving the intuition behind the binary counter specification (Section 2.1), we de-
scribed the inc atoms as moving up the counter. This hints at a choreography in which

5We borrow the term ‘choreography’ from the literature on session-based concurrency. The analogy is
intended only as a loose one, however, and should not be taken to imply a precise, technical correspondence.
®Notice that a choreography is always relative to a given specification.

14

inc atoms act as messages that trigger the increment action: Whenever an inc message
arrives at an eps, bit0, or bit1 process, that process takes responsibility for completing
the increment action.
Expressed as an annotation of the original ordered logical specification, this chore-

ography is:

eps ® inc — {eps o bit1}

bit0 e inc — {bit1}

bit1 e inc — {inc e bit0},

where the eps, bit0, and bit1 atoms are viewed as processes, but the inc atoms are viewed
as messages.” We'll call this choreography our inc-choreography. Two properties are
crucial:

Locality. Each clause’s premise depends on exactly one process-like atom and (at
most) one message-like atom. Consequently, each process’s decisions are entirely
local and deterministic: the eps, bit0, and bit1 processes act (independently) only
after receiving an inc message.®

Locality serves to ensure that the choreography describes sensible message-
passing behaviors. A clause such as inc — {.. .}, whose premise does not contain
a process-like atom, is not message-passing because no process is there to receive
the inc message.

Specification-preserving. The choreography exposes the same behaviors for eps,
bit0, bit1, and inc as in the original specification. Its clauses are exactly those of
the specification, except that each inc atom in the specification has been annotated
as an inc message-like atom in the choreography.

In this sense, there is a very strong, lock-step equivalence between the chore-
ography and its specification. The choreography does not fundamentally alter
the specification—it only refines that specification by making the communication
patterns explicit.

3.1.2 Messages can flow in one of two directions

In our binary counter specification with decrements (Section 2.3), dec atoms propagate
up the counter similarly to incs, with the difference that each dec atom eventually
gives rise to either a fail or ok atom that travels back down the counter. Once again,
this hints at a choreography in which dec, fail, and ok atoms are message-like:

« Whenever a dec message arrives at an eps, bit0, or bit1 process’s right-hand side,
that process completes the local decrement action: the eps and bit1 processes
send a fai| or ok message, respectively, to their right; the bit0 process forwards

— —
the QE message to its left and then continues as a bit0” process.

7It’s convenient to think of the programmer as supplying this choreography in full, but in practice the
programmer might only give the assignment of roles to atoms, e.g. inc for inc.

8In SSOS terminology, processes that wait to receive a message, like eps, bit0, and bit1 here, would be
termed latent propositions; and messages, like inc here, would be termed passive propositions (Pfenning
and Simmons 2009).

15

+ Whenever a fai] or ok message arrives at a bit0” process’s left-hand side, that
process forwards the message to its right-hand neighbor and then continues as
a bit0 or bit1 process, respectively.

To account for decrements, the binary counter’s choreography is therefore extended
with the following clauses:

eps o dec — {eps o fail}
bit0 e dec — {dec o bit0'}
bit1 e dec — {bit0 e ok}

faif o bit0” — {bit0 e fail }
ok e bit0” — {bit1 e ok} .

Once again, these clauses are just an annotation of the original specification’s clauses,
with dec, ok, and fail annotated as dec, ok, and fail. The extended choreography thus
— = —

continues to be specification-preserving.

This extended choreography illustrates that each message atom has a unique
direction, which is either left-directed, like inc and dec, or right-directed, like fail and

«— — —
ok. Because a left-directed message travels from right to left, it must always arrive at
the right-hand side of its recipient; dually, a right-directed message must always arrive
at the left-hand side of its recipient. This directionality is another aspect of locality,
and it further constrains the structure of a choreography’s premises. For example,
this choreography’s premises satisfy locality because each message flows toward its
recipient, whereas premises of the forms m; e p or p e m, do not satisfy locality because
the direction is wrong for process p to receive the m; or m, message.
«— —5

3.1.3 Choreographies are not always unique

As alluded to previously, multiple choreographies are possible for some specifications.
This is true of our binary counter specification, for instance. (To simplify the example,
we'll ignore decrements.) In the inc-choreography (Section 3.1.1), the counter’s value
is represented by a chain of eps, bit0, and bit1 processes that are acted upon by inc
messages. Alternatively, the counter’s value could be represented by a sequence of
eps, bit0, and bit] messages that are fed to an inc process; the inc process would then
emit a sequence that represents the result:

eps ® inc — {eps o bit]}
bitQ e inc — {bit]}

bit] e inc — {inc e bitQ} .

As required, this bit-choreography possesses the locality and specification-preserving
properties.

These two choreographies have distinct flavors, owing to the different process
and message roles that they assign to the inc and eps, bit0, and bit1 atoms. The
inc-choreography has an object-oriented character: by sending an inc message, the
increment method dispatches on the receiving object’s class—either eps, bit0, or bit1.

16

In contrast, this new bit-choreography has a functional character: inc is a function
that receives its argument as a sequence of messages—either eps, bit0, or bit].
— —

3.1.4 Two non-choreographies

Another, slightly more complex reformulation of the binary counter specification
chooses to treat the inc atom as a simple process, not a message:

inc — {incm}

eps e incm — {eps @ bit1}
bit0 e incm — {bit1}

bit1 @ incm — {inc e bit0} .

In fact, the inc process does nothing but send an incm message.’

This signature is equivalent to the binary counter specification in that it ultimately
exposes the same eps, bit, and inc behaviors. However, in contrast with the choreogra-
phies, this formulation does more than simply refine the specification by making the
communication explicit: instead, it introduces incm as a new message-like atom, it
introduces the clause inc — {incm}, and it modifies the premises of existing clauses
to use incm. So this signature is not specification-preserving—and therefore not a
choreography—for the binary counter specification.

But that doesn’t mean that the programmer cannot achieve the same behavior
anyway: the programmer is free to rewrite the specification to incorporate that behavior
at the specification level. If the specification is changed to be

inc — {incm}

eps ® incm — {eps ® bit1}
bit0 e incm — {bit1}
bit1 e incm — {inc e bit0},

then the above signature is indeed a choreography for this specification.
Another signature that is equivalent to the binary counter specification, in the
sense that the two track the same value, is the first-order signature

num N e inc — {num (N+1)}.

Nevertheless, we wouldn’t consider this to be a choreography of the binary counter
specification because, by using a single number held by num instead of a string of bits,
it fundamentally alters the specification. Once again, however, we would consider this
signature to be a choreography of a different, simple counter specification, namely
numN e inc — {num (N+1)}.

9Because it eagerly becomes incm, the inc atom here would be termed an active proposition in SSOS
terminology (Pfenning and Simmons 2009).

17

3.2 Choreographies, formally

Hopefully the preceding examples have given some intuition for what counts as a
choreography. To make the definition precise, we need only formalize the locality and
specification-preserving properties.

3.2.1 Locality

As discussed in Section 3.1.1, clauses such as bit1 e inc — {inc e bit0} satisfy locality
because the premise consists of a process that receives a message. Although it is
possible to admit clauses like this one, they come at the expense of complicating the
statement of locality slightly. Instead, it is more convenient to require that clauses be
given in curried form, such as bit1 — (inc —» {inc e bit0}).

For curried clauses, locality holds if there is exactly one process-like atom, p*, in
the premises and if any message-like atoms, m and m, are used only with right- and
left-ordered implications, respectively.

Definition 1 (Locality). A clause, which must have form p* — A~, satisfies locality if
it adheres to the following refined grammar.*®

Negative propositions A~ B~ == {A"} | &;c;(mf » {AT}) | &;e1(mi > {AT))

Positive propositions ~ A",B* == A" eB" [1| m" e AT |AT e m™ | pT | A”

A signature I satisfies locality if each of its clauses, p* — A7, satisfies locality and if
there is a unique clause p™ — A~ for each process-like atom p* that appears in 3.

Notice that, for technical reasons related to the translation to session-typed pro-
cesses (Section 5), this definition also requires that message-like atoms m; and m,
never appear in clause heads except as part of a conjunction—either m; A" or A" e m,.
Because 1 is available, this requirement does not restrict expressiveness however.
Also notice that clause heads can emit several messages in both directions, such as
(7 e p*) @ my; clause heads also allow clauses to be higher-order, since positive
propositions can include A™.

As a consequence of this document’s focus on well-typed processes, also notice
the more fundamental omission of propositions like (mj »> {A7}) & (m3 —-» {A3}).
Intuitively, such a proposition corresponds to an input-guarded nondeterministic
choice—the process chooses either to receive ny{ from the left and continue as process

1, or to receive m; from the right and continue as process A7. Nondeterministic
choice is not typable in the current SILL typing scheme of Caires et al. (2013). These
propositions are ruled out by requiring all arms of an additive conjunction to be
consistently left- or right-implications.

Likewise, notice that p* — (m{ > (3 - {A"})) is not included in the above
grammar because it would correspond to a demand that both messages be received (in
some nondeterministic order) before continuing with A*. The above grammar instead
only allows p* — (mj »> {m; —» {A*}}) with the monad introducing a pause that
requires m to be received before continuing.

1°An alternative notation for & ¢ (mf - {A7}) could be the Lambek-inspired &;¢;({A;} « (nlj) which
would better emphasize that left-directed messages, (rﬂf, must arrive from the right.

18

With some simple transformations, the choreographies presented earlier do indeed
satisfy locality. For example, the inc-choreography can be put into the curried form

eps — (inc —» {eps ® bit1})
bit0 — (inc - {bit1})

bit1 — (LE - {'(E e bit0}).
Likewise, after some transformations, the bit-choreography also satisfies locality:
-—

(eps > {(1 @ epg) @ bit]})
inc — | & (bitQ »> {1 bit]})
& (bit] > {inc » bitg})

However, notice that a clause my{ ® p* @ mj — {A*} cannot be put into a form that
satisfies locality. Its closest curried form is p* — (m{ > (m3 - {A"})), but even that
form does not adhere to the grammar for local clauses because » is not followed by a

{h

3.2.2 Specification-preserving

To judge that a signature is specification-preserving, we rely on a notion of erasure that
removes the assigned roles, translating message- and process-like atoms to ordinary
atoms.

Definition 2 (Role erasure). For atomic propositions, the role erasure (—)¢ is given by

(m+)e — m+ — (E,l)+)e

PHe=p".

Role erasures for propositions and contexts, (A*)¢, (A7)¢, and (Q)¢, are defined com-
positionally, lifting role erasure for atoms.

For instance, the role erasure of inc is (L@e = inc, matching the intuition that the
message-like atom inc in the inc-choreography (Section 3.1.1) serves to implement the
specification’s inc atom.

Using role erasure, we can define the specification-preserving property as follows:

Definition 3 (Specification-preserving). A signature X is specification-preserving for
the specification ¥ if: Q —x Q' under the signature X if and only if (Q)¢ —5 (Q”)€
under the specification 2. In other words, X is specification-preserving for X if (—)¢ is
a bisimulation.

Thus, to be specification-preserving, a choreography must be lock-step equivalent
with its specification. For example, the inc-choreography for the binary counter speci-
fication is indeed specification-preserving because the two are lock-step equivalent.
Figure 9 shows how the steps correspond using bisimulation diagrams.

19

©°{eps,inc} —— O¢{eps,bit1} 0°¢{bit0,inc} —— O°{bit1}
() | |)
O{eps,inc} —— ©{eps,bit1} O{bit0,inc} —— O{bit1}

0¢{bit1,inc} —— O%{inc,bit0}
e |
©{bit1,inc} —— ©O{inc,bit0}

Figure 9: The inc-choreography of Section 3.1.1 is specification-preserving.

4 Session-typed processes from singleton linear logic

Thus far, we have followed a proof-construction approach to computation, having in
Section 2 reviewed an interpretation of ordered logical specifications as concurrent
string rewriting and in Section 3 identified a fragment in which those specifications
have a message-passing character. In this section, we turn to a proof-reduction view
of computation.

Recently, Caires and Pfenning (2010) with Toninho (2013) have established a Curry-
Howard isomorphism, dubbed SILL, between the sequent calculus for intuitionistic
linear logic and a session-typed 7-calculus, in which propositions are session types,
proofs are session-typed processes, and cut reductions are process reductions.'’ This
gives a proof-reduction view of concurrency that differs, apparently substantially, from
the proof-construction perspective. But, by the end of this proposal document, we will
have shown that the differences are not as substantial as they first appear.

In this section, we present a reformulation of Caires et al’s SILL for a restriction of
intuitionistic linear logic, which we call singleton linear logic, that is a better fit for
comparisons with ordered logical specifications.

4.1 Toward singleton linear logic

In a session-based model of concurrency, pairs of processes interact in well-defined
sessions, with one process offering a service that its session partner uses. Session
types, pioneered by Honda (1993), describe the interaction protocol to which a process
adheres when offering its service. When processes interact, the session type changes:
one process now offers, and the other uses, the continuation of the initial service. As
shown by Caires et al. (2013), the logical reading of session-based concurrency is linear
logic exactly because it can express this change of state.

"Wadler (2014) later developed a correspondence between classical linear logic and a session-typed
m-calculus, but Caires et al.’s intuitionistic correspondence turns out to be better suited to our goals here,
for reasons we will explain shortly.

20

Because a process offers its service along a distinguished channel, the basic session-
typing judgment of Caires et al.s SILL is P :: x:A, meaning “process P offers a service
of session type A along channel x”. However, P itself may rely on services offered
by yet other processes, and so, more generally, the SILL session-typing judgment is a
linear sequent annotated as

X1:A, X0, X Ay Pt A (n20),
A

meaning “Using services A; offered along channels x;, the process P offers service
A along channel x” (The channels x; and x must all be distinct and are binding
occurrences with scope over the process P.)

In SILL, the linear sequent calculus’s inference rules thus become session-typing
rules for processes. Just as the inference rules arrange sequents into a proof tree,
so do the SILL session-typing rules arrange processes into a tree-shaped network in
which some processes are clients of more than one process (i.e., some nodes have more
than one child). The following is a snapshot taken during the execution of one such
tree-shaped process network.

In this thesis proposal, we are interested in a restriction of SILL that will match
concurrent ordered logical specifications. To match the ordered context of these
specifications, we cannot directly use SILL—at least not in its full generality. Instead,
we need a restriction of SILL in which process networks are chains, not arbitrary trees.

One might expect that process chains should arise from ordered logic. But, taking
into account the way that the structure of the SILL session-typing judgment induces a
tree-shape for process networks, it becomes apparent that process chains, in fact, arise
when processes are restricted to use at most one service each—that is, when contexts A
are restricted to be either empty or singletons. The session-typing judgment becomes

“FPuxtA or xpAFPixiA

and the process networks are necessarily chains:

D1~

Having made this restriction, we can simplify the judgments: if there are at most
two channels, they can always be unambiguously named “left” and “right”, rather than

21

bothering with fresh names like x; and x. Moreover, since the channel names are now
fixed by position (rather like de Bruijn indices), we may as well omit them altogether
from the session-typing judgments:

“FP:A or AFP:A.

The following sections describe this restriction of SILL. It’s worth emphasizing that
although we choose to present the logical rules and process assignment simultaneously,
singleton linear logic is indeed a well-defined logic in its own right: even in the presence
of the restriction to singleton antecedents, we still have a Curry-Howard isomorphism.

4.2 Cut as composition

The cut rule of intuitionistic linear logic composes a plan for obtaining resource A
with another plan that uses resource A:

ArA N,ArC
AN FC

When antecedents are restricted to be either empty or singletons, that rule becomes
the cut rule for singleton linear logic; it retains the character of a composition:

A+ A AI—CCU

T
ArC A

Because proofs are to be processes, this suggests that the process interpretation of the
cut rule should compose a process that offers service A with another process that uses
service A. The cut 4 rule thus becomes a typing rule for process composition:

ArP:A ArQ:=C
CUTA
A+ spawnP;Q = C s

where spawn P; Q means “Spawn process P to the left, and then continue as process
o

To complete the description of spawn, we must make its operational semantics
precise. Rather than using a structural operational semantics, it is convenient to
describe the semantics as an ordered logical specification (Pfenning 2004; Pfenning and
Simmons 2009), in the style known as a substructural operational semantics (SSOS). In
our SSOS, we will use the atomic proposition exec P to represent an executing process
P. The rule for executing a spawn is

exec (spawn P; Q) — {exec P ® exec Q}.

Thus, to execute the spawn, we execute the processes P and Q side-by-side, with
process P offering a service that Q uses.

22

4.3 Additive conjunction as branching

So far we have discussed only cut, a judgmental principle that applies to all services'?;
specific services are defined by the right and left rules of the logical connectives.

The singleton linear sequent calculus rules for the additive conjunction A; & A,
are as follows. Other than the restriction to singleton or empty antecedents, these
rules are the same as those from linear logic.

A+ A AI—AZ& A rC &L A+ C L
Ar A &A, X A &A,rC 1 A & A+ C S

The right rule, &R, says that to prove A; & A, we must prove both A; and A, (using
the same resource A) so that we are prepared for whichever of the two resources, A,
or A,, is eventually chosen by a &1, or &1, left rule.

Correspondingly, a process that offers service A; & A, gives its client a choice of
services A; and A,; the process must be prepared to offer whichever service the client
chooses. Based on this intuition, we interpret the &r rule as typing a binary guarded
choice:

ArPi=A; ArPyz A 2R
A+ caseR(iny = P, [in, = P,)) = A; & A,

where caseR (in; = P; [in, = P,) means “Input either in; or in, along the right-hand
channel, and then continue as process P; or P,, respectively”
Conversely, the client sitting to the right that uses service A; & A, must behave in
a complementary way: the client should select either service A; or service A, and then,
having notified the offering process of its choice (as in; or in,), continue the session
by using that service. The left rules for type A; & A, are thus:
ArQ:C A, -Q:C

&L
A, & Ay F selectLing;Q=C ~ A, & A, + selectLing;Q = C

&Lg

where selectLin;;,; Q means “Send label in;/, along the left-hand channel and then
continue as process Q.

Our intuition about the behavior of the guarded choice processes is made precise
by their asynchronous operational semantics. First, the in; branch:

exec (selectLin;; Q) — {msgLin; e exec Q}
exec (caseR (in; = P; [in, = P,)) e msgLin; — {exec P;}.
To execute the selection process selectL inj; Q, we asynchronously send to the left a
message containing the label in;, which is represented in the SSOS as the proposition
msgL in;, and then immediately continue the session by executing process Q. When
this message arrives, the destination process caseR (in; = P; [in, = P,) resumes
execution as P;.
The operational semantics of the in, branch is symmetric to that of the in; branch:
exec (selectL iny; Q) — {msgL in, ® exec Q}

exec (caseR (in; = P; [in, = P,)) e msgLin, — {execP,}.

?The other judgmental principle, identity, is postponed to Section 4.8 in the interest of presenting only
what is necessary for a first, simple example.

23

Practical considerations. To make the language more palatable for the programmer,
we diverge slightly from a pure propositions-as-types interpretation of singleton linear
logic by including n-ary labeled additive conjunctions, &{¢ : A;},_, , as a primitive.
By analogy with the binary conjunction, the typing rules and operational semantics
for &{¢ : Az}, are as follows. Notice that the &r has a set of premises, one for each
label € € L.
VeeL AvrPp:A, ArrQ:=C (kel)

&R
Av caseRpep (€= Pp) = &{l: A}y &{l: A}y +selectLk;Q = C &t

exec (selectL k; Q) — {msgL k e exec Q}
exec (caseRycr (£ = P;)) @ msglL k — {exec P} (kel)

Another possibility would be to simply treat n-ary labeled conjunctions as syntactic
sugar for nested binary conjunctions, but this would introduce a communication
overhead because we would be sending multiple in;,s separately rather than a single
label k.

4.4 Recursive session types and process definitions

Concurrent processes frequently exhibit unbounded or infinite, yet well-defined, be-
havior; for instance, we may wish to have a counter that offers an increment service
indefinitely. Toninho et al. (2014) have proposed an extension of their SILL type theory
that incorporates inductive and coinductive session types. However, to keep matters
simpler, we instead rely on general recursion here and choose to be content with the
rather ad hoc departure from a pure Curry—Howard isomorphism.

Session types thus include general recursive types, pt.A, and type variables, t.
The type ut.A is interpreted equi-recursively, being identified with the unfolding
[(ut.A)/t]A. Processes correspondingly include mutually recursive process definitions,
via letrec, and process variables, X.

We extend the session-typing judgment with a context, ¥, of process-variable
typings. Because a process is typed according with a sequent of services that it uses
and offers, process variables are typed as X : {A + A} if process X can offer service A
by using services A. When channels of appropriate types are available, the process X
can be called:

UXAAF A :AFcallXzA O
A common idiom is spawn call X; Q, which spawns a call to X that is run in parallel
with some process Q. We will sometimes abbreviate this with the syntactic sugar
spawn X; Q or even X; Q.

In mutually recursive process definitions, the process bodies may refer to any of
the mutually recursive processes via process variables. The typing rule is

W' =X {A FAL . L X {AFAY=P,) Yie PV A RP A P ARQ:C
¥ At letrecX;:{A; - A} =Py and ---and X,;:{A, F A,} = P,inQ = C

LETREC

24

Listing 1: A simple binary counter supporting an increment operation

stype Cntr = &{ inc: Cntr }

eps : { |- Cntr } =
{ caseR of
inc => eps; bitl }

bit0 : { Cntr |- Cntr }
{ caseR of
inc => bit1l }

bitl : { Cntr |- Cntr }
{ caseR of
inc => selectl inc; bitO }

(‘I”:{X:{AXI—AX}}XGX) VX eX: P, ;Ax+Px:Ax VY, ¥ ;A+rQ:=C
¥ Atk letrecyey (X{Ax F Ax} =Px)inQ = C

LETREC

The operational semantics of these constructs are as follows:

exec (letrec X;:{A; + A;} =P;and ---and X,;:{A,, + A,} = P, inQ)
—{!bnd X; P, e...e'bnd X, P, ® exec Q}

lbnd X P e exec (call X) — {exec P}

The environment of bindings of process variables to process expressions is represented
in the SSOS as a collection of bnd X P hypotheses. To execute a group of mutually
recursive process definitions, bindings are introduced for each of the process variables
and then the body of the letrec is executed. To execute a free process variable X,
instead execute the process expression to which X is bound.

Having presented recursion, we can finally give a simple example program.

4.5 Example: Binary counter

We can implement a simple session-typed counter on natural numbers as shown in
listing 1."3 The counter is a chain of bit0 and bit1 processes, one for each bit in the
binary representation of the counter’s value, and is terminated at the most significant
end with an eps process. For instance, the process chaineps; bitl; bitO represents
a counter with value 2.

The counter offers a very simple service: the client may only choose to increment
the counter, with the same service being offered recursively after the increment. This

3This example is adapted from one by Toninho et al. (2013).

25

service, Cntr, is therefore a recursive (unary) additive conjunction, declared in the
concrete syntax as stype Cntr = &{ inc: Cntr }. The eps process offers this
service outright, and thus has type { |- Cntr }. The bit0 and bit1 processes, on
the other hand, use the service offered by their more significant neighbors, and thus
have type { Cntr |- Cntr }.

The process definitions of eps, bit0, and bitl are mutually recursive. When an
eps process receives an inc message, it creates a new most significant bit by spawning
a new eps process and then making a recursive call to a bit1 process. When a bit0
process receives an inc, the bit is flipped by virtue of a recursive call to a bit1 process.
Lastly, when a bit1 process receives an inc, the bit is flipped and a carry is propagated;
this is accomplished by first sending inc along the left to the Cntr offered by the next
more significant bit and then making a recursive call to a bit0 process.

Informally, we can see that, as implemented, the inc operation respects a counter’s
denotation: whenever a counter representing natural number N is incremented, the
resulting counter represents N + 1. Note, however, that this adequacy property is
not enforced by the type Cntr. An appropriate dependent session type could enforce
increment adequacy, but, for simplicity of exposition, we prefer the simple type here.

4.6 Additive disjunction as choice

In the singleton linear sequent calculus, additive disjunction, A @ B, is dual to additive
conjunction, A & B.

ArA; ®r A+ A, R ArC AyrC
ArA @A, ° ArA @A, ¢ A ®AFC

We should expect this duality to also appear in the process assignment. Whereas
a process of type A & B offers its client at the right a choice of services A and B, a
process of type A @ B chooses between offering service A or service B to its client at
the right. The client waits to be notified of the offering process’s choice and then uses
that service.

Ar P A . ArP: A, o
A+ selectRing; P = A; @ A, ! A+ selectRin,; P = A; @ A,

Ry

A R0 5C A rQp=C
A ® A, FcaseL(ing = Q; [in,= Q,) = C

DL

Confirming the intuition that selectR in;/,; P sends along the right-hand channel and
casel (in; = Q; [in, = Q,) receives along the left-hand channel are the SSOS rules:

exec (selectR iny; P) — {exec P e msgRin;}
msgRin,; e exec (caseL (in; = Q; [in, = Q,)) — {exec Q;}
exec (selectR iny; P) — {exec P e msgRin,}

msgR in, e exec (caseL (in; = Q; [in, = Q,)) — {exec Q,} .

Because the operational semantics is asynchronous, it’s important to distinguish the
msgR predicate, which represents messages that flow to the right, from the msgL

26

Listing 2: A binary counter supporting increments and decrements

stype Cntr = &{ inc: Cntr , dec: Cntr' }
and Cntr' = +{ ok: Cntr , fail: Cntr }

eps : { |- Cntr } =
{ caseR of
inc => eps; bitl
| dec => selectR fail; eps }

bit0 : { Cntr |- Cntr } =
{ caseR of
inc => bitl
| dec => selectL dec; bit0' }

bit0' : { Cntr' |- Cntr' } =
{ casel of
ok => selectR ok; bitl
| fail => selectR fail; bitO }

bitl : { Cntr |- Cntr } =
{ caseR of
inc => selectl inc; bitO
| dec => selectR ok; bitl }

predicate, which represents messages that flow to the left. Otherwise, a selection
process’s continuation could mistakenly capture the message that was just sent, as
might happen in executing selectR iny; caseR (iny = P; [in, = P,), for example.

Once again, to make the language more convenient for the programmer, we include
n-ary labeled additive disjunctions &{¢ : A;}, ;. The typing rules and operational
semantics are thus more generally

A+rP:A, (kel) VeeLl AprQp=C

oL
Ak selectRk; P d{€: Ap},., or &{C: Ar}pep Feaselye (€= Qp) = C

exec (selectR k; P) — {exec P e msgR k}
msgR k e exec (caseL,e; (€ = Qp)) — {exec O} (ke L)

4.7 [Example: Binary counter with decrements

Listing 2 shows a counter that takes advantage of additive disjunction to support a
truncated decrement operation. According to the type declaration, a process offering
the Cntr service gives its client a choice of increment or decrement services. If the

27

client chooses to decrement, the offering process will choose to reply with either fail
or ok and then recursively offer the Cntr service.

As implemented, decrementing the counter gives fail and leaves the process
network unchanged if the counter represents 0; if it represents some N > 0, then
decrementing the counter gives ok after decrementing to N — 1. Once again, these
adequacy properties are not enforced by the type Cntr, although they could be with
an appropriate dependent session type.

4.8 Identity as forwarding

In singleton linear logic, in addition to the cut principle, there is an identity principle
that states that one way to obtain a resource is to directly use an existing resource:

D
ArA A,
Under the process interpretation, a process can offer service A by acting as a forwarding
intermediary between its clients and another process that offers service A. The 1D 4
rule thus types a forwarding process between two channels:
-
ArozA A,
Rather than making the forwarding explicit in the operational semantics, we can
simply eliminate the middleman, adjoining the neighboring processes:

exec (&) — {1}.

4.9 Other session types

In addition to the those already mentioned, the other connectives of singleton linear
logic correspond to session types.

Multiplicative unit. Like its SILL cousin, the multiplicative unit 1 is the service that
terminates without any interaction. Its right rule, 1R, types a process that immediately
terminates; its left rule, 11, types a process that waits for the left-hand side to terminate:

FQ=C
—F—— 1R ———— 1L
-+ closeR = 1 1+ waitl;Q = C

The operational semantics is asynchronous, with the closeR process sending a quit
message, msgQ:
exec closeR — {msgQ}

msgQ e exec (waitl; Q) — {exec Q}

First-order universal and existential quantification. The first-order quantifiers type
processes that exchange functional values. A process offering service Vx:7.A, (or using
service dx:7.A,) first inputs a value x of functional type 7 and then offers (resp., uses)
service A,. Dually, a process offering service 3x:7.A, (or using service Vx:7.A,)

28

asynchronously outputs the value of some functional term M of type 7 and then offers
(resp., uses) service [M/x]A,. The first-order quantifiers are thus dependent session
types; in the non-dependent case, we write the types as 7 D Aand A A 7.

Since value inputs and outputs are not critical to the remainder of this proposal, the
reader who is interested in further details of their static and dynamic semantics in SILL
should refer to the papers by Toninho et al. (2013, 2011); we leave the extrapolation to
singleton linear logic as an exercise for the reader.

Multiplicative conjunction and linear implication. The restriction to sequents with
singleton antecedents proves fatal to attempts to include multiplicative conjunction
(A ® B) and linear implication (A — B) as connectives in singleton linear logic. For
multiplicative conjunction, the left rule is problematic because it breaks down one
hypothesis into two; for linear implication, the right rule is problematic because it
introduces a new hypothesis even if one is already there. Fortunately, for the examples
in which we are interested, the absence of ® and —o is not an issue.

4.10 Concurrency

Having described the typing rules and SSOS rules for process chains, we need to say a
word about concurrency. The SSOS rules correspond to cut reductions. Typically, from
a proof-theoretic standpoint, we would only be concerned with taking cut reductions
sequentially, starting with those reductions nearest the derivation’s leaves. This way,
we need only deal with eliminating cuts whose subproofs are cut-free.

However, another strategy would be to allow cut reductions only at the top level —
allowing cut reductions to occur only underneath other cuts. This strategy, used by
Caires et al. (2013), corresponds to that of the 7z-calculus, in that reductions occur inside
parallel compositions but not underneath input or output prefixes. In general, several
cut reductions may be applicable; if the different interleavings of these reductions are
treated as indistinguishable, then the reductions appear to happen concurrently.

We do not separately prove a correspondence between the cut reductions of single-
ton SILL and a calculus of process chains, mainly because we know of no independently
existing process calculus that deals exclusively with chains. However, the reader may
refer to Caires et al’s work (2013) for a correspondence between the cut reductions
of intuitionistic linear logic and the process reductions of the z-calculus. Because
singleton SILL is a fragment of SILL, their result carries over to singleton SILL and
m-calculus chains.

5 From ordered logical specifications to processes

The goal of this document is to relate the two notions of concurrency that arise in
ordered logical specifications and session-typed process chains, respectively. Thus far,
we have reviewed propositional ordered logical specifications (Section 2), identified
a class of message-passing choreographies (Section 3), and presented a well-defined
restriction of linear logic that serves as a session-typing discipline for process chains
(Section 4). We are finally ready to tackle this document’s main goal.

29

First, in Section 5.1, we show how to translate choreographies to process chains.
Section 5.2 demonstrates correctness of the translation, in the sense that the translation
is a weak bisimulation. Finally, in Section 5.3, we derive a typing discipline for
choreographies and show that well-typed choreographies become well-typed processes
under translation.

5.1 Translation of choreographies to process chains

Recall the grammar of local propositions given in Section 3.2.1:

Negative propositions A™,B = {A"} | &er(mi - (A7) | &qer(mi = {AT})

Positive propositions ~ A",B* == A" eB" | 1| m" e AT |AT e m™ | p* | A”

The translation [-] from choreographies to process chains is syntax-directed,
according to the proposition’s polarity. The principle that guides the design of this
translation is that each choreography transition from a context Q should be matched
by a process-chain transition from the chain to which Q translates, and vice versa.

Translating negative propositions. The translation for negative propositions is in-
ductively defined by:

[{A™}] = [AT]
[&ier(m; » {AT})] = caseRe; (1 = [AT])
[&;er(m; = {AT})] = casel;¢; (m; = [Af])

The lax modality {A*} translates just as A" does: the modality is silent. The proposition
&ier(m; —» {AT}) is a caseR process that waits to receive one of the labels m; from
the right side; the arms of the case are exactly the translations of each A}. Likewise,
&ier(m; = {A7}) is a casel process.

Intuitively, this translation is the correct one because the caseR receives a message
my. and continues as [A;] exactly when the proposition &;¢;(m; - {Af}) transitions
to Aj. A similar intuition applies to the caseL process.

Translating positive propositions. Positive propositions, which appear only in monadic
heads in this grammar, are also translated to processes.

[m e A*] = selectL m; [A"]
[A* o m] = selectR m; [A*]
[p*] = call p*
[AT o A7] = spawn [A7]; [A3]
1] = o
The message conjunctions m e A* and A" e m translate to left and right selection

processes selectL m; [A*] and selectR m; [A"]. Process-like atoms translate to calls to
the corresponding process variable. A general ordered conjunction A7 e A} translates as

30

the composition of the processes to which A} and A} translate. Lastly, the proposition
1 translates to the process <, which forwards between its left and right endpoints.*4
The idea is that each inversion step is matched by an asynchronous transition from
the process, such as the outermost inversion step for ;e A™ into m, A* being matched
by the asynchronous decomposition of selectL m; [A*] into message m and executing
<« -«
process [A*].

Translating contexts. Finally, ordered contexts, Q, translate to chains of executing
processes, which are represented as ordered contexts in the SSOS. The translation
proceeds homomorphically over contexts, with each hypothesis becoming an SSOS
hypothesis in the translation.

[91, Q] =[] [Q].
[]e=-

[A*]. = exec [AT]

[A7]. = exec [AT]

HL'Z]]c = msgRm

[m]c = msgl m
[p7]. = exec[AT] where p* - A" € X

The left- and right-directed message-like atoms m and m become the left- and right-
directed messages msglL m and msgR m, respectively, in the SSOS. The process-like
atom p* becomes exec P, where P is the process body of p*’s unique definition in the
choreography X. Once again, the translation is defined in such a way that the behavior
of contexts and their SSOS translations match.

5.2 Correctness of the translation

As stressed in the preceding discussion, the principle that guided the translation’s
design was that the choreography’s transitions should be matched by those of the
process to which that choreography translates. In other words, the translation, [-],
should be a strong bisimulation.

Unfortunately, that property does not quite hold: [-] is not even a strong simula-
tion. Consider the choreography transition {A*} — A", for example. For [-] to be a
strong (bi)simulation, there would have to be an SSOS transition exec P — exec P,
where P = [A*]. Such a transition simply does not exist in the SSOS of our processes.

However, if we treat that choreography transition (and, more generally, {{A*}} —

©{A*}) as silent, then it is true that [-] is a weak simulation: together {A*} LAY
and P = [A"] indeed (trivially) imply exec P 5" exec P. More generally:

Theorem 1 (Completeness).

e IfQ — Q, then [Q]. — [Q]..

“nterestingly, for this translation, the identity principle (¢ process) acts like a nullary cut principle
(spawn Py; P, process).

31

. IfQ - O, then [Q]. —* [Q]..

Proof. By analyzing the structure of the given transition and translation. Notice

that the given silent transition is necessarily @{{A*}} SN ©{A*} because no other
transitions are defined to be silent. O

Neither is the inverse of [-] a strong simulation. Consider the SSOS transition
exec (call p*) — exec P, where the body of the process definition of p* is P. By
examining the definition of [-], we see that there would have to be a choreography
transition p* — p* if the inverse of [-] is to be a strong simulation. Once again,
such a transition simply does not exist.

However, if we treat that SSOS transition (and, more generally, A;, exec (call p*),A;, —
Aq,exec P,A\y) as silent, then it is true that the inverse of [-] is a weak simulation: to-
gether exec (call p*) - exec P and [p*]. = exec P indeed (trivially) imply p* Ly pt.
More generally:

Theorem 2 (Soundness).
e If[Q]. — A, then Q — Q’ for some QO such that A’ = [Q']..
o If[94]c. exec (call p*), [Q]. = [Q1]c,exec P, [Q,], then p* — A~ € X for some
A~ such that [A"] = P.
Proof. By analyzing the structure of the given transition and translation. O

Putting these two pieces together, [—] is a weak bisimulation and [—] is therefore
correctly defined.

5.3 Well-typed choreographies translate to well-typed processes

At this point, we can translate choreographies to syntactically well-formed processes.
However, not all choreographies translate to well-typed processes. For example, (AT e
my) @ (m, A7) translates to the process spawn (selectR my; [AT]); (selectL my; [A7]),
which is not typable in singleton SILL because the messages have no matching recipi-
ents and therefore collide.

To identify a class of choreographies that enjoy the same session fidelity and,
especially, deadlock freedom (i.e., progress) properties as well-typed processes, we
need to introduce a typing discipline for choreographies, F°", that is preserved by the
translation. The following theorem is our goal:

Theorem (Translation preserves typing).
e A+M A” : Bifand only if A+ [AT] :: B.
e AN A* B ifand only if A+ [A*] :: B.

Because [-] describes a fairly tight correspondence between choreographies and
processes, the rules for F°! are “just” the rules for typing processes (): simply replace
the process terms with the corresponding ordered logic proposition. For instance,

32

m e A" translates to selectL s [A*] and so, from the &t rule that types selectL
processes, we obtain the rule for typing m; o A™:

A FP:C (kel) A Fh AT C (kel)

S

8{l: Ap}t,p v selectLk; P = C &t &{l: Apt,ep peh mee A" :C

Notice how these new rules use two varieties of proposition in two different ways:
polarized ordered propositions are choreographies; unpolarized (singleton) linear
propositions serve as their types. For this reason, the rules in isolation are admittedly
a bit mind-bending, but they are in fact rather straightforward to derive if we keep the
replacement pattern in mind. As another example of the pattern, 1 translates to <,
the forwarding process, and so, from the 1D 4 rule that types < processes, we obtain
the rule for typing 1 as a choreography:

o> Dy

Dy

I 71
Aro= A ArhiaA

Of the rules for typing choreographies, only two do not mimic process-typing rules.

First is the rule for typing {A*}. But, here again, the goal theorem shows the way; the
{-} modality is silent in the translation, so it should also be silent in the typing:

AP AT = A
Arh (AT} A

Second is the rule for typing process-like atoms p. Similarly to process variables,
we assume that the programmer has specified the type of each process-like atom.
With this signature, we just check that each use of a process-like atom adheres to its
specified type:

pri{Arh A} e
A reh ptuA

The complete set of rules for typing choreographies is shown in Fig. 10. It is easy
to check that the goal indeed holds: the translation preserves typing.

Theorem 3 (Translation preserves typing).
« A+ A™ : Bifand only if A+ [AT] :: B.
e AN A* B ifand only if A+ [A*] :: B.
Proof. By induction on the structure of the given typing derivation.]

Instead of using this theorem to justify the rules for typing choreographies, it’s
also possible to justify them from first principles if desired. Consider the cut, rule,
for example:

ArPAT A AP AL C
Arh At e AL C

CUT4

This rule says that if the choreography A7 has, from left to right, the interfaces A
and A (ie., A v® A7 :: A) and the choreography A} has the interfaces A and C

33

VeeL: A+MAL:A, A rP AT C (kel)
&R o
A rcb &geL(mg »{A}}) = &{¢: A[}(,’EL &{¢: A[}(,’EL € my e At . C

&L

ArP AT AL (kel) VeeL: AprPA}:C o
R L
At At o my = @{0: Ark,e, Bl : A}y P &per(me = {AF}) = C

Arh At = A pri{ArtAtes
AP {AT} A A pt A
ArP AT A Arhal:C
CUT 4 ———F IDy
Arh At e A} C Arh1:A

Figure 10: Choreography typing rules. The context A is either empty or a singleton.

(ie., AP A% :: ©), then their composition, A} e A}, has: i) A as its left-hand interface,
which is reasonable because the left-hand side of A} is exposed; and ii) C as its
right-hand interface, which is also reasonable because the right-hand side of A} is
exposed. The other rules can be given similar justifications.

6 Proposed work

In this document, we have shown how the session types that arise from singleton
linear logic form a bridge between a class of ordered logical specifications and well-
typed processes—between proof-construction-as-computation and proof-reduction-as-
computation. Most of the proposed work involves generalizing this connection along
several dimensions: i) a more expressive logic for specifications; ii) a more expansive
translation that covers generative invariants; and iii) a more permissive session-type
system. We now outline that proposed work.

6.1 From ordered logical to linear logical specifications

The primary area of proposed work is to generalize the logic used for specifications
from ordered logic to the more expressive linear logic. The process chains used in this
proposal will be correspondingly generalized to Caires et al’s (2013) SILL process trees.
We’ll motivate this generalization with an example: addition of binary representations.

Logical specification. By adapting ideas from Turing machines, it is possible—though
undoubtedly awkward—to give an ordered logical specification for adding two binary
numbers. First, the numbers are arranged end-to-end, separated by a plus atom and
terminated by an equals atom. For instance, the string

eps o bit1 e bit0 e plus e bit1 e bit0 e equals

34

equals — {dec e equals’}

bit0 e dec — {dec e bit0’} bit0 e skip — {skip e bit0}
bit1 e dec — {skip ® bit0 @ ok} bit1 e skip — {skip e bit1}
plus e dec — {fail} plus e skip — {inc e plus}
ok e bit0” — {bit1 e ok} fail e bit0’ — {fail}
ok e equals” — {equals} fail ® equals” — {1}

Figure 11: An ordered logical specification of Turing-machine-like binary addition

represents a request to evaluate 2 + 2. Next, repeatedly decrement the second number
and increment the first number. When the second number reaches 0, the first number
holds the desired sum. The ordered logical specification of this addition algorithm is
shown in Fig. 11.

Unfortunately, this algorithm is not especially efficient: it takes Q(N log N) work
to compute M + N. It would be better to add the two binary representations bit-by-bit
using the usual grade-school algorithm. However, bit-by-bit addition demands that
we can locally access the least significant bit of each number and, separately, produce
output bits—which is not possible in an ordered logical specification.

Itis possible, however, in a destination-passing linear logical specification (Cervesato
et al. 2002). Even without the ordering constraint, a tree structure can be recovered
via destinations that thread the bit atoms together with a plus parent atom. Pictorially,
the request to compute 2 + 2 would be expressed as the state

eps(cy) ® bit1(cy,cq) ® bit0(cq,cy)

[Jd,
eps(dy) ® bit1(d,,d;) ® bit0(d,,d,) ® plus(cy, do,)

where ¢ and the c¢;s and d;s are all destinations and where the sum will be output at
destination c. Thus, the destination-passing rule for adding two numbers that both
end in bit0 is

bit0(C;,Cy) ® bit0(D;,Dy) ® plus(Cy, Dy,C) —o {3cg. plus(Cy, Dy, ¢f) & bitd(c),C)} .

It says that if both inputs end in bit0, then their sum also ends in bit0, with the more
significant bits obtained by inductively adding the more significant bits of the two
inputs. When this rule is applied to the above state, the state changes and the first bit
of output is produced:

eps(cy) @ bit1(cy,cq)

lus(cy,dy,) ® bit0(cj,c).
eps(dy) ® bit1(dy,d,) & Pus(Cr-dr-c0) ® bit0(cs.c)

Concurrent processes. Now, let’s consider how we might add two binary numbers
using SILL process trees. Suppose that we represent each number as before—each
number is a chain of bit processes (a degenerate process subtree if you will)—and that

35

we include a plus parent process that uses the two numbers to offer the sum. For
example, the following process network represents a request to compute 2 + 2.5

where the ¢;s and d;s are channels. Notice the remarkable similarity of this network
with the initial linear logical state shown above: destinations become channels and
atoms become processes.

We would expect the plus process to be implemented in such a way that the above
process network eventually transforms to the following network.

Once again, there is a remarkable similarity between this network and the linear logical
state after producing one output bit.

The proposed work is to make these similarities precise. Just as in this document,
the overall goal will be to identify a class of linear logical specifications that can be
translated to SILL process trees. This item of proposed work is of primary importance.

Specific goals. This proposed work involves several components.

« Identify the class of linear logical specifications that act as choreographies. Not
all linear logical specifications will describe process-like behaviors. As in
the ordered case, choreographies will need to be both local and specification-
preserving. Now, however, locality depends not on adjacency in the ordered
context, but on sharing a destination.

The key challenge here, therefore, will be to ensure that destinations are used in
a channel-like way within the choreography. Each atom should “offer” along one
destination and “use” possibly several distinct destinations, and each destination
should have one occurrence as an “offer” and one occurrence as a “use”. The
machinery of destination uniqueness and index sets (Simmons 2012) will likely
be useful here.

« Develop a translation of choreographies to SILL processes. In addition to translating
destinations to channels, the main challenges here will be expanding the class
of choreographies to allow translation to processes of ®, —o, and ! type. The
® and —o types are not possible in singleton linear logic (as mentioned in
Section 4.9) and so nothing similar was considered in the translation of ordered
choreographies to process chains. The ! type was, by choice, not considered in
the ordered translation to keep the initial development simple.

5The process names have been abbreviated to e, 0, 1, and + for this picture.

36

« Give a type system for choreographies. I expect to follow the same pattern as in the
ordered case: derive the choreography typing rules from the process typing rules
by looking at the process to which a choreography translates. While everything
will be notationally more complex, I do not expect many surprises here.

Relate the results for ordered logic to those for linear logic. Simmons and Pfenning

(2011a) show how to encode ordered logical specifications in linear logic using

destinations. For instance, under their destination-adding translation, the clause

for incrementing bit1 from our inc-choreography becomes the following linear
. <~

logical clause.

o {3}, inc(Cy.§) ® bito(c).C)}

There should be a similar “channel-adding” translation from singleton SILL
process chains to SILL processes.

bit1 = caseR (inc = selectL inc; bit0) “ ¢« bitl «d =
«— «—
case c of
inc = selectdinc;
«— «—
¢+ bitd « d

Moreover, the translation from choreography to process should respect the
destination-adding translation: adding destinations to an ordered choreography
and then translating it to a process should give the same result as first translating
the choreography to a process chain and then adding channels. This will serve
as a sanity check on our design of the translation from linear choreographies to
SILL processes.

6.2 Generative invariants as session types

In this proposal, we have used the non-modal fragment of ordered logic to specify
concurrent systems, whereas that fragment of ordered logic was originally developed
by Lambek (1958) to describe sentence structure. However, these two modes of use of
ordered logic are not as different as they might first appear.

Recall that, in our running example of an incrementable binary counter, the counter
is represented as a string of bit0, bit1, and inc atoms terminated at the most significant
end by an eps. More precisely, a string is a well-formed binary counter if it can be
generated from the Cntr nonterminal by the context-free grammar

Cntr ::= eps | Cntr e bit0 | Cntr e bit1 | Cntr e inc,

which is notation for four distinct productions.

Building on Lambek’s work, the same context-free grammar can be described in
ordered logic using generative invariants (Simmons 2012). Each production in the
grammar (below, left) becomes a clause (below, right), with the atomic proposition

37

Cntr acting as the nonterminal:

Cntr — eps Cntr — {eps}

Cntr — Cntr e bit0 Cntr — {Cntr e bit0}
Cntr — Cntr e bit1 Cntr — {Cntr e bit1}
Cntr — Cntr e inc Cntr — {Cntr e inc} .

Just as all binary counters are generated from the Cntr nonterminal according to the
above productions, so too are all binary counters generated as maximal rewritings of
the Cntr atom according to these clauses:

Definition 4 (Counter well-formedness). String S is a well-formed counter if S is a

maximal rewriting of Cntr under the signature X, that is, if Cntr —>§Cnn S =5

For example, the maximal trace
Cntr —y_ Cntreinc —y_ Cntr e bitl einc —y_ eps e bitl einc —oy

witnesses that eps e bit1 e inc is a well-formed binary counter.

As observed by Simmons (2012), generative invariants like 3¢, serve a similar
purpose for ordered logical specifications as types do for functional programs: both
describe the valid states and enable preservation and progress properties for their
respective notions of computation.

Given the translation from choreographies (i.e., ordered logical specifications) to
well-typed processes that was presented in Section 5, it’s thus natural to ask how that
translation interacts with a generative invariant. Being the choreography’s “type”,
does the generative invariant become the process’s session type?

It appears that the answer is likely yes. Compare, for example, the generative
invariant for the jnc-choreography with the types of the eps, bit0, and bit1 processes
and the recursive type Cntr from Section 4.5:

Cntr — {eps} eps : { |- Cntr }

Cntr — {Cntr e bit0} bit0 : { Cntr |- Cntr }
Cntr — {Cntr e bit1} bitl : { Cntr |- Cntr }
Cntr — {Cntr e inc} stype Cntr = &{ inc: Cntr }.

Similar correspondences between generative invariants and session types exist for the
dec-choreography, the bit-choreography, and all other examples that we've considered.
It seems much too tantalizing to be pure coincidence.

Therefore, if all else goes smoothly, I propose to develop a translation of generative
invariants to session types and prove that it is respected by the translation from
choreographies to processes. I plan to follow the pattern of this thesis proposal, first
developing the translation for the special case of ordered generative invariants before
extending the results to linear generative invariants. This item of proposed work is
of somewhat lesser importance than the generalization from ordered logic to linear
logic for specifications, but has appeal in giving a more compelling explanation of the
choreography types presented in Section 5.3.

38

6.3 Translating untyped choreographies to untyped processes

In this proposal, we have been concerned only with well-typed processes and a cor-
responding class of well-typed choreographies. The logically grounded session-type
discipline ensures that well-typed processes (and, consequently, well-typed chore-
ographies) enjoy communication safety, session fidelity, and deadlock freedom (i.e.,
global progress). However, by demanding such a strong form of progress, the cur-
rent session-type discipline forbids all racy processes, even if the races are benign or
non-critical.
For example, consider the following process:

casel (okL = caseR (okR = P)) + caseR (okR = casel (okL = P)),

which waits to receive—in either order—okL and okR labels from both its left- and
right-hand neighbors, respectively. (The process constructor + denotes nondeterminis-
tic choice.) This process is certainly racy because it’s impossible, in general, to predict
the order in which the okL and okR labels will arrive. But, even so, this race is benign:
execution continues with the process P once, and only once, both labels arrive in either
order.

Choreographies may serve as a stepping-stone toward a more permissive, yet still
logically grounded, session-type discipline that allows this and other benign races.
The above example can be cast as the choreography

(okl, > {gkR - {A"}}) & (gkR - {okl, > {A"}}).

By considering how the proposed translation from generative invariants to session
types might apply to a generative invariant for this choreography, we may gain insight
into a session-type discipline that allows benign races. I also propose to develop a
translation of a broader class of choreographies to untyped processes, which may
provide different insight than just looking at the existing session-type discipline.

6.4 Session-typed Turing machines

Finally, as the example in Section 6.1 shows, some Turing machines can be session-
typed: by translating the ordered logical specification from Fig. 11, we get a well-typed,
Turing-machine-like process for adding two binary representations. In particular, the
chain structure of singleton linear logic suggests a fit with the one-way infinite tapes
of Turing machines.

Although not directly related to my proposed thesis statement, if time permits, I
would like to explore further the possible connections between singleton linear logic
and Turing machines. This is the most open-ended item of proposed work and the least
related to my proposed thesis statement, but, if successful, may have some interest to
researchers outside the programming languages community, e.g., those working in
the theory of computation.

39

A Turing-machine-like addition process

In this appendix, we present the code for a well-typed, Turing-machine-like addition
process. It corresponds to the ordered logical specification shown in Fig. 11.

stype Cntr = &{ inc: Cntr }

eps : { |- Cntr } =
{ caseR of
inc => eps; bitl }

bit0 : { Cntr |- Cntr }
{ caseR of
inc => bitl }

bitl : { Cntr |- Cntr }
{ caseR of
inc => selectl inc; bitO }

stype Cntr_D = &{ dec: Cntr_D' , skip: Cntr_D }
and Cntr_D' = +{ ok: Cntr_D , fail: Cntr }

bit0_d : { Cntr_D |- Cntr D } =
{ caseR of
dec => selectL dec; bit0O_d'
| skip => selectl skip; bit0_d }

bitli d : { Cntr_D |- Cntr D } =
{ caseR of
dec => selectl skip; selectR ok; bitO_d
| skip => selectL skip; bitl_d }

bit0_d' : { Cntr_D' |- Cntr_D' }
{ casel of
ok => selectR ok; bitl_d
| fail => selectR fail; <-> }

plus : { Cntr |- Cntr D } =
{ caseR of
dec => selectR fail; <->
| skip => selectL inc; plus }

equals : { Cntr_D |- Cntr } =
{ selectL dec; equals' }

equals' : { Cntr_D' |- Cntr } =

40

{ casel of
ok => equals
| fail => <-> }

References

Abramsky, Samson (1993). “Computational Interpretations of Linear Logic”. In: Theo-
retical Computer Science 111.1—2: Sixth Workshop on the Mathematical Foundations
of Programming Semantics. Ed. by Michael Mislove and R. D. Tennent, pp. 3-57.
ISSN: 0304-3975. DOI: 10.1016/0304-3975(93)90181-R (cit. on p. 3).

Andreoli, Jean-Marc (1992). “Logic Programming with Focusing Proofs in Linear Logic”.
In: Journal of Logic and Computation 2.3. Ed. by Dov M. Gabbay, pp. 297-347. 1SsN:
0955-792X. DOI: 10.1093/1ogcom/2.3.297 (cit. on pp. 3, 7, 11).

Bellin, Gianluigi and Philip Scott (1994). “On the 7-Calculus and Linear Logic”. In: The-
oretical Computer Science 135.1: Eighth Workshop on the Mathematical Foundations
of Programming Semantics. Ed. by M.W. Mislove et al., pp. 11-65. ISSN: 0304-3975.
por: 10.1016/0304-3975(94)00104-9 (cit. on p. 3).

Benton, P. Nick, Gavin M. Bierman, and Valeria C. V. de Paiva (1998). “Computational
Types from a Logical Perspective”. In: Journal of Functional Programming 8.2,
pp- 177-193. DO1: 10.1017/S0956796898002998 (cit. on p. 3).

Book, Ronald V. and Friedrich Otto (1993). String-Rewriting Systems. Text and Mono-
graphs in Computer Science. Heidelberg and Berlin: Springer. por: 10.1007/978-
1-4613-9771-7_3 (cit. on p. 6).

Caires, Luis and Frank Pfenning (2010). “Session Types as Intuitionistic Linear Propo-
sitions”. In: CONCUR 2010 - Concurrency Theory, 21th International Conference, Pro-
ceedings. (Paris, Aug. 31-Sept. 3, 2010). Ed. by Paul Gastin and Francois Laroussinie.
Vol. 6269. Lecture Notes in Computer Science. Heidelberg and Berlin: Springer,
pp- 222-236. po1: 10.1007/978-3-642-15375-4_16 (cit. on pp. 1, 3, 20).

Caires, Luis, Frank Pfenning, and Bernardo Toninho (2012). “Towards Concurrent
Type Theory”. In: Proceedings of TLDI zo12: The Seventh ACM SIGPLAN Workshop
on Types in Languages Design and Implementation. (Philadelphia, Jan. 28, 2012).
Ed. by Benjamin C. Pierce. ACM Press, pp. 1-12. ISBN: 978-1-4503-1120-5. DOI:
10.1145/2103786.2103788 (cit. on p. 3).

— (2013). “Linear Logic Propositions as Session Types”. In: Mathematical Structures in
Computer Science: Special Issue on Behavioral Types (cit. on pp. 3, 5, 18, 20, 21, 29,
34)-

Cervesato, Iliano and Andre Scedrov (2009). “Relating State-Based and Process-Based
Concurrency through Linear Logic”. In: Information and Computation 207.10: Special
Issue: 13th Workshop on Logic, Language, Information, and Computation (WoLLIC
2006). Ed. by Grigori Mints, Valéria de Paiva, and Ruy de Queiroz, pp. 1044-1077.
ISSN: 0890-5401. DOI: 10.1016/j.1ic.2008.11.006 (cit. on pp. 3, 14).

Cervesato, Iliano et al. (2002). A Concurrent Logical Framework II: Examples and Appli-
cations. Tech. rep. CMU-CS-2002-102. Revised May 2003. Pittsburgh: Department
of Computer Science, Carnegie Mellon University (cit. on p. 35).

41

http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1016/0304-3975(94)00104-9
http://dx.doi.org/10.1017/S0956796898002998
http://dx.doi.org/10.1007/978-1-4613-9771-7_3
http://dx.doi.org/10.1007/978-1-4613-9771-7_3
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1145/2103786.2103788
http://dx.doi.org/10.1016/j.ic.2008.11.006

Cervesato, Iliano et al. (2012). “Trace Matching in a Concurrent Logical Framework”.
In: 7th International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice. (Copenhagen, Denmark, Sept. 9, 2012). Ed. by Adam Chlipala and
Carsten Schiirmann. New York: ACM Press, pp. 1—12. ISBN: 978-1-4503-1578-4. DOIL:
10.1145/2364406.2364408 (cit. on pp. 4, 8, 13).

Cruz, Flavio et al. (2014). “A Linear Logic Programming Language for Concurrent
Programming over Graph Structures”. In: Theory and Practice of Logic Programming
14.4-5: 30th International Conference on Logic Programming Special Issue. Ed. by
Michael Leuschel and Tom Schrijvers, pp. 493-507. po1: 10.1017/51471068414000167
(cit. on p. 3).

Felleisen, Matthias (1985). Transliterating Prolog into Scheme. Tech. rep. 85-182. Bloom-
ington: Computer Science Department, Indiana University (cit. on p. 6).

Girard, Jean-Yves (1987). “Linear Logic”. In: Theoretical Computer Science 50.1. Ed. by
Maurice Nivat and Matthew S. Paterson, pp. 1—102. ISSN: 0304-3975. DO1: 10.1016/
0304-3975(87)90045-4 (cit. on p. 3).

Griffith, Dennis and Frank Pfenning (2014). OCaml Implementation of SILL. Online.
URL: https://github.com/ISANobody/sill (cit. on p. 3).

Hanus, Michael (2013). “Functional Logic Programming: From Theory to Curry”. In:
Programming Logics: Essays in Memory of Harald Ganzinger. Vol. 7797. Lecture
Notes in Computer Science. Heidelberg and Berlin: Springer, pp. 123-168 (cit. on
p- 6).

Honda, Kohei (1993). “Types for Dyadic Interaction”. In: 4th International Conference
on Concurrency Theory. (Hildesheim, Germany, Aug. 23-26, 1993). Ed. by Eike Best.
Vol. 715. Lecture Notes in Computer Science. Heidelberg and Berlin: Springer,
Pp- 509-523. po1: 10.1007/3-540-57208-2_35 (cit. on pp. 3, 20).

Honda, Kohei, Nobuko Yoshida, and Marco Carbone (2008). “Multiparty asynchronous
session types”. In: 35th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2008. (San Francisco, California, Jan. 7-12, 2008). Ed. by
George C. Necula and Philip Wadler. New York: ACM Press, pp. 273-284. ISBN:
978-1-59593-689-9. DOI: 10.1145/1328438.1328472 (cit. on p. 5).

Howard, William A. (1980). “The Formulae-as-Types Notion of Construction”. In: To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by
Jonathan P. Seldin and J. Roger Hindley. Boston: Academic Press, pp. 479—490
(cit. on p. 3).

Jeffrey, Alan (2012). “LTL Types FRP: Linear-time Temporal Logic Propositions as Types,
Proofs as Functional Reactive Programs”. In: Proceedings of the Sixth Workshop on
Programming Languages Meets Program Verification. (Philadelphia, Pennsylvania,
Jan. 24, 2012). Ed. by Koen Claessen and Nikhil Swamy. New York: ACM Press,
PP- 49—60. ISBN: 978-1-4503-1125-0. DOI: 10 . 1145/2103776 .2103783 (cit. on
p- 3)-

Lambek, Joachim (1958). “The Mathematics of Sentence Structure”. In: The American
Mathematical Monthly 65.3, pp. 154—170. ISSN: 0002-9890. DOI: 10.2307/2310058
(cit. on pp. 4, 37).

Lopez, Pablo et al. (2005). “Monadic Concurrent Linear Logic Programming”. In: Princi-
ples and Practice of Declarative Programming. Proceedings of the 7th International

42

http://dx.doi.org/10.1145/2364406.2364408
http://dx.doi.org/10.1017/S1471068414000167
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
https://github.com/ISANobody/sill
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2103776.2103783
http://dx.doi.org/10.2307/2310058

ACM SIGPLAN Conference. (Lisbon, Portugal, July 11-13, 2005). Ed. by Pedro
Barahona and Amy P. Felty. New York: ACM Press, pp. 35-46 (cit. on p. 3).

Martens, Chris et al. (2013). “Linear Logic Programming for Narrative Generation”.
In: Logic Programming and Nonmonotonic Reasoning, 12th International Conference.
(Corunna, Spain, Sept. 15-19, 2013). Ed. by Pedro Cabalar and Tran Cao Son.
Vol. 8148. Lecture Notes in Computer Science. Heidelberg and Berlin: Springer,
Pp- 427-432. DO1: 10.1007/978-3-642-40564-8_42 (cit. on p. 3).

Martin-Lof, Per (1980). “Constructive Mathematics and Computer Programming”.
In: Logic, Methodology and Philosophy of Science VI. Amsterdam: North-Holland,
pp- 153-175 (cit. on p. 3).

Miller, Dale (1992). “The 7-Calculus as a Theory in Linear Logic: Preliminary Results”. In:
Extensions of Logic Programming, Third International Workshop, ELP 92, Proceedings.
(Bologna, Italy, Feb. 26-28, 1992). Ed. by Evelina Lamma and Paola Mello. Vol. 660.
Lecture Notes in Computer Science. Heidelberg and Berlin: Springer, pp. 242-264.
por: 10.1007/3-540-56454-3_13 (cit. on p. 14).

Miller, Dale et al. (1991). “Uniform Proofs as a Foundation for Logic Programming”. In:
Annals of Pure and Applied Logic 51.1—2: Selected papers from the Second Annual
IEEE Symposium on Logic in Computer Science. Ed. by Dexter Kozen, pp. 125-157.
ISSN: 0168-0072. DOI: 10.1016/0168-0072(91) 90068-W (cit. on p. 3).

Pfenning, Frank (2004). “Substructural Operational Semantics and Linear Destination-
Passing Style (Invited Talk)”. In: Programming Languages and Systems: Second Asian
Symposium, APLAS 2004. (Taipei, Taiwan, Nov. 4-6, 2004). Ed. by Wei-Ngan Chin.
Vol. 3302. Lecture Notes in Computer Science. Heidelberg and Berlin: Springer,
Pp- 196. ISBN: 3-540-23724-0. DOI: 10.1007/978-3-540-30477-7_13 (cit. on pp. 5,
22).

Pfenning, Frank and Robert J. Simmons (2009). “Substructural Operational Semantics
as Ordered Logic Programming”. In: Proceedings of the 24th Annual IEEE Symposium
on Logic in Computer Science, LICS 2009. (Los Angeles, Aug. 11-14, 2009). Ed. by
Andrew M. Pitts. IEEE Computer Society, pp. 101-110. ISBN: 978-0-7695-3746-7.
por: 10.1109/LICS.2009. 8 (cit. on pp. 6, 15, 17, 22).

Polakow, Jeff and Frank Pfenning (1999). “Relating Natural Deduction and Sequent
Calculus for Intuitionistic Non-Commutative Linear Logic”. In: Proceedings of the
15th Conference on Mathematical Foundations of Programming Semantics. (New
Orleans, Louisiana, Apr. 1999). Ed. by Andre Scedrov and Achim Jung. Vol. 20.
Electronic Notes in Theoretical Computer Science, pp. 449—466. por: 10.1016/
S1571-0661(04)80088-4 (cit. on p. 4).

Schack-Nielsen, Anders (2011). “Implementing Substructural Logical Frameworks”.
PhD thesis. IT University of Copenhagen (cit. on p. 3).

Simmons, Robert J. (2012). “Substructural Logical Specifications”. PhD thesis. Carnegie
Mellon University (cit. on pp. 4, 8, 10, 36—38).

Simmons, Robert J. and Frank Pfenning (2011a). “Logical Approximation for Program
Analysis”. In: Higher-Order and Symbolic Computation 24.1-2, pp. 41—-80. ISSN:
1388-3690. DOI: 10.1007/510990-011-9071-2 (cit. on p. 37).

— (2011b). Weak Focusing for Ordered Linear Logic. Tech. rep. CMU-10-147. Carnegie
Mellon University (cit. on pp. 10, 11).

43

http://dx.doi.org/10.1007/978-3-642-40564-8_42
http://dx.doi.org/10.1007/3-540-56454-3_13
http://dx.doi.org/10.1016/0168-0072(91)90068-W
http://dx.doi.org/10.1007/978-3-540-30477-7_13
http://dx.doi.org/10.1109/LICS.2009.8
http://dx.doi.org/10.1016/S1571-0661(04)80088-4
http://dx.doi.org/10.1016/S1571-0661(04)80088-4
http://dx.doi.org/10.1007/s10990-011-9071-2

Somogyi, Zoltan, Fergus Henderson, and Thomas Conway (1996). “The Execution Algo-
rithm of Mercury, an Efficient Purely Declarative Logic Programming Language”.
In: The Journal of Logic Programming 29.1-3: High-Performance Implementations
of Logic Programming Systems. Ed. by Gopal Gupta and Mats Carlsson, pp. 17-64.
ISSN: 0743-1066. DOI: 10.1016/S0743-1066(96) 00068-4 (cit. on p. 6).

Spivey, J. Michael and Silvija Seres (1999). “Embedding Prolog in Haskell”. In: Proceed-
ings of the 1999 Haskell Workshop. (Paris, France, Oct. 9, 1999). Ed. by Erik Meijer
(cit. on p. 6).

Toninho, Bernardo, Luis Caires, and Frank Pfenning (2011). “Dependent Session Types
via Intuitionistic Linear Type Theory”. In: Proceedings of the 13th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming. (Odense,
Denmark, July 20-22, 2011). Ed. by Peter Schneider-Kamp and Michael Hanus. New
York: ACM Press, pp. 161—-172. ISBN: 978-1-4503-0776-5. DOI: 10.1145/2003476.
2003499 (cit. on p. 29).

— (2013). “Higher-Order Processes, Functions, and Sessions: A Monadic Integration”.
In: Programming Languages and Systems - 2znd European Symposium on Program-
ming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013. Proceedings. (Rome, Mar. 16—24, 2013). Ed. by
Matthias Felleisen and Philippa Gardner. Vol. 7792. Lecture Notes in Computer
Science. Heidelberg and Berlin: Springer, pp. 350—-369. bo1: 10.1007/978-3-642-
37036-6_20 (cit. on pp. 3, 25, 29).

— (2014). “Corecursion and Non-Divergence in Session-Typed Processes”. In: gth
International Symposium on Trustworthy Global Computing. (Rome, Italy, Sept. 5-6,
2014). Ed. by Matteo Maffei and Emilio Tuotso (cit. on p. 24).

Wadler, Philip (2014). “Propositions as Sessions”. In: Journal of Functional Programming
24.2—3: Special Issue Dedicated to ICFP 2012, pp. 384—418. ISSN: 1469-7653. DOI:
10.1017/5095679681400001X (cit. on p. 20).

Watkins, Kevin et al. (2002). A Concurrent Logical Framework I: Judgments and Proper-
ties. Tech. rep. CMU-CS-2002-101. Revised May 2003. Pittsburgh: Department of
Computer Science, Carnegie Mellon University (cit. on pp. 3, 4, 7, 8).

44

http://dx.doi.org/10.1016/S0743-1066(96)00068-4
http://dx.doi.org/10.1145/2003476.2003499
http://dx.doi.org/10.1145/2003476.2003499
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1017/S095679681400001X

	Introduction
	Background: Concurrent ordered logical specifications
	Example: Binary counter
	Concurrency
	Example: Binary counter with decrements
	Infinite traces
	Technical details
	Propositions, terms, and traces
	Concurrent equality

	Choreographies
	Choreographies by example
	The binary counter
	Messages can flow in one of two directions
	Choreographies are not always unique
	Two non-choreographies

	Choreographies, formally
	Locality
	Specification-preserving

	Session-typed processes from singleton linear logic
	Toward singleton linear logic
	Cut as composition
	Additive conjunction as branching
	Recursive session types and process definitions
	Example: Binary counter
	Additive disjunction as choice
	Example: Binary counter with decrements
	Identity as forwarding
	Other session types
	Concurrency

	From ordered logical specifications to processes
	Translation of choreographies to process chains
	Correctness of the translation
	Well-typed choreographies translate to well-typed processes

	Proposed work
	From ordered logical to linear logical specifications
	Generative invariants as session types
	Translating untyped choreographies to untyped processes
	Session-typed Turing machines

	Turing-machine–like addition process

