
Sharing DBMS among Multiple Users while Providing
Performance Isolation: Analysis and Implementation

David T. McWherter

CMU-CS-08-144

July 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mor Harchol-Balter, Chair

Christos Faloutsos
Bruce M. Maggs

Hans Zeller

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 David T. McWherter

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of the IBM Corporation, of Intel Corporation, or the U.S. Government.

Keywords: DBMS, Databases, Multi-user system, Resource allocation, Query Prioritization

Wizard of Oz: They have one thing you haven’t got: a diploma. Therefore, by virtue of the authority
vested in me by the Universitartus Committiartum E Pluribus Unum, I hereby confer upon you the
honorary degree of ThD.
Scarecrow: ThD?
Wizard of Oz: That’s... Doctor of Thinkology.

iv

Abstract

Database Management Systems (DBMS) are at the core of many modern applications, rang-
ing from e-Commerce (e.g. Amazon.COM), web applications (e.g. flickr), online banking, tele-
phony, and even traditional brick-and-mortar retailers. DBMS can be a significant source of
delay in these applications, making DBMS the performance bottleneck: users can spend orders
of magnitude more time waiting for the DBMS than for anything else (e.g. the web server).
Delays often frustrate users, which hurts companies’ profits, since frustrated users buy less and
are more likely to take their business elsewhere. Adding more capacity (hardware) can reduce
delays, but it is usually both more difficult and costly to add capacity to DBMS than to other
computer systems (e.g. web servers). Without adding capacity, prioritization can exploit the
fact that some users (or queries) are more important than others. Prioritization can give bet-
ter performance and less delay to high-priority (important) users at the expense of low-priority
(less important) users. While prioritization is usually easy in computer systems, prioritization in
DBMS is extremely difficult due to complexities inherent to DBMS architectures. As a result,
many basic questions concerning DBMS prioritization remain open.

This thesis studies the implementation of prioritization in DBMS (commonly in commercial
applications) with high- and low-priority users. The goal is to provide high-priority users with
performance isolation, whereby high-priority response times are not affected by low-priority
users. I consider common approaches to provide prioritization and experiment with real-world
DBMS and benchmark workloads to ensure that the results are applicable to real-world systems.
The heart of this work is a performance evaluation of common prioritization approaches, cou-
pled with in-depth statistical analyses to reveal each approach’s deficiencies. Our evaluations
reveal previously unknown and non-intuitive performance trends about DBMS prioritization,
and our analyses provide insight for developing new algorithms and new models for more ef-
fective DBMS prioritization. Key algorithmic and modeling contributions of this thesis include
the Preempt-On-Wait (POW) lock prioritization algorithm, and the Isolated Demand Decompo-
sition (IDD) modeling method.

vi

Acknowledgments

First, and foremost, I must thank my mother, Loretta “Cookie” McWherter, and my father, David McWherter,
whose influences on me have surely led to the construction of this thesis. I love you both.

I thank Corina Bardasuc for being a great companion and roommate, always having a knack of helping
me through my problems, even while at the same time making countless more problems for me.

Without my advisor, Mor Harchol-Balter, I would never have gotten through the CMU PhD program,
for two reasons: (1) She told me I had to defend and get out by August, and (2) She guided and taught me
along the entire process, giving me tremendous insight in many areas of life. She is the only reason I can
explain my research to anybody, because of her remarkable ability to forget everything I ever told her about
my research, which forced me to re-explain everything from scratch every week.

Countless students and professors at CMU were instrumental to my development. Of particular impor-
tance are Adam Wierman, Taka Osogami, David Koes, Benoit Hudson, and Gregory Hartman, as well as
the Zephyr crew, including Corey Kosak, Karen Van Dusen, Peter Dinda, Peter Berger, Pete Su, and Stewart
Clamen.

The swing dancing community in Pittsburgh is responsible for making me the person that I am today.
They transformed me from a shy, timid, and awkward person into a socially-capable dancer and organizer.
The dancers helped me find a true joy of both dance and friendship which I never knew I had.

It has been an honor to run the Chicken Swing swing dance, and I thank everybody who came, danced,
and supported the dance throughout these years for bringing me unmeasurable joy. Many deserve special
credit for their help: Jeffy “Cupcake” Altman for helping run the dance, Katie Rivard for being such an
awesome teaching partner (with the ability to both keep me in line, and translate my firehose of gibberish
for normal people to understand it), and Yakov Chodosh for inspiring me to start the dance.

Many others deserve special honors for making the dance community, and my social home, a better place:
Lisa Tamres and John Fulmer are amazing teachers who really helped get me involved in the community.
Lisa Tamres is also the most tireless and persistent organizer I’ve ever seen, which inspired me to work
harder. Bobby Dunlap is responsible for enabling my dance addiction by running Swing City. Joe Forman
is a great friend and always makes sure everything runs smoothly. Lisa Matt is also a great friend, as well as
a dancing and teaching partner.

I thank coffee and tea. These fine beverages have nourished and stimulated me throughout my tenure at
CMU.

In particular, I thank the elves who helped me run the CSD espresso machine. Chief espresso elves
Francisco Pereira and Paul Bennett were great leaders for caffeinating the CS department. Elves William

vii

Lovas and Robert Simmons are amazing for their ability to pick up running the machine when the thesis
loomed. I thank Elf Bart Nabbe for hacking our machine to heck. Finally, I think Elf Jennifer Landefeld for
doing all the really hard work.

Furthermore, I thank the many fine coffee shops which provided countless skinny decaf mochas and
enabled as many hours of writing and research: Tazzo d’Oro, Coffee Tree Roasters, 21st Street Coffee and
Tea, Kiva Han, Crazy Mocha, Aldo’s Coffee, and, of course, Starbucks.

Catherine Copetas and Sharon Burks and Debbie Cavlovich were all incredi-
bly helpful in navigating me through the twisty maze of departmental requirements towards graduation, and
helping to run the espresso machine.

viii

Contents

1 Introduction 1

1.1 High Level Picture . 1

1.2 DBMS Fundamentals . 3

1.3 Workload Background . 6

1.4 Prioritization Mechanism Background . 8

1.5 Difficulties in Managing DBMS Delays . 9

1.5.1 Scaling up DBMS to eliminate delays is hard . 9

1.5.2 Analyzing and predicting DBMS performance is hard 10

1.6 Impact of Prioritization . 13

1.7 Scope . 15

1.8 Roadmap . 17

1.8.1 Chapter 2: Prioritization in OLTP and Transactional Web Applications 18

1.8.2 Chapter 3: Lock Prioritization in OLTP Applications with POW 20

1.8.3 Chapter 4: Providing Isolation for Mixed DBMS Workloads (IDD) 21

2 Prioritization in OLTP and Transactional Web Applications 25

2.1 Background and Overview . 26

2.1.1 Bottleneck Analysis . 28

2.1.2 Scheduling Algorithm Analysis . 29

2.2 Organization of this chapter . 31

2.3 Introduction . 32

2.4 Prior Work . 33

2.4.1 Real-Time Databases . 33

2.4.2 Priority Classes . 34

ix

2.5 Experimental Setup . 35

2.5.1 Workloads . 35

2.5.2 Hardware and DBMS . 35

2.6 The Bottleneck Resource . 35

2.6.1 DBMS Resources: CPU, I/O, Locks . 36

2.6.2 Breakdown Results . 36

2.7 Scheduling the Bottleneck . 39

2.7.1 Prioritization Workload . 40

2.7.2 Definition of the Policies . 40

2.7.3 Simple Scheduling . 42

2.7.4 Priority Inheritance . 44

2.7.5 Preemptive Scheduling . 46

2.8 Conclusion . 46

2.9 Impact . 49

2.10 Future Directions . 49

3 Lock Prioritization in OLTP Applications with POW 51

3.1 Background and Overview . 52

3.1.1 Statistical Analysis . 54

3.1.2 Preempt-On-Wait (POW) . 56

3.2 Organization of this chapter . 57

3.3 Introduction . 58

3.4 Prior Work . 59

3.5 Bottleneck: Locks . 61

3.6 Evaluating Lock Scheduling Policies . 62

3.6.1 Experimental Setup and Methodology . 62

3.6.2 Performance Evaluation . 64

3.7 Statistical Profile of TPC-C Locking . 65

3.7.1 High-Priority Performance under Non-Preemptive Policies 65

3.7.2 Low-Priority Performance under Preemptive Policies 70

3.8 Preempt-On-Wait Scheduling . 72

3.8.1 The POW Algorithm . 72

3.8.2 POW Performance Evaluation . 74

x

3.8.3 POW vs Other Preemptive Polices . 74

3.8.4 Explaining POW Performance . 75

3.9 Conclusion . 77

3.10 Impact . 78

3.11 Future Directions . 78

4 Providing Isolation for Mixed DBMS Workloads (IDD) 81

4.1 Background and Overview . 82

4.1.1 Performance Evaluation: The Hump . 84

4.1.2 Statistical Analysis . 85

4.1.3 IDD . 86

4.2 Organization of this chapter . 86

4.3 Introduction . 87

4.4 Common Application . 89

4.5 The Hump . 89

4.5.1 Architecture and Experimental Setup . 90

4.5.2 Commercial DBMS in practice . 91

4.5.3 Queueing Models are not enough . 92

4.6 Our Approach: IDD . 96

4.6.1 Measure Isolated Device Demands . 97

4.6.2 Estimate Mixed Device Demands . 98

4.6.3 Solve a New Queueing Model . 102

4.6.4 Improve Response Time Estimate . 103

4.6.5 IDD Summary . 104

4.7 Improving Cache Miss Penalty Prediction . 105

4.7.1 Stack Depth Distributions . 105

4.8 Prior Work . 107

4.9 Conclusion . 110

4.10 Impact . 112

4.11 Future Directions . 113

5 Conclusions 115

5.1 Conclusion . 115

xi

5.1.1 Tools . 115

5.1.2 Analysis Techniques . 116

5.1.3 Impact . 117

5.1.4 Lessons Learned . 118

5.1.5 Limitations and Real-World Applicability . 120

5.1.6 Future Directions . 124

A Appendix: Workloads 129

A.1 TPC-W . 129

A.2 TPC-C . 130

Bibliography 133

xii

List of Figures

1.1 The first system configuration, comprised of two OLTP workloads sharing a DBMS that uses
internal prioritization to prioritize high-priority users. 16

1.2 The second system configuration, comprised of two Transactional Web workloads sharing a
DBMS that uses internal prioritization to prioritize high-priority users. 16

1.3 The third system configuration, comprised of two Transactional Web workloads sharing a
DBMS that uses admission control to isolate high-priority users from low-priority users. . . 17

1.4 Left: Illustration of The Hump response time trend. Locals response times as a function of
the I/O-boundedness of the Federator workload. Counter to intuition, response times for the
CPU-bound Locals are good both when Federators are CPU-bound or Federators are I/O-
bound. When Federators have simultaneously large CPU- and I/O-demands, Local response
times are bad. Right: Illustration of the ideal Federator MPL policy as a function of the
I/O-boundedness of the Federator workload. Counter to intuition, Federator MPL can be
kept high when Federators are CPU- or I/O-bound, but must be low when Federators have
simultaneously large CPU- and I/O-demands. 22

2.1 The system configurations considered in this chapter: OLTP and Transactional Web work-
loads with high- and low-priority queries, sharing a DBMS. High-priority queries are prior-
itized using internal prioritization. 26

2.2 Resource breakdowns for TPC-C transactions under varying databases and configurations.
The first row shows DB2; the second row shows Shore; and the third row shows PostgreSQL.
The first column (Figures 2.2(a), 2.2(d), 2.2(g)) shows the impact of varying concurrency
level by varying the number of clients. The second column (Figures 2.2(b), 2.2(e), 2.2(h))
shows the impact of varying the database size (number of warehouses) while holding the
number of clients fixed. The third column (Figures 2.2(c), 2.2(f), 2.2(i)) shows the impact
of varying both the number of clients and the database size according to the TPC-C specifi-
cation (10 clients for each warehouse). 37

2.3 Resource breakdowns for TPC-W transactions running on IBM DB2 and PostgreSQL. . . . 38

2.4 Average execution time for TPC-C Shore transactions that never wait for locks compared to
those that do, with no prioritization. Think time is 1 second. 40

2.5 Mean execution times for NP-LQ compared to CPU-Prio for Shore and PostgreSQL TPC-
C with varying contention. Concurrency (load) increases to the left, as think time goes down. 42

xiii

2.6 Mean execution times for NP-LQ compared to CPU-Prio for PostgreSQL TPC-W with
varying loads. As is the custom in this chapter, high-load (many clients) is on the left, and
low-load (few clients) is on the right. 43

2.7 NP-LQ-Inherit compared to NP-LQ for Shore TPC-C. 44

2.8 CPU-Prio-Inherit compared to CPU-Prio on PostgreSQL TPC-C. 45

2.9 CPU-Prio-Inherit compared to CPU-Prio for TPC-W running on PostgreSQL. . . . 45

2.10 Preemptive policies P-LQ and P-CPU for Shore and PostgreSQL respectively, compared to
the best non-preemptive policies for TPC-C. 47

3.1 The system configurations considered in this chapter: OLTP Transactional Web workloads
with high- and low-priority queries, sharing a DBMS. High-priority queries are prioritized
using internal prioritization. 53

3.2 TPC-C Shore and DB2 average I/O, Lock, and CPU resource utilization, relative to total
average transaction response time. 60

3.3 Average TPC-C Shore response times for high- and low-priority transactions as a function
of load for NPrio, NPrioinher, PAbort, and Standard policies (3.3(a) and 3.3(b)). Aggregate
high- and low-priority response time relative to Standard (3.3(c)). 63

3.4 Distribution on the number of times that high-priority transactions wait for a lock under
common lock scheduling policies (Similar for low-priority transactions). The probability of
waiting for more than four locks is practically zero in all cases, and are not shown here for
clarity. 66

3.5 Average high-priority QueueTime for NPrio, NPrioinher, and PAbort as a function of load
(think time). 67

3.6 CDF of high-priority QueueTime and WaitExcess for NPrio and NPrioinher for high load
along with aggregate high- and low-priority WaitExcess for NPrio. 68

3.7 Average transaction response time as a function of the number of times a transaction waits
under high load, when using the Standard policy. 69

3.8 Probability distribution on the number of times a transaction is preempted by PAbort under
high load (1 second think time). 71

3.9 Average response time for high- and low-priority transactions for POW, PAbort, and NPri-
oinher as a function of load (3.9(a) and 3.9(b)). Aggregate high- and low-priority average
response time relative to Standard (3.9(c)). 73

3.10 Average response time for high- and low-priority transactions with preemptive policies CR300
and POW. 75

3.11 Average time for high-priority QueueTime, QTime|Preempt, and QTime|Wait as a function
of load. 76

4.1 The system configurations considered in this chapter: Transactional Web workloads with
high- and low-priority queries, sharing a DBMS. High-priority queries are prioritized by
using admission control to limit the number of low-priority queries in the DBMS at any time. 83

xiv

4.2 Illustration of the observed trends. Counter to intuition, response times for CPU-bound
Locals are good both when Federators are CPU-bound or Federators are I/O-bound, and in
these cases, Federator MPL can be high. When Federators have simultaneously large CPU-
and I/O-demands, Local response times are bad, and Federator MPL must be kept low. . . . 88

4.3 The Hump: Local response times shown as a function of Federator MPL and Federator DB
size. Local response times rise then fall as Federator DB size increases, as seen in many
DBMS configurations. 90

4.4 DBMS queueing model . 93

4.5 Local response times as a function of Federator MPL and modeled Federator DB size (Fed-
erator I/O rate). Conventional queueing models predict a Local response time dip, not the
hump seen in real-world DBMS. Compare to Figure 4.3(a). 95

4.6 Actual and estimated IPSMix as a function of Federator DB size with Federator MPL set
to 50. CPU stalls reduce CPU strength by a factor of 2, which is accurately estimated by IDD. 96

4.7 Local and Federator CPU demands as a function of Federator DB size, with Federator MPL
set to 50. (a) DLoc,Mix

CPU differs from DLoc
CPU and (b) DFed,Mix

CPU differs from DLoc
CPU , proving

that demands change when workloads mix. 97

4.8 DMix
CPU and DMix

I/O as a function of Federator MPL and Federator DB size. CPU is almost
always the bottleneck, especially in the hump region. 98

4.9 Estimates for DMix
CPU as a function of Federator DB size with Federator MPL set to 50.

Estimates use measured DLoc
CPU and DFed

CPU , and account for (a) CPU stalls alone, and (b)
CPU stalls and spin locks. 100

4.10 Actual and estimated P{Loc} as a function of Federator DB size with Federator MPL set to
50. IDD’s queueing model, correctly estimates P{Loc} and P{Fed}. 101

4.11 IDD’s final estimates for (a) TMix
sys and (b) TLoc

sys (and TFed
sys) as a function of Federator DB

size with Federator MPL set to 50. IDD’s estimates are accurate and correctly predict the
hump. 103

4.12 Simulated hit rates (left) and response times (right) for a mixed workload comprised of two
stack-depth workloads as a function of the first workload hit rate, and the second workload
hit rate. Each graph shows the results determined from simulating two stack-depth work-
loads (“Simulated HR”) and using a simple average of the two workloads (“Average HR”).
First workload hit rates range from 5% to 50%. 108

4.13 Continuation of Figure 4.12. First workload hit rates range from 50% to 100%. Simulated
hit rates (left) and response times (right) for a mixed workload comprised of two stack-depth
workloads as a function of the first workload hit rate, and the second workload hit rate. Each
graph shows the results determined from simulating two stack-depth workloads (“Simulated
HR”) and using a simple average of the two workloads (“Average HR”). 109

A.1 The database schema for the TPC-W benchmark. Dotted lines represent one-to-one relation-
ships. Arrows represent one-to-many relationships. 130

xv

A.2 The database schema for the TPC-C benchmark. Numbers in entity blocks represent the
cardinality of the tables (number of rows), and are factored by W, the scale of the database
(the number of Warehouses). Numbers next to relationship arrows represent the cardinality
of the relationships. 131

xvi

List of Tables

1.1 The DBMS implementations that are used in this thesis. 6

1.2 The strengths and weaknesses of using either invented workloads or industry standard bench-
mark workloads to evaluate DBMS performance. 7

1.3 The strengths and weaknesses of using either admission control or internal device and re-
source prioritization to effect query prioritization in DBMS. 8

1.4 A summary of the shared DBMS system configurations that are considered in this thesis
research. 15

1.5 Summary of workload scenarios considered in the chapters of this thesis. 17

1.6 The systems issues upon which many incorrect intuitive predictions of shared DBMS per-
formance are based. 24

2.1 Summary of bottleneck resources as a function of the DBMS workload and the DBMS con-
currency control algorithm. 29

3.1 Summary of the key results from Chapter 2: CPU-scheduling provides great high-priority
performance isolation when CPU is the bottleneck, and good isolation when I/O is the bot-
tleneck. Existing scheduling policies provide poor isolation when Locks are the bottleneck.

. 52

3.2 The names of lock scheduling policies used in Chapter 2 and this chapter. 63

3.3 High- and Low-priority response time speedup relative to Standard policy. 74

4.1 Primary notation used for IDD parameters (Section 4.6). CPU can be replaced with I/O
throughout the above. 94

xvii

xviii

Chapter 1

Introduction

1.1 High Level Picture

The concept of sharing is found everywhere in everyday life. Children share toys at daycare, drivers share
the road, people share elevators, retail shoppers share cashiers, coffee drinkers share Starbucks coffee shop
baristas. The list is endless. Despite the fact that we have learned to share essential communal resources,
we often do so reluctantly or begrudgingly, since people are fundamentally greedy. We believe that we are
the most important and our needs are the highest-priority. When waiting in line at the coffee shop, we do
not care whether the person in front of us ever gets or enjoys their “venti skinny triple-shot double-pump
hazelnut latte.” The only thing we care about is when we will get our “grande non-fat half-caf black and
white mocha.”

Sharing is hard because of the delay that it takes for us to acquire resources and get our tasks done. When
resources are abundant, delays are low, and sharing is relatively easy because we wait less. When resources
are scarce, delays are high, and sharing is much harder because we wait forever to use them. Adding lanes
to a heavily trafficked road reduces the delay and suffering caused by traffic jams. Building more Starbucks
or hiring more baristas reduces the delay and unendurable suffering you spend waiting behind the guy who
is ordering a dozen drinks for everybody in his office.

In the modern, digital era, delay is found in many computer systems and Internet services that we have
come to rely on. Since the dawn of the Internet, people regularly experience delays when checking their mail
at gmail.com or hotmail.com, shopping online at Amazon.COM, or viewing photos at flickr.com.
Internet services are particularly susceptible to highly variable delays, dependent on how many people are
trying to use and share the service at the same time. In fact, any computer system that is used by many
people is susceptible to delays in the same way.

We know deep inside that delays are both painful and costly. Painful. We have better things to do
with the finite time we spend on this mortal coil than waiting in line. Customers, such as those shopping at
online stores, find delays to be frustrating [59, 69]. This frustration is partly due to uncertainty: customers
do not know when delays will arise, or how long those delays will be, or for what reason they are waiting.
Customers are also frustrated because delays waste customers’ time (it is often hard to be productive through
delays) and, during many tasks, delays can make it harder to concentrate and focus [61]. Costly. Time is

1

money. When customers experience too much delay and are frustrated, they are more likely to switch to
competitors, costing companies in future business and profits. This problem is even worse in online stores
and e-Commerce, since competitors are merely a click away. Likewise, when customers spend time waiting
for delays, it keeps them from working and making money themselves.

DataBase Management Systems (DBMS) are some of the most shared resources on the planet. Almost
every person interacts with DBMS on a daily basis, and almost every time, that DBMS is being shared with
countless other people. Hospitals track patients and medical histories with DBMS. Governments use DBMS
to store tax and social security records. Companies track all employees, all sales, and all inventories with
DBMS. Banks and ATMs use DBMS to store and manage peoples’ financial records. Phone companies use
DBMS to record call records and track the locations of cell phones in the cell phone network. Almost all
online services, ranging from online stores like Amazon.COM to online communities like facebook.com
rely on DBMS. DBMS are ubiquitous and inextricably integrated into modern society.

Like any other computer system, DBMS have only limited resources that users compete for, which results
in delay. DBMS delays, however, can be much larger and more unpredictable than in other computer sys-
tems. DBMS delays can be orders of magnitude larger than the delays seen in other systems. Furthermore,
it is usually harder to fix delays in DBMS than in other systems by scaling and adding more hardware to in-
crease capacity and improve performance. Centralized DBMS implementations can be improved by adding
faster or additional CPUs or disks, but there are typically several difficulties: (i) limits on device speeds
or the number of devices, (ii) high-end hardware necessary for high-end DBMS implementations are very
expensive and have high price/performance ratios, and (iii) there are often diminishing performance returns
as one invests more money. Furthermore, while many computer systems (such as web servers) can be scaled
using distributed system implementations, DBMS do not lend themselves to distributed implementations.
Distributed DBMS are often just as costly and difficult to scale as centralized DBMS.

We must devise novel approaches to compensate for the delays users experience in DBMS, due to the
fact that it is so hard to add resources to high-end DBMS implementations.

We rely on the observation that not all users (or tasks) are created equal: Some are more important than
others. Everybody knows that when resources are scarce (as they are in DBMS), it is best to prioritize users
(or tasks) and give resources to the most important users first. Prioritization is the most powerful tool we
have to efficiently use our resources. When you have too much work on your desk, you work on the most
important tasks first. When police and ambulances turn on their sirens, drivers pull over to allow them to
pass through the road and intersections without delay. When people order at Starbucks coffee shops, people
who order drip coffee are served immediately (because it is quick and easy), while people who order lattes
and cappuccinos are forced to wait (because those drinks are time-consuming to make and require use of the
limited espresso machine resource).

This thesis addresses how to share a DBMS among users with different performance requirements, and
how to cope with delays. We investigate how to implement query prioritization in a DBMS to give high-
priority users better query response times and less delay. Our primary goal is to provide performance iso-
lation to high-priority queries, so that low-priority users do not hurt high-priority query response times, and
high-priority queries run as if they were alone in the DBMS. A secondary goal is to make DBMS perfor-
mance predictable, to reduce the frustration due to the uncertainty that delay causes.

Prioritization, and in particular, DBMS query prioritization, is not a new idea. DBMS query prioritization
is much more difficult than prioritization in many other types of computer systems, because DBMS queries
affect the performance of one another in many intricate ways, such as due to locking, data dependencies, and
competition for caches. As a result, low-priority queries can cause significant delay for high-priority queries.

2

Existing research on DBMS query prioritization has many limitations and leaves many open questions.
Most such research is hard to apply to real-world commercial systems, because it focuses on specialized
“real-time” DBMS or highly-specialized or simplified workloads which are not widely used commercially.
Furthermore, much of the existing research yields contradictory results, making prioritization even more
difficult to use.

The key idea developed in this thesis is that to effect DBMS query prioritization, one must combine (i)
performance evaluation of real-world systems with (ii) statistical analysis and queueing-theoretic modeling
of system performance in order to design better algorithms. Performance evaluation is essential, as many
of the important issues in prioritization stem from the specific characteristics of real-world system imple-
mentations. Likewise, analysis and modeling is essential to gain insight and understanding of the systems
being considered, making algorithm design easier. Each of the main contributions of this thesis arise from
this type of analysis/model/design process, and could not have been possible if any of these steps had been
left out.

The main impact of this thesis is that we show how to implement DBMS query prioritization that can be
used to completely eliminate the delays experienced by high-priority queries (due to low-priority queries) in
real-world DBMS. High-priority queries thus see good performance isolation: predictable and low response
times.

The rest of this introduction proceeds as follows.

Section 1.2 provides important background on DBMS, and the specific DBMS considered in this thesis.
Section 1.3 provides important background on the workloads considered in this thesis. Section 1.4 provides
important background on the DBMS query prioritization mechanism studied in this thesis. Section 1.5
discusses why DBMS are particularly challenging from a performance standpoint: it is hard to scale DBMS
to reduce delays, and delays are hard to predict. Section 1.6 motivates why prioritization is an effective
technique in DBMS, and discusses the impact of DBMS query prioritization. Section 1.7 outlines the scope
of the thesis, describing the systems considered. Section 1.8 provides a roadmap for the remainder of the
thesis, and outlines the key ideas developed throughout the research.

1.2 DBMS Fundamentals

DBMS are used everywhere. Since their introduction in the 1970’s, Relational Database Management
Systems (DBMS) have become the defacto standard means by which almost all data on the planet is stored
and managed. Businesses use DBMS to store purchases, inventory, accounting, employee, and customer
records; Schools store student records and grades; Hospitals store patient records, histories, and test results.
With the advent of the Internet and the WWW, DBMS are now central to almost all e-Commerce applica-
tions. This is especially the case with online marketplaces (e.g. Amazon.COM), online customer service
(e.g. Verizon Online), online communities (e.g. XBox Live), and interactive “Web 2.0” applications such
as such as Facebook, Flickr, and others. Given their ubiquity, almost all of us interact with DBMS-based
services on a daily basis, and thus, we all depend on their performance.

The popularity and ubiquity of DBMS is due to the fact that DBMS enable users to share data in a
database. The key functionality DBMS take on to enable the sharing of data are: (i) manage the physical
devices that store and process the data (CPUs, network, disk drives, etc), (ii) guarantee that users have reli-
able views of the data, by providing transactional ACID (Atomicity, Consistency, Isolation, and Durability)
properties, (iii) provide powerful query languages that can perform both simple and complex tasks, and (iv)

3

optimize performance by choosing the correct algorithms to execute queries.

DBMS are increasingly shared. Sharing in DBMS is becoming more common in two ways.

An ever-increasing number of users are starting to use established DBMS-based services, such as online
retailers. For example, online retailers typically see more customers making purchases every year. At the
same time, new applications and functions are being developed that use the same DBMS used by existing
DBMS-based services. For instance, an online retailer may decide to implement a view-tracking and rec-
ommendation system, which causes a completely new workload to be generated for the retailer’s existing
DBMS.

Sharing of DBMS is on the rise because (i) DBMS make it easy for different users to share data, and (ii)
data management costs increasingly dominate the cost of storage [37, 58, 89]. As a result, companies are
inclined to centralize their data storage needs into a single DBMS. It is simply not feasible to manage many
independent replicas of huge data sets, especially in the face of many updates and strict data freshness and
consistency requirements. As a result, applications must share the DBMS with all other applications that
need the same data.

Delays in shared DBMS are large and unpredictable. When a DBMS is shared by many users, delays
can cause performance can be both extremely variable and difficult to predict. Delays are caused, as in all
systems, by many users trying to share limited resources. Sometimes, a query will pass through the DBMS
and see no delay, and have a good response time, and other times, the same query will encounter significant
delays, and the response time can be worse by orders of magnitude.

Each DBMS query needs to perform a particular computation, and requires the use of physical and
logical resources (including CPU(s), I/O devices, memory, network, locks, work queues, and so forth).
Often, a query will have to wait for a needed resource, because it is currently being used by another query
(or set of queries), and has to wait in a queue. Queueing queries incur delays until the resource becomes
available.

Almost all of the resources in a DBMS can be sources of queueing delays, but this thesis will focus on
three resources which turn out to be large sources of delay, and thus important resources for prioritization
in DBMS: CPU, I/O, and Locks. These resources differ in importance based on the DBMS and workload
considered. This fact will be studied in depth in Chapter 2.

Delays are often more variable, harder to predict, and harder to eliminate in DBMS than in other com-
puter systems for a number of reasons. This issue is further discussed in Section 1.5.2.

The primary reason delays are difficult to predict and eliminate in DBMS is that DBMS queries compete
with each other in nearly arbitrary and complex ways. The result is that under very similar circumstances,
delay can be extremely different. For example, a set of queries could run concurrently on a DBMS without
ever having to queue or wait for one another. Another time, the same set of queries may run concurrently
and experience unbearably long delays, slowing those queries by orders of magnitude. Which possibility
occurs depends on countless factors, depending on the exact data stored in the DBMS, the exact queries
being executed, the state of the DBMS resources (e.g. devices and caches), the DBMS implementation, and
so on.

Some of the biggest issues are that cause such wildly unpredictable delays are that (i) DBMS queries
have extremely variable resource demands: one query may need a single I/O request, and another may need
gigabytes of I/O. Long running queries can sometimes get in the way of the short running queries. (ii) DBMS
have numerous background tasks which cause extra work at various resources, increasing competition and

4

delay. (iii) Some resources, such as locks, are acquired and held for the duration of query execution, which
increases contention for those resources, which increases the time other queries wait for those resources.
Thus, in DBMS, delays can be amplified. Other examples are discussed in Section 1.5.2.

Dealing with delays in DBMS is difficult. Either eliminating or predicting the delays that occur
in a DBMS are extremely difficult. This problem is discussed in detail in Section 1.5. In summary, one
could decrease queueing times by either (i) adding resources to the DBMS, using faster or more hardware to
increase the capacity, or (ii) re-engineer the DBMS to use existing resources more efficiently. Unfortunately,
both of these approaches are difficult and costly, and suffer from diminishing returns, particularly for high-
end DBMS.

State of the art for DBMS query prioritization. Despite the fact that the concept is relatively sim-
ple and has been around for decades, DBMS prioritization is sadly not widely available. When DBMS do
implement prioritization, it is typically extremely limited. In particular, DBMS typically implement query
prioritization only for CPU resources (and ignore I/O and Lock resources), and do not provide any choice
in the scheduling policies that are used. Some commercial DBMS vendors who provide such limited prior-
itization include IBM (who provides db2gov and Query Patroller [20]) and Oracle (who provides Database
Resource Manager [67]). Academic research has studied the problem of DBMS query prioritization, but
the results are often contradictory and rely on either highly-specialized DBMS implementations or highly-
simplified workloads that do not resemble the DBMS or workloads found in real-world commercial systems.
The focus of this thesis is to study query prioritization in the context of real-world commercial systems.

DBMS implementations considered in this thesis. A variety of DBMS implementations are consid-
ered in this thesis, including including a commercial DBMS, open-source DBMS (PostgreSQL [52]), and a
research-oriented DBMS storage manager (Shore) [17].

As indicated earlier, a key distinction between different DBMS implementations is whether CPU, I/O, or
Locks (or other resources) are primarily responsible for queueing delay. Different DBMS implementations
can trade off some resource usage for other resource usage. One of the ways this can be done is based on
the choice of concurrency control algorithms used to provide transactional ACID semantics. There are three
primary classes of concurrency control implementation: (i) Two-Phase Locking (2PL), (ii) Multi-Versioning
Concurrency Control (MVCC), and (iii) Optimistic Concurrency Control (OCC).

Each of these algorithms are described in further detail in the introduction to Chapter 3. The basic
idea is that 2PL always uses locks to ensure that queries see consistent data. While this implementation is
conceptually simple and has little overhead, queries can hold locks for very long periods of time, and this
reduces concurrency and increases delays. MVCC can eliminate many locks, but may require additional
CPU and I/O resources as well as additional storage (in memory and on disk) in exchange, which can lead to
increased delays as well. OCC eliminates the need for almost all locks, and merely restarts queries whenever
data inconsistencies are detected during a final verification phase. OCC can be extremely inefficient due to
excessive restarts, which often happens when the DBMS has too many users, but also trades off CPU and
I/O for locks. Almost all commercial DBMS use either 2PL or MVCC, and OCC is generally unused in
DBMS due to its performance problems.

The three DBMS implementations in this thesis: IBM DB2, PostgreSQL, and Shore, cover the two main
types of concurrency control: 2PL and MVCC. IBM DB2 and Shore both use 2PL while PostgreSQL uses
MVCC. It will be seen in Chapter 2 and Chapter 3 that the DBMS concurrency control algorithm will be a
significant factor in understanding query prioritization, primarily due to the resource tradeoffs they make.
Table 1.1 summaries the DBMS implementations and concurrency control algorithms used in the thesis.

5

Market DBMS Concurrency Control
Commercial Brand X 2PL
Open-Source PostgreSQL MVCC

Research Shore 2PL

Table 1.1: The DBMS implementations that are used in this thesis.

1.3 Workload Background

Workloads are the stream of queries that are given as input to a DBMS. Of course, every different DBMS
application has its own unique workload.

To properly evaluate DBMS design decisions, one would ideally implement and evaluate that design
with every possible combination of DBMS and real-world workload. While it is conceivable that one could
consider the dozen or two most popular DBMS products, it is simply inconceivable to evaluate every possible
real-world workload. In fact, it is nearly impossible to even evaluate with a single real-world workload. This
is due to the fact that companies do not share their workloads with researchers (or other companies), so as
to ensure their customers’ privacy, to protect their trade secrets, and so forth.

In practice, to evaluate DBMS designs, researchers are forced to either (i) invent their own workloads,
or (ii) use industry standard benchmark workloads. Both approaches have complementary strengths and
weaknesses.

Inventing a workload has two main benefits: it is usually easy, and the workload can be easily param-
eterized to test individual DBMS features (sometimes this may be called micro-benchmarking). The main
drawback of inventing a workload is that the workload has little or no relationship to actual real-world
workloads. As a result, it is hard to relate conclusions about DBMS designs for the invented workload to
real-world workloads.

Industry standard benchmark workloads, on the other hand, clearly relate to real-world systems, since
they are typically designed with the help of DBMS vendors and consumers so as to realistically represent
the workloads found in the real world. The main drawbacks for industry standard benchmark workloads are
that (i) the benchmark usually calls for implementation of an extremely functional and relatively complex
system with many details to worry about, and (ii) it is more difficult to correlate improvements to individual
DBMS features to performance results (since the performance of the benchmark depends on the system as a
whole).

The strengths and weaknesses of using either invented or industry standard benchmark workloads in
DBMS performance evaluations are summarized in Table 1.2.

This thesis focuses on industry standard benchmark workloads, because existing DBMS prioritization
research has generally ignored these workloads, and because prioritization depends on complex interactions
between queries, which are found in such benchmarks.

Industry standard benchmarks are categorized according to different classes of workloads. These classes
are chosen to be relevant to the industry, and have been identified by the DBMS community over many
decades. These workload classes include (but are not limited to) OLTP (online transaction processing),
transactional web, data warehousing, decision support, and ETL (Extract, Transform, and Load) workloads.

6

Ease of Real-World Micro-
Implementation Relevance Benchmarking

Industry Standard Benchmark Workload Hard Strong Poor
Invented Workload Easy Poor Strong

Table 1.2: The strengths and weaknesses of using either invented workloads or industry standard benchmark
workloads to evaluate DBMS performance.

The primary workloads considered throughout this thesis are OLTP and transactional web (TransWeb)
workloads. Workloads in these classes are found in many commercial DBMS applications, particularly in
online systems and e-Commerce, and thus have wide-reaching relevancy.

Transactional web workloads are representative of the types of workloads one might expect to find in an
online retailer, such as Amazon.COM. Transactional web workloads are categorized by having users who
perform operations such as browsing a database of widgets through the web, maintain a shopping cart and
user information, and purchase those widgets via a check-out process. OLTP workloads, on the other hand,
are representative of the types of workloads often found in order-entry and inventory management systems,
such as one might find at a Walmart or Best Buy. OLTP workloads are categorized by users who want to
enter and deliver orders, record payments, check the status of orders, and monitor stock levels.

To evaluate OLTP and transactional web workloads, this thesis relies on industry-standard DBMS bench-
marks designed by the Transaction Processing Performance Council (TPC) [21], a non-profit corporation
comprised of DBMS and hardware companies that are interested in categorizing the performance of real-
world DBMS applications. Members of the TPC include companies such as Microsoft, IBM, Oracle, Sybase,
Teradata, Ingres, Sun, HP, Intel, Dell and AMD.

The key advantage of TPC benchmark workloads is that they are extremely realistic. TPC benchmarks
require the implementation of a fully-functional DBMS application, whose user interactions and database
schema and structure are representative of real-world workloads. Specifically, the workloads used in this
research are based on the TPC benchmarks TPC-C [22] and TPC-W [23]. TPC-C is an OLTP benchmark
consisting of a fully functional retail inventory management system. TPC-W is a transactional web bench-
mark that consists of a fully functional online book store. Due to the fact that TPC-W and TPC-C model a
real-world application, and include relatively complex queries and schemas, they are much more effective
for understanding real-world system performance than simple micro-benchmarks used in many other DBMS
performance studies.

Both TPC-W and TPC-C are both transactional workloads that read and write data in the DBMS, and are
representative of the types of workloads found in many retail environments. The key distinction is that TPC-
W models systems that are designed for online retailers, which must handle large numbers of concurrent
users, while TPC-C models systems that are designed for smaller “in house” systems typically used by store
clerks and managers. The ramification of this is that TPC-C has more complex and a greater variety of
queries than TPC-W, and TPC-C has stronger consistency requirements than TPC-W.

TPC-W is described further in Appendix A.1 and TPC-C is described further in Appendix A.2.

7

Ease of Implementation Performance Isolation
Admission Control Stronger Weaker

Internal Prioritization Weaker Stronger

Table 1.3: The strengths and weaknesses of using either admission control or internal device and resource
prioritization to effect query prioritization in DBMS.

1.4 Prioritization Mechanism Background

There are two common mechanisms used to implement query prioritization in DBMS: (i) Admission control
and (ii) Internal device and resource prioritization. The study of both of these mechanisms is central to this
thesis.

Admission control limits the number of users in the DBMS concurrently. The MultiProgramming Level
(MPL) is the maximum number of concurrent users that admission control will allow into the DBMS. When
there are additional queries, they will be queued outside the DBMS1, and will be admitted when the currently
executing queries are completed. Admission control can be applied to all of the queries in a system, or only
certain classes of queries.

Internal prioritization of devices and resources in a DBMS reorders the execution of queries within the
DBMS execution engine. Without internal prioritization, when a resource (such as CPU, I/O, or a Lock) is
needed by multiple queries, the DBMS will allocate that resource on a first-come, first-serve (FCFS) basis,
without respect to the relative importance of each query. As a result, all queries are likely to wait to acquire
essential system resources. Internal prioritization attempts to reduce high-priority query delays by ensuring
that high-priority queries are given resources first.

Admission control and internal prioritization provide complementary strengths and weaknesses, making
them both ideal for study in this research. (i) Admission control’s primary strength is that it is easy to imple-
ment, but its primary weakness is that it has a limited effect on providing performance isolation to queries.
Admission control can be used even when the DBMS has not been designed to handle it, via a simple exter-
nal implementation. Once a query is admitted to the DBMS, however, it runs freely, and can interfere with
all other queries in the system. (ii) Internal prioritization’s strength, on the other hand, is that it can be very
effective at providing performance isolation to queries. Unfortunately, its main weakness is that it is difficult
to implement, requiring that the DBMS be rewritten and engineered to explicitly support it. As a result,
internal prioritization cannot be used with applications that rely on legacy DBMS implementations. Fur-
thermore, most commercial DBMS provide either limited or no support for internal prioritization, and users
cannot make full use of internal prioritization until DBMS vendors provide more complete implementations.
These strengths and weaknesses are summarized in Table 1.3.

There are many open questions and unresolved issues involving query prioritization using either admis-
sion control or internal prioritization. (i) Admission Control: While admission control is widely available,
it is not well-understood how to tune and configure admission control to achieve desired performance iso-
lation. It is not even clear that admission control can always be used to meet a given set of performance
goals. (ii) Internal Prioritization: Internal prioritization is found in a few commercial DBMS, but those

1Other variants of admission control may drop queries, but those are not appropriate for DBMS, since they keep essential work from
being done. I only consider non-dropping admission control.

8

implementations are fairly limited. Commercial DBMS typically only allow some (but not all) devices and
resources to be scheduled, and there is no control over the scheduling policies used on each resource. It is not
well-understood which devices and resources are most important for a DBMS to schedule to effect query
prioritization. While some commercial DBMS can schedule some resources (such as CPU), it is unclear
whether scheduling of those resources alone can provide sufficient performance isolation. Furthermore, it is
not clear what scheduling policies are most effective for each device and resource in the system.

1.5 Difficulties in Managing DBMS Delays

Managing performance and delays in DBMS is more challenging than doing so in many other computer
systems, for two primary reasons: (i) it is difficult and costly to scale DBMS and add capacity in order
to reduce or eliminate user delays, and (ii) it is difficult to model and predict the performance and delays
that users sharing a DBMS will experience. These reasons are addressed respectively in Section 1.5.1 and
Section 1.5.2 below.

1.5.1 Scaling up DBMS to eliminate delays is hard

DBMS are essentially the primary tool that enables users to share data, and users who want that data must
access it through the DBMS. As indicated in Section 1.1, when users are forced to share a limited resource,
they incur delays, which cost time, money, and frustration. DBMS, being a limited resource, are stuck with
performance problems due to delays.

One may ask why a DBMS is a limited resource if we can always build a bigger or more powerful
DBMS to reduce delays. Computer science provides three typical approaches to improve system capacity
and performance: Scale Up, Scale Out, and Improve Efficiency. While these approaches are often easy
to apply to many computer systems, they are much harder to apply to DBMS. The DBMS industry often
focuses on improving DBMS performance via these approaches, but the process is extraordinarily difficult
and expensive.

• Scale Up involves running a centralized DBMS on bigger and faster high-end computer hardware.
The main drawback to this approach is its cost. High-end hardware is much more expensive, and
has higher price/performance ratios than lower-end hardware. High-end hardware is more expensive
because there are fewer customers for such hardware (thus economies of scale do not kick in) and
because those customers’ businesses depend critically on that hardware to succeed.

Even worse, high-end DBMS push existing hardware to its limits and beyond, and newer, more com-
plex systems and technologies must be built specifically to handle DBMS needs. Companies’ database
requirements are growing extremely rapidly: databases double in size every 12-18 months, query rates
are increasing dramatically, and data freshness requirements are getting stronger [9]. Hardware devel-
opers can barely keep up with this growth.

• Scale Out involves purchasing many lower-end (or commodity) systems, and networking them to-
gether to create a single distributed DBMS, with independent processing nodes. Using commodity
hardware improves the price/performance ratio drastically, making it appear more attractive than Scale
Up. The main drawback, however, is that such systems can be more costly to manage and maintain
than centralized DBMS.

9

Scale Out for DBMS has been investigated with research systems such as R* [39], Gamma [27], and
Bubba [13]. Commercial DBMS also typically provide limited distributed functionality, such as DB2
DPF and Oracle RAC.

Making DBMS Scale Out efficiently, however, is extremely difficult. Many fundamentally difficult
problems must be solved, related to data freshness and consistency, data partitioning, load balancing,
data shipping, and query shipping. Often, the overheads due to these problems can diminish the
speedup provided by Scale Out.

• Improve Efficiency involves making the DBMS to better utilize the limited resources that it has
available. Improving efficiency in DBMS is extremely difficult, as it requires significant investments
of time, money, and effort to profile, analyze, and re-engineer, the DBMS to address the underlying
performance issues. DBMS are complex systems, and performance problems can arise in almost any
system component, ranging from poor algorithm choices, query plans, cache policies, and so forth.
Even at its best, however, improving efficiency cannot eliminate performance delays, and can only
reduce them.

Finally, even if it was relatively easy to add capacity to a DBMS, delays would only be improved tem-
porarily. In any system, spare capacity gradually disappears as the system is always used to do far more.
All personal computer users are intimately aware of this fact — the computers we use today are many times
faster than the computers we used just a few years ago, but the perceived performance improvement is
negligible, since we run far more complex software programs on them. As Professor William Wulf has said:

Although the hardware costs will continue to fall dramatically and machine speeds will increase
equally dramatically, we must assume that our aspirations will rise even more. Because of this,
we are not about to face either a cycle or memory surplus. For the near-term future, the dominant
effect will not be machine cost or speed alone, but rather a continuing attempt to increase the
return from a finite resource — that is, a particular computer at our disposal. [88]

1.5.2 Analyzing and predicting DBMS performance is hard

Delay prediction is important. Not only is it difficult to scale DBMS capacity so as to eliminate user
delays, it is also extremely difficult to predict the magnitude of delays that queries will experience in a
DBMS. Prediction of DBMS performance is important for three major reasons. First, prediction is necessary
to ensure that DBMS users will (continue to) receive good performance when an additional query workload
is to be given to a DBMS. Such circumstances arise when adding functionality to an existing DBMS-based
service. Second, prediction is necessary when deciding what type of hardware must be purchased so as
to ensure that queries receive sufficient performance (or to sufficiently reduce delays). Third, prediction
is necessary to help decide how to configure essential DBMS configuration parameters that affect query
performance and delays.

Another important issue is that even if we cannot do anything to address delays in DBMS, if we can
accurately predict DBMS performance, we can provide users with a warning when they are likely to receive
poor performance, or an estimate of how long they will have to wait. This can reduce the frustration that
users experience even when delays are large.

Predicting delay in DBMS is difficult. Predicting performance in DBMS, unfortunately, is much
harder than predicting performance in many other computer systems. This difficulty is primarily due to the

10

fact that delays in DBMS are often more variable, larger, harder to predict, and harder to eliminate than in
other computer systems. The following are several important reasons that this is the case:

(i) DBMS queries, even those in the same application workload, have variable resource demands (re-
quirements). Some queries may require only a millisecond of CPU time to complete, while others may
require hours. Likewise, some queries may require no I/O, others issue only one I/O request, while others
yet issue hundreds of megabytes or gigabytes of I/O. Queries can easily get “stuck” waiting behind slow
operations and computations, resulting in excessive delay.

(ii) DBMS have numerous background tasks that run periodically to improve performance, or perform
maintenance. For example, DBMS often use special processes to scan the DBMS buffer pool for dirty pages
and write them back to disk. These processes introduce additional work for certain resources sporadically,
which can periodically increase delay.

(iii) Some resources, such as locks, are held for long periods of time, and cannot be used by other
queries during that time. This is in contrast to other systems, where resources such as locks are usually
held for only short periods of time. For instance, (in DBMS using two-phase locking (2PL) for concurrency
control) a query can hold locks for (almost) its entire execution, including the time that it spends waiting
for other resources. Thus, in a DBMS, delays can be amplified: When a query waits for a resource, it holds
other resources longer, increasing contention on those resources, increasing the time other queries wait for
resources, and so on.

(iv) Some resources maintain significant amounts of state which affect the delay incurred at those re-
sources. When one query uses such a resource, the resource’s state changes, resulting in poor performance
for other queries that need that resource. For example, a disk drive has a physical head that moves very
slowly, and if one query forces it to move, then not only does that query wait for the head to move, future
queries will need to wait for the head to move again. Likewise, a CPU has an on-chip cache, that is used to
improve instruction throughput. When executing on the CPU, one query can cause much data to be evicted
from the cache, which causes future queries to experience delay when reading data from main memory.

Queueing theory is often not applicable. Even queueing theory, which has been extremely effective
in analyzing and predicting the performance and delays in many other computer systems, is difficult to
apply to DBMS. Researchers such as Kleinrock, Erlang, and Jackson [63] developed methods of modeling
computer systems as networks of queues and servers through which jobs (e.g. queries) flow. Countless
analysis methods, such as Matrix Analytic Methods, Mean Value Analysis, and Heavy Traffic Analysis, have
been developed to predict important performance statistics (e.g. mean response time) from these models.
Queueing theoretic tools have been tremendously effective at helping practitioners design better computer
systems, including telephone systems [29], network switches [25], the ARPANET [50, 51], web servers [38],
and countless others.

Unfortunately, the fundamental design, architecture, and operation of DBMS makes much of queueing
theory hard to apply. The central problem is that queueing theory makes many critical assumptions to
make analysis tractable, which are often violated in DBMS. Some of the most important assumptions which
DBMS violate are that queueing theory usually assumes that systems are work conserving, that job/query
sizes are exponential, and that job/query sizes are independently and identically distributed (IID job sizes).
DBMS violate each of these assumptions as described below:

• Work conserving: Jobs/queries in queueing systems have a predetermined and fixed amount of work
(their “size” or “service time”) that needs to be done in the system. For instance, when a job arrives at
the system, one can determine that it needs, say, 5 seconds of CPU service time.

11

Of all the assumptions violated by DBMS, work conservation is the most significant. The amount
of work needed by a given DBMS query may be completely different, depending on the state of the
DBMS and depending on what other queries are executing during the time the query executes. As
an example, two DBMS components which cause the DBMS to violate work conservation include
DBMS caches and locking:

Caches. DBMS make extensive use of caches, either in the DBMS buffer pool, the CPU architecture,
or the disk drives. Caches can radically change the amount of work that needs to be done for a given
query, depending on whether the data it needs is present in the cache. Furthermore, the DBMS buffer
pool can actually create extra work for a query, since the buffer pool is typically not write-through,
meaning that (usually) dirty pages have to be written back to disk on evictions.

Locking. DBMS use locking to ensure that all queries see consistent views of data. Locking can force
one query to stop mid-execution, to wait for another query to finish executing before it can proceed.
The amount of time spent waiting for locks is variable, and depends on many factors, including the
number of queries in the DBMS, the data that each query accesses, and whether that data is being read
or written.

• Exponential job sizes: Queueing systems typically assume that query/job sizes are distributed accord-
ing to an exponential distribution. The primary consequence of this is that queries are memoryless, and
at any point in time in their execution, a query is equally likely on finishing, or it has “constant failure
rate.” This assumption makes it easy to analyze the queueing model using Markov chains. While
some approaches, such as hyper-exponential distributions, can be used to model other distributions,
these approaches often cause state-space growth in the Markov chains, which can also make analysis
intractable.

In DBMS, jobs are almost never exponentially distributed, and are often much less so than in other
systems. A query which has just begun typically has a “low failure rate,” and is unlikely to be finished.
Typically, a query exhibits a “high failure rate” once it has been executing long enough. Furthermore,
the distribution of DBMS queries often exhibit a “heavy tail,” in which case a few queries are ex-
tremely long-running. In this case, once a query has executed long enough, it once again exhibits a
low failure rate.

• IID job sizes: Independence of job sizes is almost always needed during queueing analysis. Typically,
independence allows one to determine time-average behavior of the system as a whole, since the
distribution of work in the system is stationary (in a probabilistic sense). The work needed by a
DBMS queries, however, is often not independent of the work needed by another.

The same factors that cause DBMS to violate work conservation assumptions (described above) cause
one query to change the DBMS state, such that the amount of work needed by another query changes.
For example, one query may evict critical data from the buffer pool, forcing another query to do extra
I/Os to get that data back from disk.

Additionally, DBMS queries themselves are often not independent, since the users who issue the
queries are attempting to complete a very specific task. In e-Commerce, for instance, a user will
issue several browsing-related queries, to find a book, before issuing a query to add the book to their
shopping cart, which will happen many times before issuing a query to check out and complete their
purchase.

The fact that DBMS violate many of the assumptions in queueing theory cause nearly all DBMS re-
searchers significant difficulties. It is important that this does not preclude the use of queueing theory to

12

understand DBMS performance. Many researchers address this problem by analyzing models of extremely
simplified DBMS implementations or workloads. By ignoring many important system details, such as work
conservation, locking, and inter-query dependencies, the analysis becomes tractable. Unfortunately, the per-
formance results may not relate to the performance of real DBMS, in particular, when the complicating
details that must be ignored for tractability may also greatly affect system performance.

This thesis takes approaches that are commonly used by other DBMS researchers to address this problem:
to augment simplified DBMS performance models to incorporate the critical factors that affect performance,
with a focus on specific situations. A key difference in our research is that we focus on particularly complex
query workloads (OLTP and Transactional Web workloads) running on standard commercial DBMS. As a
result, we must address different types of performance issues than are typically considered in preexisting
research. In order to make sure that our approach correctly predicts DBMS performance, our approach
depends on both (i) adapting queueing models and analysis techniques to accommodate DBMS when they
violate standard queueing theoretic assumptions, and (ii) verifying, via performance evaluation studies of
fully-implemented systems, that these models are accurate.

1.6 Impact of Prioritization

As indicated in Section 1.1, prioritization is important whenever users are forced to share and both (i)
resources are limited and (ii) some users are more important than others. DBMS are textbook examples
of systems in which prioritization is important: (i) resources are limited since it is difficult to scale DBMS
resources, and (ii) some DBMS users are often more important, need better response times, and need better
performance isolation than other users.

Since the issue of limited resources in DBMS was discussed in Section 1.5, this section focuses on the
issue of differentiating high- and low-priority users in real-world scenarios where users are forced to share
DBMS.

In the simplest of situations, some classes of users demand that prioritization be applied so as to improve
their performance, and minimize their delays:

• Service Level Agreements (SLAs) for users. Some customers may be high-priority simply because
they pay for the privilege of receiving better performance. A frequent customer of an online retailer
may realize that it would save a significant amount of time and frustration to pay for a subscription
“gold service” membership, that gives them better performance.

Sometimes, companies have more indirect means of employing query prioritization, which helps make
more profits by increasing functionality:

• Customers who are likely to buy more. An online book retailer receives a steady stream of users,
who generate queries to browse the book collection, add books to their shopping cart, checkout, and
so forth.

The retailer may create a High- and Low-Priority class in a number of ways: (a) Regular customers
are high-priority. (b) Customers with a history of buying profitable “big ticket” items are high-priority.
(c) Customers who have profitable items in their shopping cart are high-priority. (d) Customers that

13

have been receiving slower-than-average response times are high priority (to make up for prior poor
performance).

• Additional Functionality. It is extremely common, particularly in DBMS-driven e-Commerce appli-
cations, to periodically add additional functionality and services to existing systems. Existing DBMS
query workloads are often more important than new functionality, because more customers depend on
the existing functionality. Thus, existing functionality may be high-priority, while new functionality
may be low-priority.

• Federated DBMS and MultiDatabases. Relatively new to the DBMS market are tools called Feder-
ated DBMS, or MultiDatabases, which provides a unified logical view of many different and separate
DBMS [65]. The Federator is told about the existence of other DBMS, the set of which makes up a
Federation of DBMS. A user sends a query, which refers to any subset of data within the Federation,
to the Federator. The Federator automatically issues queries to the Federation DBMS and unifies the
results to answer the user’s query.

In a typical Federated DBMS deployment, each DBMS in the Federation is “legacy” and is dedicated
to a particular application. The Federator is brought in only to answer decision-support and similar
questions that needs information from both DBMS. The Federator is needed because it is too costly,
politically infeasible (e.g. security and data ownership issues), or or technologically infeasible (e.g.
each department uses a different brand of DBMS, and relies on their proprietary features) to unify the
databases into a single DBMS.

Sometimes, in a Federated DBMS, each DBMS is dedicated to a particular application, which is of
utmost importance, and the Federator queries are essential, but have weaker performance require-
ments. Thus, each DBMS’s dedicated Local workload is high-priority, while Federator queries are
low-priority. (These priorities will be used throughout this thesis for Local and Federator workloads.)

Sometimes, careful use of query prioritization can be used to benefit all users, rather than just a select
few high-priority users:

• SJF and mean response time improvement. Many DBMS have workloads with extremely variable
query sizes, where most queries are very short, but a few have very long running times. It is a well-
known result from queueing theory that in systems with variable job sizes, giving shorter queries
higher priority than longer queries improves the average response time.

In DBMS, a query can often be identified as short- or long-running before execution even begins,
simply by looking at the query text or query plan. DBMS may be able to mark short-running queries
as high-priority, effectively mimicking the behavior of the effective Shortest Job First (SJF) scheduling
policy, and minimizing overall average query response time.

• Fairer performance. On first glance, prioritization is meant to provide performance inequity, but it
can also provide users with performance equity.

With or without prioritization, DBMS queries often have variable response times, because they expe-
rience delays caused by other users’ queries, or other performance artifacts. When users often revisit
the DBMS, some users may experience regularly poor performance, simply by getting “unlucky.” Pri-
oritization can be applied to improve the future performance of these unlucky users, to make up for the
poor prior performance. Thus (at least in the long term), all users are more likely to see less variable
average response times.

14

High-Priority Low-Priority Shared Prioritization
Workload Workload Database Mechanism

OLTP TPC-C OLTP TPC-C Yes Internal Prioritization
TransWeb TPC-W TransWeb TPC-W Yes Internal Prioritization
TransWeb TPC-W TransWeb TPC-W No Admission Control

Table 1.4: A summary of the shared DBMS system configurations that are considered in this thesis research.

1.7 Scope

The work in this thesis does not cover all forms of sharing and query prioritization in DBMS. The research is
scoped by the workloads considered, the query prioritization mechanisms considered, and the DBMS system
configurations considered.

Workloads. As described in Section 1.3, this research focuses on two main workloads, based on TPC
benchmark specifications: (i) OLTP workloads, and in particular, the TPC-C benchmark, and (ii) Transac-
tional Web workloads, and in particular, the TPC-W benchmark.

Prioritization Mechanisms. As described in Section 1.4, this research only considers two query
prioritization mechanisms in DBMS: (i) internal prioritization of DBMS resources and devices, and (ii)
external scheduling via the use of admission control to limit the number of queries from a given user allowed
into the DBMS at any time.

System Configurations. Three specific system configurations will be considered in this work, each
consisting of a high-priority and a low-priority workload that share a DBMS. The systems differ based on
(i) the particular high- and low-priority workloads, (ii) the prioritization mechanism used to give the high-
priority workload performance isolation, and (iii) whether the two workloads share the same database data
or use different databases stored on the same DBMS. In each case, the goal is to ensure that the high-priority
workload gets good performance isolation and good response times (despite the presence of low-priority
queries in the DBMS), and to give low-priority queries get “best-effort” service, but that low-priority queries
must not starve. These system configurations are described below and summarized in Table 1.4.

The first system configuration is depicted in Figure 1.1, and consists of a single DBMS shared by two
OLTP TPC-C workloads: one high-priority, and the other low-priority. Each of these workloads share the
same database, as if each workload is sharing and accessing the same company and inventory data. Internal
prioritization is used on resources and devices within the DBMS to ensure that high-priority queries receive
performance isolation.

15

OLTP

High Priority Low Priority
TPC−CTPC−C

OLTP
Internal Scheduling

DBMS

Figure 1.1: The first system configuration, comprised of two OLTP workloads sharing a DBMS that uses
internal prioritization to prioritize high-priority users.

The second system configuration is depicted in Figure 1.2, and consists of a single DBMS shared by two
OLTP TPC-W workloads: one high-priority, and the other low-priority. Each of these workloads share the
same database, as if each workload is sharing and accessing the same company and inventory data. Internal
prioritization is used on resources and devices within the DBMS to ensure that high-priority queries receive
performance isolation.

TransWeb

High Priority Low Priority
Internal Scheduling

DBMS

TPC−W TPC−W
TransWeb

Figure 1.2: The second system configuration, comprised of two Transactional Web workloads sharing a
DBMS that uses internal prioritization to prioritize high-priority users.

The third and final system configuration is depicted in Figure 1.3, and consists of a single DBMS shared
by two different Transactional Web workloads: one high-priority, and the other low-priority. Unlike the other
system configurations, the two workloads do not share the same database data. Admission control is used
to limit the low-priority MultiProgramming Level (MPL), defined as the maximum number of low-priority
queries in the DBMS at any one time. High-priority queries are always admitted into the DBMS and allowed
to run.

16

Hi-Prio Wkld Low-Prio Wkld Prioritization Mechanism Chapters
OLTP TPC-C OLTP TPC-C Internal Prioritization Chapter 2 and Chapter 3

TransWeb TPC-W TransWeb TPC-W Admission Control Chapter 2 and Chapter 4

Table 1.5: Summary of workload scenarios considered in the chapters of this thesis.

DBMS

TransWeb
TPC−W

Low Priority
TPC−W

TransWeb

Admission
Control

High Priority

Figure 1.3: The third system configuration, comprised of two Transactional Web workloads sharing a DBMS
that uses admission control to isolate high-priority users from low-priority users.

1.8 Roadmap

This thesis is organized in three parts, discussed in Chapter 2, Chapter 3, and Chapter 4. Chapter 2 and
Chapter 3 will focus on how to provide a high-priority query class using internal prioritization for both
OLTP and transactional web applications that share a DBMS. Chapter 4 changes direction and addresses
how to share a DBMS between two transactional web applications in a single DBMS, using admission
control to provide performance isolation.

Chapter 2 presents a comprehensive study of prioritization for OLTP and transactional web applications
on several types of DBMS using different concurrency control methods. Chapter 2 reveals limitations for
existing Lock scheduling approaches for providing prioritization for OLTP workloads in certain DBMS
implementations. Chapter 3 addresses these limitations in Lock scheduling, and documents an in-depth
statistical analysis of locking in OLTP workloads, and develops a new Lock scheduling algorithm called
Preempt-On-Wait (POW) that outperforms existing algorithms.

Chapter 4 examines a system in which a DBMS is shared by two transactional web workloads, in which
one workload is regulated by admission control. Chapter 4 consists of a comprehensive study of each work-
load’s performance as the admission control MPL and the workload characteristics are varied. Furthermore,
it demonstrates how to apply queueing analysis to predict the performance of the DBMS, and shows how
to adjust the queueing analysis to reflect the difficulties predicting DBMS performance as described in Sec-
tion 1.5.

17

1.8.1 Chapter 2: Prioritization in OLTP and Transactional Web Applications

The goal of Chapter 2 is to determine how to use internal prioritization to provide performance isolation for
high-priority queries in a DBMS shared by either OLTP or Transactional Web workloads. Chapter 2 con-
sists of two halves: (i) a comprehensive bottleneck analysis of the workloads and DBMS implementations,
to determine which resources are most important to schedule to achieve query prioritization, and (ii) an eval-
uation study of various scheduling algorithms for different resources on each of the DBMS and workloads
considered.

The primary questions addressed in Chapter 2 are:

(i) What resources/devices should be scheduling be applied to?

(ii) What scheduling algorithms should be used?

(iii) How does the workload affect questions (i) and (ii)?

(iv) How does the DBMS implementation affect questions (i) and (ii)?

By helping to answer the above questions, Chapter 2 helps to solve several important problems that arise
in DBMS.

Implementing resource scheduling inside a DBMS can be a difficult task. DBMS are comprised of count-
less resources, some physical (e.g. I/O, CPU), and some virtual (e.g. Locks, Latches), and it is both difficult
and time consuming to implement priority scheduling at each resource. In fact, it can actually hurt perfor-
mance more than it helps to implement scheduling at unnecessary resources, due to the overhead involved
(such as to manage priority queues). Chapter 2 helps developers to focus on implementing scheduling only
on resources that are important from a performance standpoint. As a result, development costs are saved,
bugs are reduced, and overheads are minimized.

Furthermore, different scheduling algorithms are more difficult to implement than others. For instance, it
is more difficult to implement a lock scheduling algorithm with priority inheritance. Priority inheritance re-
quires more book-keeping, but can help reduce the performance delays experienced by high-priority queries.
Without a quantifiable understanding of how these algorithms improve performance, it is difficult to deter-
mine whether they are worth implementing.

The workloads considered throughout Chapter 2 will be the OLTP workload TPC-C and the transac-
tional web workload TPC-W, which are discussed in further detail in Section 1.3. Chapter 2 will consider
several DBMS implementations, including the commercial IBM DB2, the open-source PostgreSQL, and the
research-oriented Shore storage manager, each of which are described in detail in Section 1.2.

Bottleneck Analysis

The bottleneck analysis consists of determining how much time the average query spends in each resource
in the DBMS. The resource in which queries spend the majority of their time is the bottleneck resource.
It is a well-known from queueing theory that query performance at the bottleneck resource dominates the
performance of queries in the system as a whole (assuming that queries visit all system resources).

I consider that the DBMS is comprised only of CPU, I/O and Lock resources. It will be seen that these
resources are the only ones of any relevance in the systems covered in this thesis, although other resources

18

could easily be considered as well. The primary measurements considered are the time that an average
query spends executing at and waiting for the CPU(s) and I/O device(s), and the time waiting for Locks
(including locks managed by the DBMS lock manager to ensure ACID properties are satisfied, but not spin
locks/latches used to maintain internal DBMS data structures). The sum of these times is equal to the average
query response time (the total time a query is in the DBMS).

I will show that for TPC-C workloads running against either commercial or research DBMS using 2PL
concurrency control, Locks are almost always the bottleneck. This is a surprising fact, that queries (on
average) spend the most time waiting for locks, despite the fact that other resources in the system may have
high utilization (e.g. CPU). TPC-C workloads running against MVCC DBMS (in particular, PostgreSQL)
will prove to be I/O-bottlenecked in most cases, although locks can become significant bottlenecks when
concurrency is increased. TPC-W workloads will prove to be CPU-bound across the board.

Scheduling Algorithm Evaluation

For the scheduling algorithm evaluation, several scheduling algorithms are implemented in PostgreSQL
(which uses MVCC) and Shore (which uses 2PL), and TPC-C and TPC-W are ran against these implemen-
tations. Prioritization is determined randomly: 10% of the queries are chosen to be high-priority, and the
remainder are low-priority.

Given that the bottleneck analysis reveals that CPU and Locks are bottleneck resources, I only consider
prioritization algorithms for these resources. In particular, the prioritization algorithms considered are:

1. NP-LQ — Lock prioritization, which non-preemptively prioritizes locks by reordering lock queues.

2. NP-LQ-Inherit — Lock prioritization, identical to NP-LQ, but also adds priority inheritance.
Priority inheritance boosts the priority of low-priority queries whenever a high-priority query must
wait (due to a lock dependency) on for them. The idea is to get low-priority that block high-priority
queries out of the system faster, to let the high-priority queries proceed.

3. P-LQ — Lock prioritization, identical to NP-LQ, but adds preemption. Preemption lets high-priority
queries kill low-priority queries that hold locks needed by the high-priority query (and force the high-
priority query to wait). Killed low-priority queries are “rolled back” and restarted after the high-
priority query is given the lock it needs.

4. CPU-Prio— CPU scheduling, which changes the UNIX-like priority of the operating system sched-
uler.

5. CPU-Prio-Inherit — CPU scheduling, identical to CPU-Prio, except that priority inheritance is
added.

6. P-CPU — CPU (and Lock) scheduling, identical to CPU-Prio, but also kills (and restarts) low-
priority queries when they prevent high-priority queries from acquiring locks.

I find that implementing scheduling precisely on the bottleneck resources has the strongest ability to
provide performance isolation to high-priority queries. This is counter to the widely-believed idea that
simply scheduling the CPU is enough to (indirectly) schedule other resources [2]. Furthermore, I find that
priority inheritance is most effective on CPU-scheduling in CPU-bound workloads, such as TPC-W running

19

on PostgreSQL, in which CPU-Prio-Inherit is a factor of 3 better at isolating high-priority queries than
CPU-Prio. For Lock-bound workloads, using lock scheduling with priority inheritance is still helpful, but,
for instance, NP-LQ-Inherit’s isolating power is only 30% better than that of NP-LQ.

The most striking discovery is that for lock-bound workloads (OLTP TPC-C workloads running against
DBMS using 2PL concurrency control), it is difficult to provide performance isolation to the high-priority
queries.

Depending on the situation, either (i) the isolation that preemption gives to high-priority queries is too
small (resulting in excessively large high-priority query response times), (ii) the isolation that preemption
gives to high-priority queries is good, but the penalty caused to low-priority queries is too great (resulting in
starvation of low-priority queries). Thus, it appears as if preemption is not very effective when used in lock
scheduling. Chapter 3 of this thesis, however, addresses this problem, and shows how to make preemptive
lock scheduling effective, without hurting low-priority queries too much.

1.8.2 Chapter 3: Lock Prioritization in OLTP Applications with POW

Chapter 3 is a continuation of the work done in Chapter 2, but focuses on improving the limitations ob-
served in existing lock scheduling policies. Chapter 3 considers only the lock-bound workloads observed in
Chapter 2: OLTP TPC-C workloads running against a DBMS using 2PL concurrency control.

The goal of Chapter 3 is to determine how to use preemption to improve lock scheduling to provide
performance isolation for high-priority queries in OLTP TPC-C workloads. In particular, Chapter 3 tries to
resolve the trade-off seen between preemptive and non-preemptive lock scheduling algorithms. Typical pre-
emptive lock scheduling is good at improving high-priority query response times (more than non-preemptive
lock scheduling), but effectively starves low-priority queries, resulting in extremely long low-priority query
response times. On the other hand, non-preemptive lock scheduling is not as good at improving high-priority
query response times as preemptive lock scheduling, but it does not starve low-priority queries. Chapter 3
attempts to get the best of both worlds: good high-priority query performance without starving low-priority
queries.

Chapter 3 is broken into two halves: (i) a statistical analysis of the locking behavior observed in the
systems under study with and without lock scheduling, and (ii) the development of a new algorithm, called
Preempt-On-Wait, which selectively preempts low-priority queries to deliver better performance isolation to
high-priority queries.

The primary questions addressed in Chapter 3 are:

(i) What factors cause preemptive lock scheduling to starve low-priority queries?

(ii) What factors prevent non-preemptive lock scheduling from providing sufficient performance isolation
to high-priority queries?

(iii) Can the use of selective preemption give good performance isolation to high-priority queries without
starving low-priority queries?

(iv) What condition(s) should be used to decide when to preempt low-priority queries?

The work in Chapter 3 is, in some ways, similar to the work done by Singhal and Smith [76], in which

20

several real-world DBMS workload implementations are analyzed to statistically characterize their perfor-
mance and system behavior.

Statistical Analysis

The first half of Chapter 3 examines statistical properties about how queries hold and compete for locks
in the DBMS. The first half also examines how common preemptive and non-preemptive lock scheduling
policies affect these statistics, revealing why these policies are not as effective as desired. These statistics
are collected by instrumenting the lock manager and tracing the execution of the TPC-C workload running
against Shore, and verified (when possible) with IBM DB2.

The key observation made in this half of the work is that, most of the time, when a high-priority query
is forced to wait (due to a lock conflict) behind a low-priority query, it does not wait very long. This is
because the low-priority query typically finishes without having to wait for any locks (and since locks are
the bottleneck resource, they are predominantly responsible for slow response times). Statistically speaking,
the only time low-priority queries hurt high-priority queries is when those low-priority queries must wait to
acquire another lock.

Preempt-On-Wait (POW)

The second half of Chapter 3 uses the statistical properties discovered in the first half to develop a new
lock scheduling algorithm, called Preempt-On-Wait (POW). Furthermore, I evaluate the performance of
POW, and show that it achieves the best-of-both worlds: (i) High-priority queries get the good performance
isolation (and small response times) as found in preemptive lock scheduling, and (ii) Low-priority queries
get good performance and do not starve, as found in non-preemptive lock scheduling.

The key idea for POW is to preempt low-priority queries selectively, and only when they most hurt high-
priority query response times. POW preempts all low-priority queries which are both (i) being waited on
by a high-priority query, and (ii) waiting to acquire another lock. The idea for this criteria is that when a
low-priority query waits for a lock, it is likely to have a long response time, and the remaining time of the
query is also long. Thus, a high-priority query that must wait on such a low-priority query will also have a
long response time. This is due to the fact that the high-priority query has to wait for the low-priority query
to finish before it can continue.

1.8.3 Chapter 4: Providing Isolation for Mixed DBMS Workloads (IDD)

Chapter 4 takes a turn away from the systems covered in Chapter 2 and Chapter 3. Instead of using internal
prioritization, Chapter 4 considers how to configure admission control to provide performance isolation
between two workloads running on the same DBMS.

To make the work tractable, Chapter 4 does not consider all possible combinations of workloads and
DBMS. Instead, it focuses on systems with two different transactional web (TPC-W) workloads running
against IBM DB2. The first workload will be CPU-bound, and called the Local workload (alternatively,
the Locals). The second workload will vary from CPU-bound to I/O-bound by increasing the database
size, and will be called the Federator workload (alternatively, the Federators). Throughout Chapter 4, the

21

Local workload will be high-priority, and the Federator workload will be low-priority, needing only best-
effort service. Despite these DBMS and workload restrictions, none of the methods developed in Chapter 4
depend on them, and the methods are expected to be effective and accurate in a wide range of systems.

Chapter 4 has three major sections: (i) The discovery of The Hump, which is a surprising and non-
intuitive performance trend found when mixing multiple workloads on the same DBMS, and (ii) A demon-
stration that existing queueing theoretic analysis does not predict the hump, and (iii) Introduction of a new
queueing analysis technique, called Isolated Demand Decomposition (IDD), which correctly predicts the
performance of two workloads running on the same DBMS, especially as a function of admission control,
based on how those workloads run on the DBMS by themselves (in isolation).

Federators
CPU−bound
Federators

I/O−bound
Federators

Response
Local

Time

CPU− and I/O−bound

(a) The Hump
Federators

Federator
MPL

Desired

CPU−bound
Federators

I/O−bound
Federators

CPU− and I/O−bound

(b) Federator MPL Policy

Figure 1.4: Left: Illustration of The Hump response time trend. Locals response times as a function of
the I/O-boundedness of the Federator workload. Counter to intuition, response times for the CPU-bound
Locals are good both when Federators are CPU-bound or Federators are I/O-bound. When Federators have
simultaneously large CPU- and I/O-demands, Local response times are bad. Right: Illustration of the ideal
Federator MPL policy as a function of the I/O-boundedness of the Federator workload. Counter to intuition,
Federator MPL can be kept high when Federators are CPU- or I/O-bound, but must be low when Federators
have simultaneously large CPU- and I/O-demands.

The primary questions addressed in Chapter 4 are:

(i) What factors cause the Hump? Or, in other words, what factors cause Locals to receive good response
times even with many Federators in the DBMS at the same time?

(ii) How do you model the DBMS and predict query performance when the DBMS is shared by Locals and
Federators?

22

(iii) How do you determine how many Federator queries can be admitted into the DBMS so as to achieve
specific performance goals for Locals?

The Hump

As indicated above, Chapter 4 fixes the Local workload so that it is CPU-bound, and varies the Federator
workload database size so that Federators shift from CPU-bound to I/O-bound. It is difficult to predict
the performance effects on the Local workload as the Federator workload varies from CPU- to I/O-bound.
Intuitively, computer scientists often come to one of two conclusions: (i) Performance is worst when both
workloads are CPU-bound, since they compete for the same resource, or (ii) Performance is worst when the
Federators are I/O-bound, since that slows down all I/O-requests, and both workloads (who both depend on
I/O, though in different amounts) suffer. Either way, most people predict a monotonic increase or decrease
in response times as the second workload is varied.

I show that the real-life performance trends are, in fact, often non-monotonic: Local (and overall) mean
response times first rise, then fall as the Federator workload shifts from CPU- to I/O-bound. The non-
monotonic trend, which I call The Hump, is illustrated in Figure 1.4(a), and understanding its causes and
predicting it is at the heart of Chapter 4.

The Hump is a significant performance problem, and determines how admission control should be ap-
plied to the Federator workload to give performance isolation to the Locals. At the endpoints, Local (and
overall) mean response times are low, even when there are many Federator queries running in the DBMS at
the same time. At the peak of the Hump, however, running Locals with many Federators hurts Local (and
overall) mean response times by nearly an order of magnitude (a factor of 7.5 in this study). To protect the
Locals, while admission control can admit many Federators at the endpoints (CPU-bound Federators and
I/O-bound Federators), it can only let in a few at the peak of the Hump. This type of policy is illustrated in
Figure 1.4(a).

As indicated above, intuition does not help scientists to correctly predict the Hump. Usually, this is not
due to incorrect understanding of systems issues, but due to the difficulty inherent in estimating the relative
magnitude of their performance effects. In general, the systems issues that are most commonly considered
are competition for CPU (when Federators are CPU-bound) and I/O resources (when Federators are I/O-
bound). The expected result of these issues is that queries wait longer for those resources, or those queries
demand more work from those resources. Table 1.6 summarizes the most common systems issues that arise
when contemplating these DBMS performance issues.

The remainder of Chapter 4 is dedicated to understanding where the intuition breaks down. First, I
determine exactly how important each of the issues listed in Table 1.6 are from a performance standpoint.
Next, I demonstrate that those issues do not significantly contribute to cause the Hump. Finally, I determine
what issues are, in fact, responsible for the Hump trend, and shows how to incorporate these into queueing
theoretic models to accurately predict the hump.

Queueing Theory is Lacking

The second section of Chapter 4 shows the limitations of current queueing theoretic analysis techniques
when applied to DBMS. Some queueing theoretic models have been used to model DBMS performance for
years. Queueing theoretic models help fill in where intuition leaves off — they help to quantify and establish

23

Resource/Effect Federator Wkld Issue
(i) CPU wait time CPU-bound Increased competition for CPU, since queries spend

less time in I/O
(ii) I/O wait time I/O-bound Bigger databases need more I/O requests.
(iii) I/O wait and exec time I/O-bound Bigger databases spread data further on disk, increas-

ing seek times.
(iv) CPU exec time I/O-bound Bigger databases have more data to process, needing

more CPU instructions per query.

Table 1.6: The systems issues upon which many incorrect intuitive predictions of shared DBMS perfor-
mance are based.

relative significance of the systems issues seen in Table 1.6 from a performance standpoint. Unfortunately,
these models fail because they do not incorporate essential performance characteristics that are inherent to
DBMS resources (particularly CPU).

Queueing theoretic modeling shows that one should expect that, as the second workload shifts from
CPU- to I/O-bound, the response time should follow a plateau, then dip, and then rise exponentially. Many
different queueing models all result in similar performance trends, which suggest that something critical is
missing from these models. The final section of Chapter 4 will establish what, exactly, is missing, and how
to update the models to properly incorporate them.

Isolated Demand Decomposition (IDD)

The final section of Chapter 4 focuses on the development of Isolated Demand Decomposition (IDD). IDD’s
development depends on first determining what systems issues cause the Hump performance, and then de-
termining how to incorporate these issues into queueing theoretic models.

To determine which systems issues cause the Hump, I profile the DBMS, and conduct an extensive
statistical analysis to discover where queries spend their time. I discover that the Hump is largely due to
two factors: the CPU becomes slower, and the queries execute more instructions than expected. The CPU
slows down because of CPU data cache misses, which reduce the number of instructions per second the CPU
can execute. Queries execute more instructions because data contention for internal DBMS data structures
(spin-locking and latching) increase.

24

Chapter 2

Prioritization in OLTP and
Transactional Web Applications

25

2.1 Background and Overview

In the introduction, we saw that DBMS are shared systems and have only limited resources. The conse-
quence is that users will inevitably experience delays, when the DBMS or its components become over-
loaded. Fortunately, some users are more important than others, and as a result, we can make better use of
the DBMS’s limited resources by prioritizing the most important, high-priority queries in the DBMS. The
goal of prioritization is to reduce the delays that high-priority queries experience in the DBMS.

DBMS are complex systems, comprised of many different physical devices (such as CPUs, disk drives,
memory, etc) and logical resources (such as locks, queues, and so forth). DBMS queries are essentially
small programs that execute at the DBMS, and need to use these devices and resources in turn. Queries all
have different device and resource demands, the amount of work they require to be executed at each device
or resource during their execution.

Queries experience delays in DBMS whenever they encounter delays when trying to use devices and
resources within the DBMS. Physical devices within the DBMS are inherently limited resources, because
each device can only do a limited amount of work in any period of time, and can usually only work on a
single query (or at best, a few queries) at a time. Thus, when queries compete for those physical devices,
they are forced to wait, and incur delays which slow them down. Logical resources, such as locks, are almost
always used to control queries’ access to data or physical devices within the DBMS. As a result, competition
for logical resources also cause queries to wait and incur delays.

OLTP

High Priority Low Priority
TPC−CTPC−C

OLTP
Internal Scheduling

DBMS

(a) OLTP Configuration

TransWeb

High Priority Low Priority
Internal Scheduling

DBMS

TPC−W TPC−W
TransWeb

(b) Transactional Web Configuration

Figure 2.1: The system configurations considered in this chapter: OLTP and Transactional Web workloads
with high- and low-priority queries, sharing a DBMS. High-priority queries are prioritized using internal
prioritization.

The only way to effect query prioritization in DBMS is to prioritize queries’ access to the devices and
resources within the DBMS. One can accomplish that in two ways: (i) admit queries to the DBMS, and then
use internal prioritization, to keep low-priority queries from using devices needed by high-priority queries,

26

or (ii) do not admit queries to the DBMS, and use external admission control to keep low-priority queries out
of the DBMS, and from using devices needed by the high-priority queries. This chapter focuses on option
(i), internal prioritization.

Implementing internal prioritization in a DBMS is a challenging problem. DBMS have many different
physical devices, and many more logical resources. On which devices and resources should query scheduling
be implemented? Implementing scheduling at every device and resource within the DBMS is not a good
idea because (i) implementing scheduling algorithms is often difficult, expensive, and time-consuming for
DBMS vendors and developers, especially when they affect mission-critical pieces of the DBMS source
code, and (ii) scheduling queries incurs a run-time overhead, which means that implementing scheduling
when it is not needed can actually hurt, and not help query performance.

Beyond the issue of what devices and resources should be scheduled, one has to decide what scheduling
policies should be used. There are hundreds of different scheduling policies available, including processor
sharing, first-come first-serve, last-come first-serve, and shortest job first, to name a few. Each one may
result in different performance, and it is unclear which policies are best to implement for each resource.

The basic operation of DBMS further complicates the problem of choosing a scheduling policy, because
they provide additional options for most scheduling policies. DBMS often have to serialize the execution
of two queries to ensure data consistency (ACID properties), usually via the use of locking. This means
that a high-priority query may be forced to wait for a low-priority query to completely finish before the
high-priority query is able to get any work done. Serialization and locking introduce delay for high-priority
queries, hurting high-priority performance isolation.

Most scheduling policies can be augmented using preemption or priority inheritance to minimize high-
priority delays due to serialization and locking, drastically increasing the number of scheduling policies one
needs to consider. Preemption lets high-priority queries terminate any low-priority queries that the high-
priority queries must wait for. Priority-inheritance boosts the priority of any low-priority queries that the
high-priority queries must wait for (such low-priority queries effectively become high-priority). While both
preemption and priority-inheritance have potential performance benefits, they also have potential perfor-
mance drawbacks, and it is unclear which dominate. Preemption kills queries, which can cause starvation
and ruin overall DBMS throughput. Priority-inheritance can reduce the benefits seen by scheduling by intro-
ducing too many high-priority queries. Furthermore, both policies increase DBMS development times and
costs.

In summary, when attempting to implement query prioritization by implementing query scheduling at
devices and resources in the DBMS, four primary questions must be addressed: (i) Which devices and
resources should be scheduled? (ii) Which scheduling policies should be used? (iii) Should preemption
or priority-inheritance be used? (iv) How do changes to the DBMS and workload change the answers to
questions (i) (ii) and (iii)?

The problem of prioritizing queries within DBMS is not new, and has been studied before in many
contexts. We discuss prior approaches to implementing prioritization in Section 2.4. Unfortunately, the prior
work does not provide much insight for the systems, DBMS, and workloads that we consider in this research,
and do not help to answer the questions listed above. Existing research appears to come to contradictory
conclusions of what resources to schedule and what scheduling policies are most effective. The differences of
existing research appears to be due to the fact that each considers both (i) different DBMS implementations,
some of which are not commercially relevant, and (ii) different workloads which do not resemble the OLTP
and transactional web workloads considered in this chapter.

27

The key idea of this chapter revolves around identifying the bottleneck resource, and concentrating
scheduling efforts on that resource. The bottleneck resource is the resource in which queries spend the
bulk of their time, and is the biggest contributor to query response time.

This chapter will examine systems of the form illustrated in Figure 2.1, and described in detail in Sec-
tion 1.7. A DBMS is shared between two OLTP (TPC-C) or two Transactional Web (TPC-W) query work-
loads, one high-priority and one low-priority. Internal prioritization is used to prioritize and provide perfor-
mance isolation to the high-priority queries. This type of scenario arises in many commercial systems, but
is of particular interest in the area of e-Commerce. It is extremely common for e-Commerce applications to
have some users which are more important than others, either because (i) users pay for “gold service” and
better performance, or (ii) the company recognizes that when certain users get better performance, they are
more satisfied, and are more likely to spend more at their site.

This chapter consists of two primary contributions: (i) A comprehensive bottleneck analysis of real-
world DBMS implementations and workloads, which identifies where queries spend their time in a DBMS,
and (ii) A performance analysis of scheduling policies applied to the devices and resources in the DBMS.

2.1.1 Bottleneck Analysis

To determine how best to effect query prioritization, one must first determine which devices/resources must
be scheduled. Implementing query scheduling on the wrong devices/resources is likely to result in both (i)
undesirable performance overheads that slow down all queries, and (ii) unnecessary DBMS development
and testing costs to implement scheduling on those devices (potentially resulting in bugs).

In the bottleneck analysis, we experiment with a variety of workloads running against a variety of DBMS
implementations, and examine how the bottleneck changes as the workload changes. The workloads we
consider are an OLTP TPC-C workload and a transactional web TPC-W workload. We vary the scale of
these workloads in three ways: (i) scaling the number of clients (concurrency level), (ii) scaling the size
of the database, or (iii) scaling the workload according to the benchmark specification, changing both the
number of clients and the size of the database. The DBMS implementations considered are IBM DB2, Shore
and PostgreSQL. IBM DB2 and Shore both use 2PL concurrency control, while PostgreSQL uses MVCC
concurrency control.

Key Idea

The key observation is that, to effect DBMS query prioritization, it is both sufficient and necessary to prior-
itize queries only at the bottleneck resources. The bottleneck resources are those devices/resources in which
queries spend most of their response time.

In particular, to improve query response times, one must consider: (i) consider all resources which can
cause query delays, not just the obvious physical resources; this includes resources such as Locks, and
(ii) consider the time that queries spend executing in and waiting for each resource, as a fraction of the
overall query response time. This is in contrast to much conventional thinking in which one must simply
consider resource utilization for the physical devices in the DBMS, such as CPU and I/O. Looking at where
queries spend their time is essential, as resource utilization alone does not paint a sufficient enough picture
to improve query response times. Likewise, DBMS queries can incur significant delays due to inter-query
dependencies, such as through Locks, which are not seen in measurements made in primary physical devices

28

Concurrency Workload Standard Many Clients Big DB
Algorithm Class Workload Bottleneck Bottleneck Bottleneck

2PL OLTP TPC-C Locks Locks I/O
MVCC OLTP TPC-C I/O Locks I/O

2PL TransWeb TPC-W CPU CPU CPU
MVCC TransWeb TPC-W CPU CPU CPU

Table 2.1: Summary of bottleneck resources as a function of the DBMS workload and the DBMS concur-
rency control algorithm.

(such as CPU and I/O).

Summary of results

The primary observation is that the bottleneck resource changes in well-defined ways, based on the workload
and the DBMS implementation. First, OLTP TPC-C workloads running on 2PL DBMS are almost always
lock-bound. Second, OLTP TPC-C workloads running on MVCC workloads are predominantly I/O-bound
but are occasionally lock-bound in certain circumstances (when the number of clients is increased but the
database size is fixed). Third, transactional web TPC-W workloads are almost always CPU-bound.

Table 2.1 summarizes these results, indicating the bottleneck resource based on the workload and the
concurrency level, and based on how the workload is scaled. The Standard Workload is scaled as described
in the benchmark specification, scaling both the number of clients and the database size together. Many
Clients is scaled by increasing the number of clients only, and Big DB is scaled by increasing the size of the
database only.

2.1.2 Scheduling Algorithm Analysis

Once the bottleneck resource is determined, one must determine what scheduling policy should be used
to schedule that resource. Many options are possible, though we focus on two in particular: (i) preemp-
tive versus non-preemptive scheduling and (ii) scheduling with priority-inheritance versus without priority
inheritance.

Preemption and priority-inheritance both try to minimize the amount of time that high-priority queries
wait for low-priority queries, which can, in effect, improve the granularity of scheduling. Unfortunately both
also have potential disadvantages, making it unclear whether either technique should be used. Preemption
can cause starvation to low-priority queries, and can hurt overall system performance by introducing far extra
work into the DBMS. Priority-inheritance can be more difficult to implement correctly (resulting in higher
DBMS development costs, or the risk of bugs), but can also hurt high-priority queries, since high-priority
queries may have to wait for low-priority queries (that have inherited high-priority status).

The scheduling policies that are considered, according to resource are as follows:

1. NP-LQ — Lock scheduling, which non-preemptively schedules locks by reordering lock queues.

29

2. NP-LQ-Inherit — Lock scheduling, identical to NP-LQ, except that priority inheritance is
added.

3. P-LQ — Lock scheduling, which preemptively schedules locks, by reordering lock queues and
killing (and restarting) low-priority queries when they prevent high-priority queries from acquiring
locks.

4. CPU-Prio— CPU scheduling, which changes the UNIX-like priority of the operating system sched-
uler.

5. CPU-Prio-Inherit — CPU scheduling, identical to CPU-Prio, except that priority inheritance is
added.

6. P-CPU — CPU (and Lock) scheduling, identical to CPU-Prio, but also kills (and restarts) low-
priority queries when they prevent high-priority queries from acquiring locks.

Key Idea

To evaluate the effectiveness of different scheduling policies, we implement and experiment with the above
scheduling policies on OLTP TPC-C workloads and transactional web TPC-W workloads running on Shore
(with 2PL concurrency control) and PostgreSQL (with MVCC concurrency control). We examine the effec-
tiveness of each policy as a function of the amount of load on the DBMS.

Summary of results

The first observation made is that scheduling the bottleneck resource is essential to effectively prioritize
high-priority queries.

This result proves that pre-existing belief that prioritizing the CPU is good enough to prioritize high-
priority queries [2] is wrong. The intuition for this incorrect belief is that queries can only use other resources
after first running on the CPU, and thus scheduling the CPU implicitly schedules other resources as well.
The basic premise of the intuition is true, but it turns out that scheduling the CPU alone is not effective
(especially when locks are the bottleneck). This is due to the fact that when the CPU is not the bottleneck,
high- and low-priority queries both (i) see few other queries at the CPU and (ii) experience small waiting
times for the CPU, regardless of whether or not scheduling is applied. As a result, high-priority queries do
not get access to resources much faster than low-priority queries.

Despite the fact that scheduling the bottleneck directly appears to be essential, CPU scheduling does
appear to successfully prioritize high-priority queries in I/O-bound workloads, such as in OLTP TPC-C on
PostgreSQL. This is likely due to the fact that I/O uses a complicated elevator scheduling policy which
carries a lot of state, and a small reordering can result in significant performance differences. That said,
the performance isolation that CPU scheduling gives to high-priority queries in an I/O-bound workload is
not as strong as lock scheduling gives to lock-bound workloads nor as strong as CPU scheduling gives to
CPU-bound workloads. This suggests that I/O-scheduling will be more effective at providing prioritization.

When locks are the bottleneck, in 2PL OLTP TPC-C workloads, CPU scheduling is almost completely
ineffective. On the other hand, when lock scheduling is used (NP-LQ), high-priority response times can be
reduced by a factor of nearly 4 (in our experiments; under higher loads this factor should increase). For

30

MVCC transactional web TPC-W workloads, where I/O is the bottleneck, CPU scheduling can be moder-
ately useful, reducing high-priority response times by a factor of two.

Priority-inheritance is able to improve lock scheduling for 2PL OLTP TPC-C workloads by a factor of
30%, while it can improve CPU scheduling for MVCC transactional web TPC-W workloads by a factor of
three.

Preemption can improve the effect that lock scheduling has for high-priority queries in OLTP TPC-
C workloads by a factor of nearly 2, while it hurts low-priority queries drastically (hurting the overall
average performance drastically). This penalty is due to the fact that preemption kills too many low-priority
queries, which must be restarted and re-executed. Preemption is not useful for CPU scheduling in MVCC
transactional web TPC-W workloads due to the fact that: (i) the CPU is scheduled using a fine-grained time-
slicing (ii) when a query is preempted, any I/Os that it had in progress have already caused the drive heads
to seek. Thus, simply waiting for those I/Os to complete is not very different from terminating them and
issuing the next request.

2.2 Organization of this chapter

The remainder of this chapter proceeds as follows: Section 2.3 introduces and motivates the problem of
prioritization in OLTP and transactional web DBMS workloads. Section 2.4 summarizes the prior work in
the field of prioritizing queries in DBMS. Section 2.5 describes the experimental setup used throughout this
chapter. Section 2.6 describes the process and the results of the bottleneck analysis for each of the workloads
and DBMS considered in this chapter. Section 2.7 documents the evaluation process of various scheduling
policies for each workload and DBMS considered. Section 2.8 summarizes the immediate results of the
chapter, and Section 2.9 and Section 2.10 discuss the impact of the work along with future directions the
work can be taken.

31

2.3 Introduction

Online transaction processing (OLTP) is a mainstay in modern commerce, banking, and Internet applica-
tions. For many OLTP applications, particularly e-commerce applications, clients require fast access times.
Unfortunately, serving requests which involve database activity for dynamic query processing and data gen-
eration can be very slow — orders of magnitude slower than delivering static content. This slowness is
exacerbated under heavy load and overload.

To alleviate the problem of costly database accesses, it can be extremely valuable to assign priorities
to users and provide differing levels of performance. When both high- and low-priority clients share the
database system, high-priority clients should complete more quickly on average than their low-priority
counterparts. For example, an online merchant may make use of priorities to provide better performance
to new prospective clients, or to big spenders expected to generate large profits. Alternatively, a web jour-
nal may provide improved responsiveness to “gold-customers” who pay higher subscription costs. Finally,
point-of-sales systems may run long-running maintenance queries “in the background,” at low-priority while
customer purchases execute quickly at high-priority.

The goal of this research is to provide prioritization and differentiated performance classes within a tradi-
tional (general-purpose) relational database system running OLTP and transactional web workloads, includ-
ing read/write transactions. This chapter provides a detailed resource utilization breakdown for OLTP work-
loads executing on a range of database platforms including IBM DB2[45], Shore[17], and PostgreSQL[52].
IBM DB2 and PostgreSQL are both widely used (commercial and noncommercial) database systems. Shore
is an open source research prototype using traditional two-phase locking (2PL), the concurrency control used
in DB2. PostgreSQL (like Oracle), on the other hand, uses multiversion concurrency control (MVCC) [12].
The chapter also implements several transaction prioritization policies within Shore and PostgreSQL. The
prioritization policies studied include non-preemptive priorities, non-preemptive priorities with priority in-
heritance, and preemptive abort scheduling. Given the focus on web and complex transactional applications,
we use the benchmark OLTP workloads TPC-C and TPC-W.

The primary contributions of this research are twofold:

1. Identification of bottleneck resource(s) across DBMS, workloads and concurrency levels.

2. Demonstration that simple priority scheduling inside the DBMS significantly improves high-priority
transaction execution times without penalizing low-priority transactions.

With respect to bottleneck identification, we show that the bottleneck resource for TPC-C on IBM DB2
and Shore, both of which use 2PL, is lock waiting. By contrast, for the same TPC-C workload, PostgreSQL,
which uses MVCC, exhibits an I/O synchronization bottleneck. For TPC-W on DB2 and PostgreSQL, we
find that the bottleneck is always the CPU.

On the issue of scheduling policies, we find that scheduling of bottleneck resources results in improving
high-priority transaction execution times considerably. For systems with lock bottlenecks (TPC-C on DB2
and Shore), CPU scheduling is ineffective, but lock scheduling can improve high-priority performance by a
factor of 5.3. For systems with CPU bottleneck (TPC-W), lock scheduling is ineffective, while CPU schedul-
ing improves high-priority performance by a factor of 4.5. For PostgreSQL, which has an I/O synchroniza-
tion bottleneck, CPU scheduling with priority inheritance yields a factor of 6 improvement of high-priority
transactions. Provided that the fraction of high-priority transactions is small, the penalty to the low-priority
transactions is negligible as long as preemption is not used.

32

2.4 Prior Work

There is a wide range of well-known database research, including that of Abbott, Garcia-Molina, Stankovic,
and others, studying different transaction scheduling policies and evaluating the effectiveness of each. Most
existing implementation work is in the domain of real-time database systems (RTDBMS), where the goal is
not improvement of mean execution times for classes of transactions, but rather meeting deadlines associated
with each transaction. These RTDBMS are sufficiently different from the general-purpose DBMS studied in
this chapter to warrant investigation as to whether results for RTDBMS apply to general-purpose DBMS as
well. In addition to the existing implementation work in RTDBMS, there has also been work on simulation
and analytical modeling of prioritization in DBMS and RTDBMS. Unfortunately, the simulation and analyt-
ical approaches have difficulty in capturing the complex interactions of CPU, I/O, and other resources in the
database system.

In Section 2.4.1 we summarize the most relevant existing research on transaction prioritization within
RTDBMS. In Section 2.4.2 we summarize the existing and ongoing work on prioritization in general-purpose
DBMS.

2.4.1 Real-Time Databases

Real-time database systems (RTDBMS) have taken center stage in the field of database transaction schedul-
ing for the past decade. These systems are useful for numerous important applications with intrinsic timing
constraints, such as multimedia (e.g., video-streaming), and industrial control systems. Traditional DBMS
with transaction priorities differ from RTDBMS. In RTDBMS, each transaction is associated with time-
dependent constraints (usually deadlines), which must be honored to maintain transactional semantics. The
goal of minimizing the number of missed constraints (deadlines), requires maintaining time-cognizant pro-
tocols and various specialized data structures [79], unlike general-purpose DBMS. Scheduling issues such
as priority inversion may have different costs for RTDBMS as compared to traditional DBMS: i.e., a single
priority inversion may cause a missed deadline while hardly affecting overall mean execution time. Lastly,
RTDBMS workloads can differ substantially from traditional DBMS workloads.

Abbott and Garcia-Molina [2, 1, 3, 4, 5] extensively study scheduling RTDBMS in simulation, pre-
emptively and non-preemptively scheduling the critical resources (CPU, locks and I/O) to meet real-time
deadlines. On the question of which resource needs to be scheduled, Abbot and Garcia-Molina conclude
that CPU scheduling is most important, as transactions only acquire resources when they have the CPU [5].
Additionally, they find scheduling of concurrency control resources also improves performance.

With respect to scheduling policies, both Abbott and Garcia-Molina [5] and Huang et. al. [42] examine
priority inheritance and preemptive prioritization in RTDBMS that use 2PL, to address the priority-inversion
problem. Abbott and Garcia-Molina find that priority inheritance is important when ensuring that deadlines
are met, in particular when the database is small. In contrast, Huang et. al. find that standard priority
inheritance is not very effective in RTDBMS.

Kang et. al. [48] differentiate between classes of real-time transactions, providing different classes with
QoS guarantees on the rate of missed deadlines and data freshness. In that work, Kang et. al. focus on main
memory databases.

Baccouche [10] develops the H/M/L scheduling policy for general RTDBMS, which uses admission
control to prioritize real-time transactions in overload situations. They show that using admission control

33

to prioritize queries in RDBMS does not hurt overall performance (measured by the number of transactions
missing their deadlines) much, while improving high-priority performance drastically.

Our results will differ from those above as follows: (i) CPU is not always the most important resource
to schedule. For DBMS using 2PL and TPC-C workloads we see that scheduling locks is far more effective
than CPU scheduling. (ii) Priority inheritance is not always necessary, and is ineffective for some workloads
and DBMS.

We attribute these differences in results to the many differences between real-time and traditional DBMS
and their workloads.

2.4.2 Priority Classes

Existing work to establish priority classes for mean performance (rather than meeting specific deadlines),
can be divided into techniques which schedule transactions (i) outside the DBMS and (ii) inside the DBMS.
External scheduling is typically implemented using admission control to prevent transactions from entering
the DBMS. Internal prioritization, by contrast, prioritizes transactions as they execute within the database.

Recent work at IBM implements priority classes in admission control [28]. The approach makes admis-
sion control decisions based not only on the number of transactions in the DBMS, but also on transaction
priorities, by limiting the number of low-priority transactions that are able to interfere with high-priority
transactions. Such admission control reduces lock contention and also limits inefficiencies introduced when
the system is under overload, such as virtual memory paging and thrashing. Consequently, high-priority
transactions under overload can benefit significantly.

Despite the simplicity of admission control for prioritization, we believe that internal DBMS prioriti-
zation is more effective. Internal prioritization allows direct control of DBMS resources, and can utilize
knowledge of query plans, transaction resource needs, and system resource availability (e.g. I/O requests
and granted locks).

There is much room for further research in transaction scheduling internal to the DBMS. The most
pertinent work, by Carey et. al. [18] is a simulation study of our same fundamental problem: evaluating
priority scheduling policies within DBMS to improve high-priority transaction performance. They assume a
read-only workload, but recommend mixed read/write workloads should also be examined in the future. In
contrast, our work assumes mixed read/write workloads and our work uses fully implemented DBMS rather
than a simulator.

Brown et. al. [15] address multi-class workloads with per-class response time goals. Again, this is a
pure simulation study without experimental validation on a DBMS prototype. Moreover, it focuses on a
single resource, memory, while in our work we analyze the resource breakdown for different DBMS and
workloads and consider the different bottleneck resources.

Prioritization within traditional DBMS has not been a focus for academic research. As a testament
to the importance of the problem, however, both IBM DB2 and Oracle provide prioritization tools (IBM
DB2gov and QueryPatroller [45, 20] and Oracle DRM [67]), all of which focus on CPU scheduling. We have
experimented extensively with IBM DB2gov, and find it does not provide nearly as large of a prioritization
benefit for the lock-bound workloads discussed in this chapter. This chapter addresses a wider range of
scheduling policies for both CPU and lock resources.

34

2.5 Experimental Setup

This section describes experimental setup details including the workloads, hardware, and software used.

2.5.1 Workloads

As representative workloads for OLTP and transactional web applications, we experiment with the TPC-
C [22] and TPC-W [23] (TPC-W Shopping Mix) benchmarks.

The TPC-C workload implementation for DB2 and PostgreSQL is written and graciously donated by
IBM. The TPC-C Shore implementation was written at CMU. TPC-C is modified to allow each client to
access a different warehouse and district for each transaction, which produces more uniform access to the
database. The TPC-W workload comes from the PHARM [55] project with minor improvements, such as
an improved connection pooling algorithm.

2.5.2 Hardware and DBMS

All of the TPC-C experiments for DB2 and Shore are performed on a 2.2-GHz Pentium 4 with 1GB RAM,
one 120GB IDE drive, and a 73GB SCSI drive. The TPC-C PostgreSQL experiments are conducted on a
comparable machine with two 1-GHz processors and 2GB of RAM, allowing us to handle the larger memory
requirements of PostgreSQL. The results for PostgreSQL on the dual-processor (two 1-GHz) machine are
similar to those when performed on the single-processor 2.2-GHz machine used by DB2 and Shore. The
TPC-W experiments are all conducted with the database running on the 2.2-GHz machine; the web server
and Java servlet engine run on a Pentium III, 736Hz processor with 512MB of main memory; and the client
applications run on two other machines. The operating system on all machines is Linux 2.4.

The DBMS we experiment with are IBM DB2 [45] version 7.1, PostgreSQL [52] version 7.3, and
Shore [17] interim release 2. Several modifications are made to Shore, to improve its support for SIX
locking modes, and to fix minor bugs experienced in transaction rollbacks.

2.6 The Bottleneck Resource

Central to this work is the idea that understanding a workload’s resource utilization is essential for effective
prioritization. In order to improve high-priority transaction execution times, the bottleneck resource, where
transactions spend the bulk of their execution time, must be scheduled, either directly or indirectly. Given
the complexity of modern database systems, predicting the bottleneck resource is non-trivial.

In this section, we derive resource utilization breakdowns and determine the bottlenecks for TPC-C on
Shore, DB2, and PostgreSQL and for TPC-W on DB2 and PostgreSQL. First, we describe the model used for
breaking down transaction resource utilization. Next, we examine how these resource breakdowns change
under varying concurrency levels and database sizes.

35

2.6.1 DBMS Resources: CPU, I/O, Locks

Since the goal of this chapter is to improve individual transaction execution times, and not overall throughput,
it is important to break down execution times from the point of view of a transaction. We focus on three core
DBMS resources: CPU, I/O, and locks, chosen since they are under control of the database, and are believed
to be important in performance [5].

We define the total execution time of a transaction, TTrans, as the time from when the transaction is first
submitted to when it completes. We break TTrans into three components, TTrans = TCPU + TIO + TLock,
corresponding to CPU, I/O, and locks, respectively. These components consist of just the synchronous
time in which the transaction is completely dedicated to either waiting for or consuming the corresponding
resource. TCPU consists of the time spent running on the processor and the time spent in the running
state, waiting for the processor. TIO consists of the time spent issuing and waiting for synchronous I/O to
complete (although the cost of issuing an I/O operation is negligible). TLock is the time that a transaction
spends waiting for database locks. Of course, time spent holding locks is accounted according to whether
the transaction holding the lock is waiting for or consuming CPU or I/O or waiting for another lock.

Database locks are broken into “heavyweight” and “lightweight” locks. Heavyweight locks are used
for logical database objects, to ensure the database ACID properties. Lightweight locks include spinlocks
and mutexes used to protect data structures in the database engine (such as lock queues). We find that
lightweight locking is not a significant component of transaction execution times in either Shore or IBM
DB2. PostgreSQL, however, has significant lightweight lock waiting, due to an idiosyncrasy of the Post-
greSQL implementation. We find almost all lightweight locking in PostgreSQL functions to serialize the I/O
buffer pool and Write-Ahead-Logging activity (via the WALInsert, WALWrite, and BufMgr lightweight
locks). As a result, we attribute all the lightweight lock waiting time for the above-listed locks to I/O. We
use the term “locks” throughout the remainder of this chapter to refer exclusively to heavyweight locks.

We use two different methods to obtain the desired resource breakdowns, depending on the DBMS
used. For DB2, since its source code is unavailable, we rely on its built-in resource measurement facili-
ties: snapshot and event monitoring [45]. For PostgreSQL and Shore, we implement custom measurement
functionality by instrumenting the DBMS itself. We compute the total CPU, I/O and lock wait time over all
transactions and then determine the fraction each component makes up of the sum of all execution times.

For DB2 and PostgreSQL, which use a process-based architecture, we verify the breakdowns at the
operating system via the vmstat command, recording the fraction of time DBMS processes spend in
the CPU run queue (TASK RUNNING), blocked on I/O (TASK INTERRUPTIBLE), or waiting for locks
(TASK UNINTERRUPTABLE). We also use a patch to the Linux kernel to accurately measure CPU wait
times (not measured in Linux by default).

2.6.2 Breakdown Results

TPC-C. Figure 2.2 shows the resource breakdowns measured for TPC-C running on IBM DB2, Post-
greSQL, and Shore. The graphs depict the average portions (indicated as percentages) of transaction execu-
tion time due to CPU, I/O, and lock resource usage.

There are two sources of error in this data: (i) Measurement error and (ii) Sample error. (i) Measurement
error is negligible in all systems except for IBM DB2, which exhibits an error of less than 10%, due to
the low resolution of DB2’s I/O and CPU measurements. All measurements are normalized to 100% for

36

1C 10C 20C 50C 70C 100C200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) DB2: Varying Clients, 10 Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) DB2: 10 Clients, Varying Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(c) DB2: Standard Scaling (10 clients per
WH)

1C 10C 20C 50C 70C 100C 200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(d) Shore: Varying Clients, 10 Ware-
houses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(e) Shore: 10 Clients, Varying Ware-
houses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(f) Shore: Standard Scaling (10 clients
per WH)

1C 10C 20C 50C 70C 100C 200C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(g) PostgreSQL: Varying Clients, 10
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(h) PostgreSQL: 10 Clients, Varying
Warehouses

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(i) PostgreSQL: Standard Scaling (10
clients per WH)

Figure 2.2: Resource breakdowns for TPC-C transactions under varying databases and configurations. The
first row shows DB2; the second row shows Shore; and the third row shows PostgreSQL. The first column
(Figures 2.2(a), 2.2(d), 2.2(g)) shows the impact of varying concurrency level by varying the number of
clients. The second column (Figures 2.2(b), 2.2(e), 2.2(h)) shows the impact of varying the database size
(number of warehouses) while holding the number of clients fixed. The third column (Figures 2.2(c), 2.2(f),
2.2(i)) shows the impact of varying both the number of clients and the database size according to the TPC-C
specification (10 clients for each warehouse).

37

12C 25C 50C 100C 150C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) IBM DB2

12C 25C 50C 100C 150C
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) PostgreSQL

Figure 2.3: Resource breakdowns for TPC-W transactions running on IBM DB2 and PostgreSQL.

clarity. (ii) Sample error is limited by collecting enough samples, such that the standard error of the mean
(stddev
#samples) is less than 1%.

For each DBMS, Figure 2.2 presents three sets of results illustrating the most significant trends. In the
first column, the database size is held constant at 10 warehouses (WH), and the number of clients connected
to the database (concurrency) is varied. In the second column, the number of clients is held constant at 10,
and the size of the database is varied by increasing the number of warehouses. In the third column, we vary
the number of clients and warehouses together, always holding the number of clients at 10 times the number
of warehouses, as specified by TPC-C, demonstrating breakdowns for standard “realistic” configurations.
Throughout, the think times are fixed at zero.

The database sizes for TPC-C range from 500MB to 3GB, as the number of warehouses grows from 5
to 30 (100MB per WH). The buffer pool size is approximately 800MB for each DBMS, chosen to minimize
transaction execution times.

The main result shown in Figure 2.2 is that locks are the bottleneck resource for both Shore and DB2
(rows 1 and 2), while I/O tends to be the bottleneck resource for PostgreSQL (row 3). We now discuss these
in more detail.

We start with some obvious trends. First observe that as concurrency is increased while fixing the
database size (column 1), lock contention increases. Also, as the database size grows, while the concurrency
level is held constant (column 2), the I/O component grows, and the lock component decreases. When the
database and concurrency level are scaled according to TPC-C specifications, the relative resource break-
downs remain fairly stable.

The resource breakdowns for Shore and DB2 (rows 1 and 2) are quite similar, and almost always depict
lock bottlenecks. This may be surprising, since concurrency control was a very active area of research in the
1970’s and 80’s, and thus one might think that locking problems were all resolved at that time. Given our
hardware limitations, we can only experiment with up to 30 WH. It is plausible that the bottleneck may shift
to I/O as the database size increases. Alternatively, additional RAM and disks may hide the growing I/O for
larger databases, leaving locks as the bottleneck resource.

The resource breakdowns for PostgreSQL (row 3) differ greatly from those for Shore and DB2: Post-

38

greSQL almost always exhibits an I/O bottleneck. As indicated earlier, PostgreSQL I/O time includes the
time for both the actual I/O operation and the lightweight lock I/O synchronization. Almost all (80–95%) of
the I/O time is due to I/O synchronization in the standard case (Figure 2.2(i)). While this suggests that I/O
scheduling will be necessary for PostgreSQL prioritization, in Section 2.7, CPU scheduling will be used to
indirectly schedule I/O.

Although not the bottleneck, locks are sometimes a non-trivial component for PostgreSQL. In particular,
locks reach 50% when concurrency is increased while fixing the database size (Figure 2.2(g)), and reach
30% when standard TPC-C scaling is used (Figure 2.2(i)).

The fact that PostgreSQL’s resource breakdowns differ from those for Shore and DB2 is due to differ-
ences in concurrency control in these systems: Shore and DB2 employ 2PL, while PostgreSQL uses MVCC.
With MVCC, PostgreSQL transactions only have to wait for write-on-write conflicts. The result is fewer lock
waits in PostgreSQL than in Shore and DB2, shifting its bottleneck to I/O.

Each breakdown presented in Figure 2.2 is an average computed over all transactions in an experimental
run, and as such, may not be representative of any particular, or even most transactions. The breakdowns
can be sharply skewed by a small fraction of exceptional transactions with extremely long execution times.
Thus, the breakdowns are primarily an indicator of the relative importance of the resources when minimizing
average transaction execution times.

TPC-W. Figure 2.3 shows resource breakdowns for TPC-W transactions running on IBM DB2 and Post-
greSQL as a function of the number of clients connected to the database. The size of the database is held
constant (150MB), and is representative of a database used by 10 clients according to the TPC-W specifi-
cation. Increasing the number of clients to 150 models extremely high data contention. PostgreSQL sees
almost no locking and DB2 sees very little, as TPC-W intrinsically has very little data contention. I/O costs
are also low since the database is so small relative to main memory. Thus, CPU is the bottleneck resource
for TPC-W 1.

2.7 Scheduling the Bottleneck

As seen in Section 2.6, the bottleneck resource for TPC-C on Shore and DB2 is locks, suggesting that lock
prioritization will be effective. Figure 2.4 motivates this point, showing that transactions that do not wait for
locks are almost 20 times faster than those that do.

The bottleneck resource for PostgreSQL is usually I/O. While I/O scheduling is outside the scope of this
chapter, it is well-known that CPU scheduling may indirectly schedule other resources [5], such as I/O or
locks. This is due to the fact that transactions need CPU resources to issue resource requests. Consequently,
we investigate whether CPU scheduling is effective for PostgreSQL.

Throughout, we examine both lock and CPU scheduling for both TPC-C and TPC-W. We have reser-
vations, however, about the TPC-W workload for two reasons: its transactions are (i) extremely simplistic,
and (ii) need very little concurrency control. The TPC-C workload, with more complex transaction inter-
actions, is in fact more representative of real-world applications. Note that we do not evaluate any of the

1We find that under extreme configurations, lock waiting can be significant for TPC-W as well. Since these configurations depart
so much from the TPC-W specifications, we do not consider them here.

39

No Lock Waits Lock Waits
0

2

4

6

8

10

12

A
vg

 T
im

e
(s

ec
)

Figure 2.4: Average execution time for TPC-C Shore transactions that never wait for locks compared to
those that do, with no prioritization. Think time is 1 second.

scheduling policies on IBM DB2, since it does not support such policies and the source code is unavailable
for experimentation.

We begin by defining the specific scheduling policies that we will explore.

2.7.1 Prioritization Workload

Throughout this section, we use a representative 10 warehouse database for TPC-C (1GB) and a 10 client
database for TPC-W (150MB). Priorities are assigned to each TPC-C and TPC-W transaction according to
a Bernoulli trial with probability 10% of being a high-priority.

TPC-C and TPC-W are closed loop systems, where a fixed number of clients alternately wait and execute
transactions against the database. The time spent waiting is known as think time and models interactive
clients interpreting results. The concurrency level can be adjusted by either fixing the number of clients and
varying think time, or fixing the think time and varying the number of clients. We find both methods yield
similar results. Throughout our experiments we will fix think time at zero and vary the number of clients.
The only exception will be for TPC-C experiments, where we will instead vary the think time and fix the
number of clients at 300. We choose 300, because that allows us to use think time to vary the number of
running clients both above and below the TPC-C-specified 100 clients. The reason that we vary think time
for TPC-C prioritization is that the TPC-C clients can consume significant system resources, and thus using
a constant number of clients helps reduce variability due to this overhead.

2.7.2 Definition of the Policies

Our scheduling policies are divided into lock scheduling and CPU scheduling policies:

Lock scheduling policies. We first consider non-preemptive lock scheduling policies, where lock holders
are never forced to release their locks abnormally due to preemption. Subsequently, we consider preemptive

40

policies, in which high-priority transactions can preempt low-priority lock holders to acquire their locks.
Preemption involves aborting, rolling back, and resubmitting the transaction, adding more work for the
DBMS.

The simplest non-preemptive policy, NP-LQ, just reorders transactions waiting in the lock queue, and
grants locks to high-priority transactions before those of low-priority. This policy has a problem: high-
priority transactions moved to the front of the queue must wait for low-priority transactions already holding
the lock to complete (known as “excess time” in queueing theory). The case where a high-priority transaction
waits for a low-priority transaction is commonly known as priority inversion. Two techniques are commonly
used to address the problem, priority inheritance [75] and preemption.

NP-LQ-Inherit is a non-preemptive policy that uses priority inheritance to reduce excess times. The
policy is identical to NP-LQ, but the priority of each transaction is raised to the highest priority of any
transaction that waits for it. For example, when a high-priority query waits for a low-priority query, the
low-priority query is changed to high-priority. Thus, a transaction never waits for another transaction with
a priority lower than its own. The intended result is that high-priority excess times are reduced, improving
high-priority execution times.

P-LQ aims to reduce high-priority excess times by preempting transactions currently holding locks
needed by high-priority transactions. The policy is identical to NP-LQ, but when a high-priority transaction
needs a lock held by a low-priority transaction, the low-priority transaction is aborted (known as preemptive
abort). In practice, two factors reduce the effectiveness of preemption. First, the preempting high-priority
transaction must still wait for (part of) the low-priority transaction rollback to complete before continuing.
Second, extra work created by preemption potentially slows down other transactions.

CPU scheduling policies. Each of the DBMS considered relies on approximations of (preemptive) gener-
alized processor sharing (GPS), and as a result we do not distinguish preemptive or non-preemptive schedul-
ing of the CPU device itself. We do, however, consider preemption of transactions due to lock conflicts
while using CPU prioritization. We call CPU scheduling policies that preempt lock holders preemptive, and
those that do not non-preemptive.

The simplest policy, CPU-Prio, is a non-preemptive policy that schedules the CPU using weighted
GPS. It simply gives more weight to processes working on high-priority transactions. Specifically, for
PostgreSQL, we assign UNIX priority nice level −20 to high-priority processes and +20 to low-priority
processes. For Shore, high-priority threads get “time critical” priority, while low-priority transactions get
“regular” priority.

Although the CPU-Prio policy prioritizes CPU, the policy may suffer from priority inversions due to
locks. A high-priority transaction with high CPU-priority cannot progress if it waits for a lock held by a
low-priority transaction. CPU-Prio-Inherit is a non-preemptive policy that adds priority inheritance
to the CPU-Prio policy. The priority of low-priority transactions that block high-priority transactions is
raised, thus reducing high-priority excess times.

The P-CPU policy is a preemptive policy identical to CPU-Prio except that low-priority transactions
that block high-priority transactions are preempted and rolled back.

Organization of remaining sections. In Section 2.7.3 we present results for simple scheduling policies
without preemption or priority inheritance: NP-LQ and CPU-Prio, defined above. In Section 2.7.4, we ex-

41

amine policies with priority inheritance: NP-LQ-Inherit and CPU-Prio-Inherit. In Section 2.7.5,
we discuss the preemptive policies P-LQ and P-CPU.

2.7.3 Simple Scheduling

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(a) Shore High-Priority

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(b) Shore Low-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(c) PostgreSQL High-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(d) PostgreSQL Low-Priority

Figure 2.5: Mean execution times for NP-LQ compared to CPU-Prio for Shore and PostgreSQL TPC-C
with varying contention. Concurrency (load) increases to the left, as think time goes down.

The simple scheduling policies with no priority inheritance and no lock preemption, NP-LQ and CPU-Prio,
exhibit striking differences depending on the workload and the DBMS. Figures 2.5 and 2.6 highlight these
differences, showing the performance of high- and low-priority transactions using the policies for TPC-C

42

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

01020304050607080

A
vg

 E
xe

c
T

im
e

(s
ec

)

Number of Clients

NP-LQ - HighPrio
CPU-Prio - HighPrio

No Priorities

(a) PostgreSQL High-Priority

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01020304050607080

A
vg

 E
xe

c
T

im
e

(s
ec

)

Number of Clients

NP-LQ - LowPrio
CPU-Prio - LowPrio

No Priorities

(b) PostgreSQL Low-Priority

Figure 2.6: Mean execution times for NP-LQ compared to CPU-Prio for PostgreSQL TPC-W with varying
loads. As is the custom in this chapter, high-load (many clients) is on the left, and low-load (few clients) is
on the right.

and TPC-W workloads respectively. In all results, the concurrency varies on the X-axis, from high levels of
concurrency on the left to low concurrency on the right. Concurrency is controlled either by varying think
time (for TPC-C) or, equivalently, by varying the number of clients (for TPC-W).

The best simple scheduling policy for TPC-C depends on the DBMS. For TPC-C running on Shore
(see Figure 2.5(a)), CPU-Prio does not appreciably improve high-priority transaction execution times.
NP-LQ, on the other hand, improves high-priority performance by 3.7 times. The penalty to low-priority
transactions under both NP-LQ and CPU-Prio is small (less than 17% for NP-LQ) and tracks the “Default”
no-priority setting (see Figure 2.5(b)). Lock scheduling is extremely effective for Shore because locks
dominate transaction execution times under 2PL.

By contrast, for PostgreSQL, lock scheduling is not as effective as CPU scheduling (see Figure 2.5(c)).
Under high loads, NP-LQ improves high-priority execution times by a factor of 1.3, whereas CPU-Prio
improves them by a factor of two. With both policies, low-priority transactions are not significantly penalized
(see Figure 2.5(d)). As the think time increases from 5 to 25 seconds, concurrency decreases from 200 to 20
running (non-thinking) clients on average, and the lock fraction of execution times becomes insignificant.
As expected, the result is that lock scheduling (NP-LQ) is not very effective.

The effectiveness of CPU-Prio for TPC-C on PostgreSQL is surprising, given that I/O (I/O-related
lightweight locks) is its bottleneck. Due to CPU prioritization, high-priority transactions are able to re-
quest I/O resources before low-priority transactions can. As a result, high-priority transactions wait fewer
times (50–90% fewer) for I/O, and when they do wait, they wait behind fewer transactions (30% fewer).
The fact that simple CPU prioritization is able to improve performance so significantly suggests that more
complicated I/O scheduling is not always necessary.

For TPC-W, locks are never the bottleneck resource (see Figure 2.3), suggesting lock scheduling will

43

be ineffective. As confirmation, Figure 2.6 shows average execution times with NP-LQ and CPU-Prio
for TPC-W as a function of the number of clients. As expected, NP-LQ does not significantly improve
high-priority transactions. CPU-Prio, however, dramatically improves high-priority transaction times by a
factor of up to 4.5 under high load (high number of clients) relative to a system with no priorities.

Low-priority transactions, on average, are not significantly penalized by either NP-LQ or CPU-Prio,
for all DBMS and workloads studied. This result is important, and consistent with theoretical results: Perfor-
mance of a small class of high-priority transactions can be improved without harming the overall low-priority
performance.

2.7.4 Priority Inheritance

In this section we evaluate the two policies using priority inheritance: NP-LQ-Inherit and CPU-Prio-Inherit,
which are extensions of the NP-LQ and CPU-Prio policies, respectively.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ - HighPrio
NP-LQ-Inherit - HighPrio

No Priorities

Figure 2.7: NP-LQ-Inherit compared to NP-LQ for Shore TPC-C.

Figure 2.7 compares the policies NP-LQ-Inherit and NP-LQ for TPC-C running on Shore for a range
of concurrency levels. We find that adding priority inheritance to simple lock queue reordering (NP-LQ)
improves performance by 30%. NP-LQ improves high-priority transaction execution times by a factor of
3.7 relative to a system without priorities, and NP-LQ-Inherit improves execution times by a factor of
5.3.

For TPC-C running on PostgreSQL, adding priority inheritance to NP-LQ offers no appreciable gain
in performance, however, priority inheritance with CPU scheduling is beneficial. Figure 2.8 shows CPU
priority inheritance improves high-priority transactions by a factor of 6, whereas CPU-Prio only helps by
a factor of 2. The significant improvement in performance is due to the fact that the lock holder(s) are sped
up, resulting in significantly smaller wait excesses.

Recall from Section 2.7.3 that CPU scheduling (CPU-Prio) is more effective than NP-LQ for TPC-W.
Thus Figure 2.9 compares the policies CPU-Prio-Inherit to CPU-Prio for the TPC-W workload on

44

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

CPU-Prio - HighPrio
CPU-Prio-Inherit - HighPrio

No Priorities

Figure 2.8: CPU-Prio-Inherit compared to CPU-Prio on PostgreSQL TPC-C.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01020304050607080

A
vg

 E
xe

c
T

im
e

(s
ec

)

Number of Clients

CPU-Prio - HighPrio
CPU-Prio-Inherit - HighPrio

No Priorities

Figure 2.9: CPU-Prio-Inherit compared to CPU-Prio for TPC-W running on PostgreSQL.

PostgreSQL. We find that there is no improvement for CPU-Prio-Inherit over CPU-Prio. This is to
be expected given the low data contention found in the TPC-W workload; priority inversions can only occur
during data contention. Results for low-priority transactions are not shown, but as in Figure 2.5, low-priority
transactions are only negligibly penalized on average.

45

2.7.5 Preemptive Scheduling

Non-preemptive scheduling already provides substantial performance improvements for high-priority TPC-
C transactions, using lock scheduling for Shore and CPU scheduling for PostgreSQL. We now focus on
whether preemption can provide further benefits. In particular, we evaluate whether P-LQ improves on
NP-LQ for Shore and whether P-CPU improves on CPU-Prio for PostgreSQL.

With non-preemptive scheduling, high-priority transactions sometimes must wait on lock requests for
locks currently held by low-priority transactions (the wait excess). The wait excess time is reduced, but not
eliminated, with priority inheritance, which speeds up the low-priority transactions blocking high-priority
transactions. Preemptive scheduling (P-LQ and P-CPU) attempts to eliminate the wait excess for high-
priority transactions by preempting low-priority lock holders in the way of high-priority transactions.

We find that preemptive policies provide little benefit over non-preemptive policies. Figures 2.10(a) and
2.10(b) compare the average high- and low-priority execution times for P-LQ against NP-LQ-Inherit for
TPC-C on Shore as a function of think time. High-priority transactions with P-LQ improve by a factor of 9.3
whereas NP-LQ-Inherit helps only by a factor of 5.3. Low-priority transactions, however, are slowed by
a factor of 1.7, which is excessive, making this policy impractical. Figures 2.10(c) and 2.10(d) compare the
performance of P-CPU to CPU-Prio-Inherit for TPC-C on PostgreSQL. Preemption seems to offer
no significant benefit or penalty beyond CPU-Prio-Inherit.

TPC-W results for P-LQ and P-CPU are omitted as lock scheduling is ineffective since lock contention
is low.

Future extensions to Preemptive Priorities. There are two problems with preemption that limit its effec-
tiveness in our experiments. First, the penalty to low-priority transactions may be excessive. Second, the
cost of waiting for a transaction to complete may be cheaper than preemption. As a result, there may be
room for improvement in both P-LQ and P-CPU.

We explore a few other preemptive policies that are more selective about which transactions to preempt.
These policies predict a victim transaction’s remaining life expectancy and the cost of rolling back the victim
to determine whether to preempt or wait. The first idea is to use the number of locks held by the victim to
predict its remaining age. If it holds many, it is almost finished, but if it holds few, it is just starting. Second,
we use the “wall-clock” age of the victim as a predictor. Although preliminary, we find these are both poor
predictors of transaction life-expectancy. It is possible that better predictors can be invented.

2.8 Conclusion

In this chapter, we develop and evaluate an implementation of transaction prioritization for differentiated
performance classes for TPC-C or TPC-W workloads running on traditional relational DBMS.

We first identify the bottleneck resource at which priority scheduling is most effective. We divide the
lifetime of a transaction into three components: CPU, I/O, and lock wait times. The results are clearly
differentiated by workload and concurrency control mechanism. Across a wide range of configurations,
the bottleneck for TPC-C running on DBMS using 2PL (Shore and DB2) is lock waiting. By contrast, the
bottleneck for TPC-C running on MVCC DBMS is I/O synchronization for low loads, although locking can
dominate at extremely high concurrency levels. For TPC-W workloads, CPU is always the bottleneck.

46

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ-Inherit - HighPrio
P-LQ - HighPrio

Default

(a) Shore High-Priority

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

NP-LQ-Inherit - Low Prio
P-LQ - Low Prio

No Priorities

(b) Shore Low-Priority

0

2

4

6

8

10

12

14

5 10 15 20 25

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

CPU-Prio-Inherit - HighPrio
P-CPU - HighPrio

No Priorities

(c) PostgreSQL High-Priority

0

2

4

6

8

10

12

14

16

5 10 15 20 25

A
vg

 E
xe

c
T

im
e

(s
ec

)

Avg Think Time (sec)

CPU-Prio-Inherit - LowPrio
P-CPU - LowPrio

No Priorities

(d) PostgreSQL Low-Priority

Figure 2.10: Preemptive policies P-LQ and P-CPU for Shore and PostgreSQL respectively, compared to
the best non-preemptive policies for TPC-C.

47

This bottleneck analysis provides a roadmap for which resources must be scheduled to improve perfor-
mance. In this chapter, we focus on lock and CPU scheduling to directly or indirectly schedule the bottleneck
resource. We evaluate the effectiveness of simple prioritization, priority inheritance, and preemptive abort
scheduling, and the results are broken down by workload and concurrency control mechanism.

For TPC-C on 2PL DBMS (Shore), non-preemptive lock scheduling with priority inheritance (NP-LQ-Inherit)
is most effective. For Shore, high-priority transaction execution times improve 5.3 times, while low-priority
transactions are hardly penalized. Priority inheritance and preemption do not appreciably help, and preemp-
tion excessively penalizes low-priority transactions. By extension, we believe that these results will hold for
IBM DB2 since it has a similar resource breakdown to Shore.

For TPC-C on MVCC DBMS, and in particular PostgreSQL, CPU scheduling is most effective, due to
its ability to indirectly schedule the I/O bottleneck. For TPC-C running on PostgreSQL, the simplest CPU
scheduling policy (CPU-Prio) provides a factor of two improvement for high-priority transactions, while
adding priority inheritance (CPU-Prio-Inherit) provides a factor of 6 improvement while hardly penal-
izing low-priority transactions. Preemption (P-CPU) provides no appreciable benefit over CPU-Prio-Inherit.

For TPC-W on all DBMS, we find that lock scheduling is largely ineffective since transactions rarely
wait for locks. CPU scheduling, however, is extremely effective. For TPC-W running on PostgreSQL, we
find that the simplest scheduling policy, CPU-Prio, is best, and improves performance for high-priority
transactions by a factor of up to 4.5. Priority inheritance is not necessary since data contention for TPC-W
is almost non-existent.

In conclusion, our results suggest that (i) knowledge of the bottleneck resources is important for de-
termining the best scheduling policies, and (ii) priority scheduling at the bottleneck resource using simple
policies can yield significant performance improvements for both TPC-C and TPC-W workloads on real
general-purpose DBMS.

The impact to DBMS implementors is that CPU-only prioritization, as currently provided, is insufficient
to provide overall transaction prioritization. DBMS implementors must implement more comprehensive
prioritization implementations that incorporate other resources, in particular for lock-bound workloads. The
next chapter of this thesis will discuss in detail how to best implement lock prioritization for lock-bound
workloads.

48

2.9 Impact

This chapter consists of a performance evaluation of existing scheduling algorithms, and their ability to
effect query prioritization and provide performance isolation to high-priority queries in a DBMS. Various
scheduling policies are considered based on the device/resource they schedule, and whether they use priority
inheritance or preemption. Each of these policies are evaluated for both OLTP TPC-C and transactional web
TPC-W workloads running on commercial, open-source, and research DBMS.

This research is extremely applicable in the modern world of DBMS-based web and online services.
Companies spend huge amounts of money on high-end DBMS hardware, software, and administration.
Reducing this cost by even a small percentage can save companies significant amounts of money. Effective
query prioritization is a powerful tool that can reduce hardware and performance tuning costs for DBMS. By
prioritizing important queries, and giving only best-effort service to other queries, companies can get better
performance exactly where it’s needed with less expensive hardware. Furthermore, query prioritization can
be used to selectively improve the responsiveness of time-critical portions of users’ workflow, which should
make it easier for users to maintain their flow of thought and minimize user frustration. As a result, users will
be more satisfied with the service, increasing repeat business and word-of-mouth reputation, which usually
translate into higher profits.

Concurrency control is a major performance problem facing modern DBMS-based web and online ser-
vices. As seen in the bottleneck analysis in this chapter, as the number of clients is increased, workloads be-
come increasingly lock-bound. Many online services have decided to reduce the amount of data-consistency
given to users in order to improve performance [26]. Unfortunately, data-consistency problems are a source
of frustration to users. For instance, users can purchase a book online, only to find out later that it is no
longer available because all copies have been sold. The work on lock scheduling in this chapter sheds some
light on the problems surrounding concurrency control and performance, and gives some insight into how
scheduling can manage those problems. There is hope that this work can be used to provide users with
more data consistency, without hurting performance where it is most important. If this goal can be met, then
online services can provide better user satisfaction, which leads to increased profits. This problem will be
further addressed in Chapter 3.

2.10 Future Directions

In this chapter, it is shown that scheduling the bottleneck resource is extremely effective at prioritizing high-
priority queries in a DBMS workload. It is also shown that scheduling the CPU can be effective even when
the bottleneck resource is I/O. The performance isolation that CPU scheduling gives to high-priority queries
in I/O-bound workloads is, however, much weaker than when scheduling the bottleneck resource in CPU-
and Lock-bound workloads. This suggests that I/O scheduling would be much more effective at scheduling
I/O-bound workloads. Unfortunately, I/O scheduling is beyond the scope of this work, it is a field rich
with existing scheduling algorithms. One future direction of this work is to evaluate existing I/O scheduling
policies and determine which, if any, are effective for DBMS.

Understanding the bottleneck resource is central to understanding query response times, and even more
critical to improving query response times. Measuring bottlenecks can have very little overhead, and can
essentially be free if time-average statistics are all that is needed. Despite these facts, DBMS do not, in
general, provide users with clear and convenient access to this type of data. At the same time, it can be

49

extremely difficult, if not impossible, for users to collect and verify bottleneck measurements on their own.
Getting commercial DBMS to measure bottlenecks is essential for improving the state of the art in DBMS
performance analysis.

The work outlined in this chapter focuses on providing two priority classes to DBMS workloads: high-
and low-priority. In many real-world situations, additional priority classes, if not a complete continuum
of query priorities may be necessary. For instance, administrators may identify high-priority queries from
customers, medium-priority queries from employees, and low-priority queries from much less important
background tasks. It is important to understand how the results of this performance evaluation may change
as the number of priority classes increases.

This research can also be continued by considering both additional workloads and additional DBMS
implementations:

Studying additional DBMS, such as Oracle and Microsoft SQL Server play important roles in many
commercial systems, although they have not been considered in this performance evaluation so as to keep
the scope manageable. It is, however, important to verify whether these DBMS follow the same performance
trends observed in the DBMS in this research.

Studying additional workloads will help develop a taxonomy of the workload characteristics that affect
DBMS prioritization and scheduling decisions. Each real-world system presents the DBMS with a different
workload, and it is difficult to understand how these workloads relate to one another, and how they relate to
industry standard benchmarks such as TPC-C and TPC-W. It is important to verify that real-world OLTP and
transactional web workloads are comparable to the OLTP TPC-C and transactional web TPC-W workloads
seen in this study. In particular, it is important to know whether they exhibit similar bottleneck resources
and that the effects of scheduling are similar. Furthermore, it is important to examine other categories of
workloads, such as data warehousing, decision support, or ETL workloads and determine their bottleneck
and scheduling trends. Such knowledge will help DBMS administrators make better decisions to ensure that
the DBMS provides necessary performance.

One of the limitations that becomes apparent when considering the wide range of DBMS and workloads
that need to be considered is that experimental evaluation of so many different systems is time consuming
and costly. Furthermore, it is difficult to discover the underlying trends which govern performance. In
this vain, the DBMS community truly needs performance models which can predict bottlenecks and the
effectiveness of various scheduling policies a priori. A small step in this direction is taken in Chapter 4, but
the area of DBMS modeling is almost completely open.

50

Chapter 3

Lock Prioritization in OLTP
Applications with POW

51

Bottleneck Resources
2PL MVCC

OLTP TPC-C Lock I/O
TransWeb TPC-W CPU CPU

Scheduling Policies
Best Scheduling Policy

CPU Bottleneck CPU prioritization
I/O Bottleneck CPU prioritization

Locks Bottleneck No ideal policy

Table 3.1: Summary of the key results from Chapter 2: CPU-scheduling provides great high-priority per-
formance isolation when CPU is the bottleneck, and good isolation when I/O is the bottleneck. Existing
scheduling policies provide poor isolation when Locks are the bottleneck.

3.1 Background and Overview

In Chapter 2, we studied how to prioritize queries in DBMS. We found that different systems have different
bottleneck resources, including CPU, I/O, and Lock. We found that when either CPU or I/O is the bottleneck,
simple CPU scheduling can provide significant high-priority query performance isolation and good high-
priority query response times. Unfortunately, when Locks are the bottleneck, seen in all cases with OLTP
TPC-C workloads running on DBMS using concurrency control based on two-phase locking (2PL), none of
the scheduling policies considered in Chapter 2 were very effective (including the lock scheduling policies).
These results are summarized in Table 3.1.

Locks are found in almost all DBMS. They are a synchronization element which ensures serialized
execution of queries. The basic idea is that when a query needs to access or modify a piece of critical data,
it acquires a lock. While that query holds the lock, it is guaranteed that the data remains consistent, and
all other queries that want to use or modify that data must wait for the lock to be released. Actual DBMS
locks are more sophisticated, and typically many queries can acquire the same lock, as long as their needs
are compatible. Still, queries have to wait for locks and incur delays whenever their needs are incompatible.

In Chapter 2, we saw that a large part of query response times can be the delay experienced by waiting
on locks. In the systems considered in this research, these delays can be on the order of seconds or tens of
seconds, which is unbearable in commercial applications.

Lock waiting in DBMS is a significant performance problem, and a lot of work has been done to address
it. Many people focus on eliminating locking. There are two typical approaches: (i) automatically eliminate
locking in the DBMS, and (ii) reduce data consistency requirements at the application level.

Some DBMS, such as Oracle and PostgreSQL, take the first approach to eliminating lock waiting, and
use a MultiVersioning Concurrency Control (MVCC) algorithm [11, 66] rather than typical 2PL concurrency
control. MVCC makes the observation that DBMS use locking to make sure that, queries see the database
as if they executed serially, even when they execute in parallel. Queries care less what serial order they
experience, just so long as they see some serial order. MVCC eliminates locking by maintaining many
copies (one for each update) of data in the database, so that instead of waiting on locks, queries can simply

52

“travel in time” to access data according to different serial orders. MVCC cannot, however, eliminate all
locking in DBMS, and thus cannot eliminate all delays due to locking. Furthermore, there is overhead (in
terms of storage space as well as performance) involved in maintaining multiple versions needed for MVCC
which can hurt performance in some workloads. There are other approaches to automatically eliminate
locking in DBMS, such as optimistic concurrency control [53]. Optimistic concurrency control is not often
used, since it can cause significant performance degradation, especially when there are many users in the
DBMS [6].

The second approach to eliminate locking is taken by companies and application designers. Companies
have realized that they can allow users to access stale and inconsistent data in many situations. This allows
companies to use less locking, and reduce delays due to locking [26]. This approach, however, comes with
two primary drawbacks: (i) the approach cannot be easily generalized, and relies on significant domain- and
application-specific knowledge about what data consistency can be relaxed, and (ii) users do encounter and
notice data inconsistency, and this can be quite frustrating. For example, Amazon.COM can sell users a
book or a product that is no longer in stock, but must be very aware that (i) it cannot double-bill a customer,
and that (ii) customers are extremely frustrated when they have to wait an extra week or two to get their
purchase.

It is clear that DBMS are stuck with lock delays. Neither of the above approaches can completely elimi-
nate lock delays, and both have significant drawbacks that make them much less attractive than prioritization.
Prioritization does not require significant domain-specific knowledge, does not require data consistency re-
quirements to be relaxed, and usually has very little overhead.

There is a lot of research on using lock scheduling to prioritize queries in DBMS. While Chapter 2 found
that existing lock scheduling policies are not effective for our systems, those policies are effective in other
situations. In general, the difference is due to the fact that the workloads and DBMS in the research are very
different from the real-world OLTP and transactional web workloads running on conventional DBMS con-
sidered in this thesis. The prior work on lock scheduling is summarized and discussed further in Section 3.4.

OLTP

High Priority Low Priority
TPC−CTPC−C

OLTP
Internal Scheduling

DBMS

Figure 3.1: The system configurations considered in this chapter: OLTP Transactional Web workloads with
high- and low-priority queries, sharing a DBMS. High-priority queries are prioritized using internal prioriti-
zation.

This chapter examines systems of the form illustrated in Figure 3.1, and described in detail in Sec-
tion 1.7. A DBMS is shared between two OLTP (TPC-C) query workloads, one high- and one low-priority.
Internal prioritization is used to prioritize and provide performance isolation to the high-priority queries.
This scenario arises in many commercial systems, but is of particular interest in the area of e-Commerce. It

53

is extremely common for e-Commerce applications to have some users which are more important than oth-
ers, either because (i) users pay for “gold service” and better performance, or (ii) the company recognizes
that when certain users get better performance, they are more satisfied, and are more likely to spend more at
their site.

The central issue addressed in this chapter is how to provide performance isolation to high-priority
queries in a DBMS when the workload is lock-bound. This addresses the primary limitations of preemptive
and non-preemptive lock scheduling seen previously in Chapter 2: (i) While preemptive lock scheduling
gives good performance isolation to high-priority queries (they have low response times), it starves low-
priority queries and hurts overall throughput. (ii) While non-preemptive lock scheduling does not starve
low-priority queries and has good overall throughput, it does not provide good performance isolation to
high-priority queries (they have high response times).

This chapter makes two main contributions: (i) An in-depth statistical analysis of the performance and
locking behavior of lock-bound OLTP TPC-C workloads and preexisting lock scheduling algorithms. (ii)
A new lock scheduling algorithm, called Preempt-On-Wait (POW) that uses preemption selectively to give
high-priority queries good performance isolation (low response times) without excessively penalizing low-
priority query performance or overall throughput. The development of POW is based on the preceding
statistical analysis, by addressing the specific problems that arise in preexisting lock scheduling algorithms.

The primary questions that are answered in this chapter are as follows:

(i) What factors cause preemptive lock scheduling to starve low-priority queries?

(ii) What factors prevent non-preemptive lock scheduling from providing sufficient performance isolation
to high-priority queries?

(iii) Can the use of selective preemption give good performance isolation to high-priority queries without
starving low-priority queries?

(iv) What condition(s) should be used to decide when to preempt low-priority queries?

3.1.1 Statistical Analysis

Preexisting lock scheduling policies have serious limitations making them sub-optimal for providing perfor-
mance isolation to high-priority queries in lock-bound OLTP TPC-C workloads. Preemptive policies hurt
low-priority queries’ response times too much, causing them to starve. Non-preemptive policies do not
provide enough performance isolation to high-priority queries.

The first half of this chapter focuses on identifying the workload and system characteristics that cause
preemptive and non-preemptive scheduling each to be sub-optimal. The analysis is done by instrument-
ing the Shore lock subsystem, and implementing the OLTP TPC-C workload and executing it on the Shore
DBMS storage manager with different lock scheduling algorithms. Statistics are then collected describing
how queries spend their time in the lock subsystem. Although IBM DB2 cannot provide comparable statis-
tics, parallels are drawn between Shore and IBM DB2 that suggest that query execution in each system are
comparable (the similarity between these systems is well-established in Chapter 2 and by others [7]).

54

Key Idea

The key idea used in the analysis of locking in OLTP TPC-C is to build a statistical model that describes both
how queries wait for locks under non-preemptive lock scheduling policies and how queries are preempted
under preemptive lock scheduling policies.

The key questions that need to be answered to understand how queries wait for locks are as follows:

(NP.i) How many lock requests do transactions wait for?

(NP.ii) How long are lock waits?

(NP.iii) How long do queries wait for current lock holders, versus for other waiting queries?

(NP.iv) How much does waiting for a lock affect response time?

The key questions that need to be answered to understand how PAbort preempts queries are as follows:

(P.i) Are preemptions too expensive, due to rollback?

(P.ii) Are there too many preemptions?

(P.iii) How much work is lost due to preemptions?

The DBMS is studied while running different lock scheduling policies to answer the above questions
in each case. The lock scheduling policies that are considered are (1) no lock scheduling (Standard
scheduling), (2) the naive preemptive lock scheduling algorithm that preempts all low-priority queries
that block high-priority ones (PAbort), and (3) non-preemptive lock scheduling with priority inheritance
(NPrioinher). Once the above questions are answered for the DBMS under each of these policies, one
has enough information to make intelligent decisions regarding lock scheduling to provide performance
isolation to high-priority queries.

Answering these questions requires only basic instrumentation of the lock manager, and requires very
little overhead.

Summary of results

When analyzing NPrioinher, to determine why non-preemptive lock scheduling does not provide suffi-
cient high-priority performance isolation, I find the following answers to the first set of key questions above:

(NP.i) Queries may wait for as few as 0 or as many as 550 lock requests, but over 99% of all queries wait
for 2 or fewer lock requests, and this holds for all three lock scheduling polices.

(NP.ii) Lock waits themselves are rather long, making up 40%-50% of high-priority response times.

(NP.iii) When NPrioinher queries wait for a lock, the performance penalty almost always comes only
from current lock holders, and not from waiting for other waiters in a lock queue.

55

(NP.iv) Query response time conditioned on the number of lock waits a query experiences reveals that if
the query waits for one lock, it is 6 times slower than if it waits on none. If the query waits for more
than one lock, then its response time is 17 times slower than if it waits on none. Thus, queries that
do not wait on locks are expected to complete very quickly.

The key observation is that a query almost always only waits for a couple locks, and those waits will
almost always be short. Statistically speaking, the only time those waits are long is when the current lock
holders are themselves stuck waiting for another lock. This leads to the conclusion that it is OK for a
high-priority query to wait for a low-priority query if and only if that low-priority query does not wait for a
lock.

Analysis of PAbort and the reason it starves low-priority queries reveals the following answers to the
second set of key questions above:

(P.i) Rollback costs in PAbort are relatively large (0.5 seconds) in comparison to the target in isolation
high-priority query response time (1 to 2 seconds).

(P.ii) The number of times any individual low-priority query is preempted is relatively low. 80% are never
preempted, 92% are preempted no more than once, and 97% are preempted no more than twice.

(P.iii) The amount of work lost when a query preempted is very large. A preempted query has already
finished between 75% and 90% of its expected response time before being preempted.

The conclusion to draw from this is that the biggest reason that low-priority queries starve under PAbort
is not that a query gets preempted too frequently, but that when a query is preempted, it loses a huge amount
of already-completed work.

These results are used to develop the next major contribution, Preempt-On-Wait (POW).

3.1.2 Preempt-On-Wait (POW)

The second half of this chapter uses the results of the statistical analysis in the first half to develop a new lock
scheduling algorithm called Preempt-On-Wait (POW). This algorithm is able to achieve “the best of both
worlds”: (i) the good performance isolation (low response times) for high-priority queries that preemptive
lock scheduling can give, and (ii) ensuring that low-priority queries do not starve, and get relatively good
performance, as non-preemptive lock scheduling gives.

Key Idea

The key idea for POW is that non-preemptive lock scheduling is relatively effective, except in a small number
of cases in which preemption is truly necessary. Using selective preemption only when necessary can ensure
that high-priority queries get the performance isolation that they need, while not penalizing low-priority
queries too much.

POW relies on the fact that in lock-bound OLTP TPC-C workloads, high-priority queries that wait on
low-priority queries do not always get stuck with high response times. If the low-priority query itself does
not have to wait for a lock, that low-priority query is expected to complete very quickly, and will not hurt

56

the high-priority query much. On the other hand, if the low-priority query ever needs to wait for a lock, it is
expected to take a very long time to complete. Since the high-priority query must wait for the low-priority
query to complete before making progress, the high-priority response time will be hurt greatly.

Thus, the preemption condition used by POW is that a low-priority query Q is preempted if and only if
both (i) Q is itself waiting to acquire a lock held by some other transaction, and (ii) there is a high-priority
query that must wait to acquire a lock held by Q.

Summary of results

We compare POW to two policies: (i) PAbort, which naively preempts all low-priority queries on which
high-priority queries are forced to wait, and (ii) NPrioinher, which uses non-preemptive lock scheduling
with priority inheritance. PAbort provided the best high-priority performance isolation (without regard to
low-priority performance), and NPrioinher provided the best high-priority performance isolation without
starving low-priority queries out of all the lock scheduling algorithms in Chapter 2.

Experimentally, POW achieves the same level of performance isolation for high-priority queries that
PAbort achieves: a factor of 5.45 times improvement for PAbort compared to a factor of 5.60 times im-
provement for POW. Likewise, POW achieves comparable performance for low-priority queries that NPrioinher
achieves: a factor of 1.36 penalty for NPrioinher compared to a factor of 1.16 times for POW. Further-
more, POW is shown to provide significantly better (a factor of 2 times) performance isolation for high-
priority queries than other lock scheduling policies that rely on selective preemption, such as Conditional
Restart and Wait Depth Limited policies, can achieve.

POW is shown to be able to provide good high-priority performance isolation because it preempts low-
priority queries whenever they are likely to drastically slow the high-priority query down. POW is shown to
provide good low-priority performance because it only preempts a very small number of queries (1% of all
low-priority queries, compared to PAbort, which preempts 20% of all low-priority queries).

3.2 Organization of this chapter

The remainder of this chapter proceeds as follows:

Section 3.3 introduces and motivates the problem of lock scheduling to achieve prioritization in OLTP
and transactional web DBMS workloads. Section 3.4 summarizes the existing work and research on lock
scheduling and query prioritization. Section 3.5 summarizes the results from Chapter 2 needed to under-
stand this chapter. Section 3.6 is a performance evaluation of common preemptive and non-preemptive
lock scheduling algorithms. These existing lock scheduling policies are each shown to be sub-optimal.
Section 3.7 is a statistical analysis of the performance of the existing scheduling algorithms described in
Section 3.6, which prevents them from working optimally.

Based on the statistical analysis in Section 3.6, Section 3.8 introduces and develops the Preempt-On-
Wait (POW) lock scheduling algorithm, which addresses the limitations and failures of the existing policies.
Section 3.8.2 evaluates the performance of POW and Section 3.8.4 explains how POW manages to be ef-
fective when other policies are not. Finally, Section 3.9 summarizes the results of the chapter, Section 3.10
discusses the impact of this research and Section 3.11 discusses directions for future work.

57

3.3 Introduction

Long delays and the accompanying unpredictably large response times 1 are a source of frustration in on-line
transaction processing (OLTP) database systems. In many applications, consistently low response times are
essential for users. Consider, for example, an online stock market with significant price volatility. A trader
issues trade orders based on constantly varying market prices, and any delay creates potential for huge profit
loss.

Minimizing delay and its unpredictability is much more valuable for some users than for others. A trader
making thousands of large-volume trades a day may be willing to pay more for reduced delays on trades.
On the other hand, a trader making only one trade a month may accept much more variable response times.
Thus, we divide transactions into two classes: high- and low-priority, based on whether the transaction
is issued by a high- or low-paying customer. Our primary goal is to prioritize high-priority transactions
to execute as if in isolation of low-priority transactions, and ensure low-priority transactions do not delay
high-priority transactions. Second, low-priority transactions must not be excessively penalized.

Transaction prioritization can be important in countless contexts. In commercial OLTP, for instance,
customers who experience many excessive delays may become frustrated, and take their business elsewhere.
Giving high-priority service to customers who routinely buy expensive merchandise will maximize the com-
pany’s profits. As a testament to the importance of transaction prioritization, it is provided in most major
commercial DBMS: DB2 offers db2gov and QueryPatroller[45, 20] and Oracle offers DRM [67]. We have
previously shown that CPU scheduling is ineffective for prioritization in OLTP applications (such as TPC-
C), while lock scheduling is highly effective [56]. Unfortunately, all the above commercial systems focus on
CPU, not lock prioritization. Additionally, there is little research on lock scheduling in fully implemented
general-purpose DBMS, as most are analytical or simulation studies, or focus on RTDBMS.

Many open questions remain for lock scheduling in general-purpose DBMS. Of these, we focus on
whether the DBMS should use a preemptive or a non-preemptive scheduling policy. Each type of policy
has advantages and disadvantages, and there is no consensus as to which is best. While preemptive policies
allow high-priority transactions to reduce lock waiting time by killing other lock holders, rollbacks and re-
executions may be too costly. Non-preemptive policies avoid these preemptive overheads, but high-priority
transactions may wait for low-priority transactions to complete before making progress.

The first contribution of our chapter is a performance evaluation and in-depth statistical analysis of
lock activity in TPC-C, for common scheduling policies. For non-preemptive policies, such as queue re-
ordering (NPrio) and priority inheritance (NPrioinher), high-priority transactions are poorly isolated from
low-priority transactions, resulting in variable and high response times. By contrast, preemptive policies
(PAbort) yield good high-priority performance, but excessively penalize low-priority transactions.

To determine why non-preemptive policies fail to isolate high-priority transactions, we address four
questions: (i) How many lock requests do transactions wait for? (ii) How long are lock waits? (iii) How
long do transactions wait for current lock holders versus for other waiting transactions? (iv) How do lock
waits affect response time? We show that the common policies primarily fail to eliminate wait excess: the
time spent waiting for current lock holders to release locks. To determine why preemptive policies devastate
low-priority transactions, we investigate potential reasons: (i) rollback costs (ii) preemption frequency, and
(iii) wasted work per preemption. Surprisingly, we find that most of these issues are largely irrelevant, and
wasted work per preemption dominates exclusively.

1 Response time is defined as the time from when a transaction is submitted until it completes, including restarts.

58

The second contribution of our chapter is a demonstration that a little-known and unevaluated lock
scheduling policy from the field of distributed databases, Preempt-On-Wait [68] (POW), excels over all the
above policies. It combines the excellent high-priority performance of preemptive policies with the small
penalty to low-priority transactions typical with non-preemptive policies.

The intuition behind POW is that if a high-priority transaction H needs a lock held by a low-priority
transaction L, H should only preempt L if L will hold the lock a long time. We find that whether or not L
waits in another lock queue is a highly accurate indicator of L’s remaining holding time. Thus, POW only
preempts low-priority transactions that both wait for a lock and block a high-priority transaction.

Our evaluation focuses on the TPC-C OLTP workload with Shore [17] (a modern prototype with transac-
tion management, 2PL, and Aries-style recovery), and concentrates on improving high-priority transaction
response times. Basic theory dictates that in all closed systems, like TPC-C, throughput is directly related to
response-time.

This chapter presents the first major statistical analysis of locking with priority-scheduling in a fully im-
plemented general-purpose DBMS, and thus incorporates complex system interactions, such as I/O. While
Shore is noncommercial, it is important to note that (i) this evaluation could not be conducted using a com-
mercial DBMS due to the lack of source code, and (ii) resource utilizations for Shore have been repeatedly
shown to be remarkably similar to that of IBM DB2 [56, 7].

For prioritization to be most effective, the fraction of high-priority transactions should be low. Through-
out the chapter, we randomly assign high-priority to 10% of the transactions, and low-priority to the remain-
ing 90%. This is a pessimistically-realistic scenario, and results are similar when the ratio is varied.

The chapter is organized as follows: In Section 3.4 we describe the prior work on priority scheduling.
In Section 3.5 we review existing results showing that lock queues are the appropriate resource to schedule
given general-purpose DBMS with lock-based concurrency control. In Section 3.6, we describe our evalua-
tion of the common lock scheduling policies. In Section 3.7, we present the bulk of this work, a statistical
profile of locking in Shore TPC-C with priorities. In Section 3.8, we present the POW algorithm and its
performance analysis. Finally, we conclude in Section 3.9.

3.4 Prior Work

DBMS lock scheduling has been studied for decades, covering countless policies and systems. Most work
concerning preemptive and non-preemptive lock scheduling focus on RTDBMS, and are primarily simula-
tion or analytical studies. This is in stark contrast to our focus on general purpose DBMS, OLTP workloads,
and full prototype evaluation.

NPrio [2], a non-preemptive policy that reorders lock queues according to priority, is one of the earliest
policies considered. Without preemption, however, improvement to high-priority transactions is limited,
since they must sometimes wait for low-priority transactions. This problem is known as priority inversion,
and most other policies’ goals are to address it.

NPrioinher, uses priority-inheritance [40, 74, 75] to reduce the cost of priority inversions. Low-priority
transactions that block high-priority transactions become high-priority themselves. The idea is to reduce
high-priority transaction wait times by speeding up the transactions they wait for. If those transactions do
not wait on locks, or if too many transactions’ priorities increase, the effectiveness becomes unclear. In
simulation and prototypes, some research finds that NPrioinher is not as effective as PAbort in RTDBMS

59

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) Shore

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) IBM DB2

Figure 3.2: TPC-C Shore and DB2 average I/O, Lock, and CPU resource utilization, relative to total average
transaction response time.

60

[44, 43]. In contrast, other simulation studies find that NPrioinher is, in fact, effective in RTDBMS as long
as transaction arrivals are non-bursty [2].

PAbort (Preemptive Abort, or Wound-Wait) [40, 43, 68], preempts low-priority transactions that block
a high-priority transaction. Since preempted transactions must be restarted, there may be significant extra
work into the system, slowing transactions down. In simulation and RTDBMS testbeds, many researchers
[40, 44, 43, 64] find that NPinherit is not as effective as PAbort. As indicated above, this contradicts the
conclusions of others [2]. None of these studies consider general-purpose DBMS and workloads.

Much work has been done to improve preemptive policies by reducing the number of preemptions and
extra work. In distributed databases, Rosenkrantz et. al. [68] mention POW (see Section 3.8) as a possible
variation of PAbort, in which running transactions are not preempted, but do not implement the algorithm,
nor analyze its performance. Conditional Restart (CR) and Conditional Priority Inheritance (CPI) [43, 44]
in RTDBMS estimate the time until low-priority lock holders complete, and preempt if it take too long. We
find common estimates, such as the number of locks held, do not work well for TPC-C type workloads.

Wait-depth-limited (WDL) [31, 32, 33, 82, 85] policies preempt transactions to keep chains of waiting
transactions shorter than a given depth. Running Priority (RP) [31, 85] is a common WDL policy in which
transactions wait only for transactions that are currently running. Though RP does not consider priorities,
and POW is not WDL, the preemption conditions are similar (see Section 3.8).

Our work addresses three limitations in the literature:

• Neither preemptive nor non-preemptive policies are strictly superior, and it is difficult to predict which
is best for OLTP workloads.

• Most work focuses on RTDBMS, rather than OLTP workloads and general-purpose DBMS. RTDBMS
rely on specialized operating systems and workloads that result in different performance tradeoffs than
in general DBMS.

• Only a few RTDBMS studies [44] examine locking in fully implemented systems, where complicated
interactions can greatly affect performance.

Our prior work [56] is primarily a bottleneck analysis of TPC-C (summarized in Section 3.5), although
we also observe the limitations of common non-preemptive and preemptive lock scheduling policies. This
chapter supersedes that work, focusing on DBMS using 2PL, with an in-depth analysis identifying the rea-
sons for these limitations. Further, we introduce the POW policy which does not suffer these limitations.

3.5 Bottleneck: Locks

Here, we review prior work [56], demonstrating that for TPC-C OLTP workloads on DBMS using 2PL, locks
are almost always the bottleneck resource. Specifically, from the perspective of an individual transaction, its
response time is dominated by time waiting to acquire locks. As a consequence, I/O and CPU scheduling
will be ineffective for prioritization, so we focus exclusively on lock scheduling. It is important to note that
overall system CPU and I/O utilization are high, as some transactions are always making progress.

We consider TPC-C type workloads on both commercial and non-commercial DBMS, namely IBM
DB2 [30], PostgreSQL [52], and Shore [17]. Each of these systems is profiled, counting time transactions

61

spend waiting for locks and I/O and both consuming and waiting for CPU. (Lock time only accumulates
when waiting for locks. After a lock is acquired, the time is spent in CPU, I/O, or waiting for other locks).
For both IBM DB2 and Shore, which use traditional 2PL, our results show that, on average, transactions
spend more than 80% of their lifetime waiting for locks. We find that this trend is present over a wide range
of configurations. Only in the most unrealistic configurations are other resources be relevant.

Figure 3.2 shows the average resource breakdown for both Shore and IBM DB2 as a function of database
size, measured in TPC-C warehouses. Each warehouse adds 100MB, and the buffer pool is 800MB. The
number of concurrent clients is 10 times the number of warehouses, as specified by TPC-C. On average,
waiting for locks accounts for most of the response times, and dominates even as the number of clients
(load) or the size of the database are varied. While IBM DB2 I/O time increases as the database grows, it is
not realistic to run more than 30 warehouses on our limited testbed hardware. In real applications, growing
I/O cost is hidden by additional memory and disks.

3.6 Evaluating Lock Scheduling Policies

As seen in Section 3.4, the effectiveness of preemptive and non-preemptive lock scheduling policies cannot
be easily predicted. In this section, we experimentally evaluate the behavior of the common policies, and
seek to understand their performance trade-offs.

3.6.1 Experimental Setup and Methodology

We focus on the following lock scheduling policies, which are commonly used and referenced in the litera-
ture:

Standard: This is the baseline for comparison: transactions are not prioritized.

NPrio: Non-preemptive lock queue reordering. When locks are released, waiting compatible transactions
are granted the lock in priority-order (from high- to low-priority).

NPrioinher: Non-preemptive lock queue reordering with priority inheritance. Locks are granted as in
NPrio. Additionally, low-priority transactions that block high-priority transactions become high-
priority (for the remainder of their lifetime) to release locks more quickly.

PAbort: Preemptive Abort. A low-priority transaction that blocks a high-priority transaction is always
immediately preempted (aborted, rolled back, and restarted).

The above scheduling policies made an appearance in Chapter 2, but under different names. These names
are changed here, since we focus on lock scheduling, and to make the terminology clearer. The mapping
between names used in Chapter 2 and this chapter are summarized in Table 3.2.

We implement the above lock scheduling policies in Shore and measure their effects on average high-
and low-priority transaction response times in a TPC-C workload. The tests are run on a 2.2GHz Pentium
4 with two disks (one for data, one for log), 1GB of RAM and an 800MB buffer pool. Transactions run
in serializable isolation level, given the critical nature of many OLTP applications (while weaker isolation
levels will result in less locking, this issue is orthogonal to this work).

62

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrio - HP

NPrioinher - HP
PAbort - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrio - LP

NPrioinher - LP
PAbort - LP

(b) Low-Priority

1 2 3 4 5 7.5 10
0

1

2

3

4

5

6

Think Time (sec)

A
vg

 R
es

po
ns

e
T

im
e

(R
el

at
iv

e
to

 S
td

)

NPrio
NPrioinher
PAbort

(c) Overhead

Figure 3.3: Average TPC-C Shore response times for high- and low-priority transactions as a function of
load for NPrio, NPrioinher, PAbort, and Standard policies (3.3(a) and 3.3(b)). Aggregate high- and low-
priority response time relative to Standard (3.3(c)).

Chapter 2 This Chapter
Standard No Priorities
NPrio NP-LQ

NPrioinher NP-LQ-Inherit
PAbort P-LQ

Table 3.2: The names of lock scheduling policies used in Chapter 2 and this chapter.

63

Implementation of these policies in Shore involves sorting lock queues and minor modifications to lock
acquire and wakeup functions. The biggest difficulty is forcing the deadlock detector to handle dynamically
reordering lock queues. This is an artifact of the original Shore deadlock detection algorithm and should be
less of an issue with an independent deadlock detection process, such as in DB2.

10% of the TPC-C transactions are independently and randomly assigned high-priority and the remain-
ing 90% low-priority. The TPC-C code tells Shore the transaction priority, and retries deadlocked and pre-
empted transactions. The database size is 10 Warehouses (1GB on disk), and is appropriate for our hardware
limitations (the database size does not greatly affect the lock bottleneck [56]).

To vary concurrency (load), we change the arrival process to have 300 clients (rather than the TPC-C-
specified 100 clients) and consider a range of client “think times” between submitting transactions. We vary
the think time from 10 seconds (“low load”) to 1 second (“high load”). This range of think time results in an
average number of active clients in the database from about 25 to 250, allowing us to investigate concurrency
levels both well below and above the 100 clients specified by TPC-C.

3.6.2 Performance Evaluation

Figure 3.3 depicts transaction response times under the common lock scheduling policies. Figure 3.3(a)
shows mean response time for high-priority transactions and Figure 3.3(b) shows mean response time for
low-priority transactions. Throughout the chapter, lower think time (left end) indicates higher load.

NPrio improves response times of high-priority transactions relative to Standard by a factor of 4 at high
load. By comparison, NPrioinher improves response times of high-priority transactions by a factor of 5.3 at
high load, and PAbort improves high-priority response times over Standard by a factor of 9. This significant
improvement in high-priority response times further confirms that locks are the bottleneck resource. Under
low loads, lock waiting time becomes less significant, and all the policies perform similarly.

The story is very different for low-priority transactions. NPrio and NPrioinher only slightly harm low-
priority transactions as compared to Standard, increasing response time by a factor of 1.2 at high load. By
comparison, PAbort drastically hurts low-priority performance, increasing response time by a factor of 1.8
at high load when compared with Standard and by much more at low load.

It is interesting to note that in Figure 3.3(a), the high-priority transaction response times increase as a
function of load when no priorities are used (Standard), but remain relatively stable when using priority
scheduling. This artifact is due to the TPC-C arrival process, which uses a fixed number of clients that
submit transactions separated by exponential think times (i.e., a “closed system” in queueing theory). As
each transaction has probability p of being high-priority, each client is expected to create one high-priority
transaction for each b1/pc − 1 low-priority transactions. Since low-priority transactions are an order of
magnitude slower than high-priority transactions, the fraction of high-priority clients in the system is in fact
much smaller than p. As a result, in Figure 3.3, the time-average fraction of high-priority transactions in
the system ranges between 1.1% and 7.7% for NPrio (with absolute values ranging from 3 to 2.3 on the
average), with similar numbers for the remaining priority policies. As the load increases, there are more
and more low-priority transactions, but only a few high-priority transactions, resulting in relatively stable
high-priority response times and degrading low-priority performance.

While PAbort appears to offer significant benefits to high-priority transactions (factor of 9 improvement)
its penalty to low-priority transactions is too high, making it inappropriate for real DBMS. At the same time,
while NPrioinher does well for both high- and low-priority transactions, its inability to do as well as PAbort

64

for high priorities is discouraging. The primary disadvantage of preemptive scheduling in PAbort is the fact
that it introduces extra work into the system (rollbacks and re-execution of preempted transactions). It is
important to understand exactly how much extra work is created.

One might think that prioritizing transactions does not affect the overall average response time (aggre-
gated over high- and low-priority transactions), but simply provides better response time for high-priority
transactions in exchange for worse response time for low-priority transactions. This is not necessarily true
however for policies like PAbort which introduce significant overhead. Figure 3.3(c) studies the overhead
incurred by all the common prioritization policies. Here the response times of the policies are shown nor-
malized by the response time for Standard (that is they have been divided by Standard’s response time). An
overhead of 1 (on the y-axis) indicates that the policy’s average transaction response time (aggregate over
high- and low-priority transactions) is the same as Standard, and the policy has not slowed the overall system
down. The non-preemptive policies NPrio and NPrioinher have low overhead. However PAbort has overall
average response times 1.5 to 6 times greater than Standard, indicating a huge overhead introduced due to
preemption. The reason that preemption performs worse under low loads is due to the fact that transactions
complete and release locks faster under lower loads, while rollback costs remain about constant (discussed
in Section 3.7.2).

3.7 Statistical Profile of TPC-C Locking

In this section, we examine several hypotheses to explain the behavior of PAbort and NPrioinher, and test
these hypotheses using empirical statistical measurements of the system. We will determine first why non-
preemptive high-priority performance is not as good as in PAbort, and second why low-priority performance
under PAbort deteriorates.

3.7.1 High-Priority Performance under Non-Preemptive Policies

There are four questions that must be answered to understand why preemptive policies are superior to non-
preemptive policies in improving high-priority response times. (i) How many lock requests do high-priority
transactions wait for? (ii) How long are the lock waits, and how do they contribute to high-priority response
times? (iii) How much lock waiting is attributed to current lock holders? (iv) How much do lock waits
contribute to response times?

(i) How many lock requests do high-priority transactions wait for? Shore TPC-C transactions make
between 0 and 550 lock requests, depending on the type of the transaction (e.g.: New Order, Payment,
etc). Understanding the fraction of these lock requests that are forced to wait will determine the flexibility
available to lock scheduling policies.

Figure 3.4 shows the probability distribution on the number of times transactions wait for locks under
each of the common scheduling policies. While the distribution is shown for high-priority transactions, the
distributions for low-priority transactions is similar. Over 99% of the transactions wait for fewer than 3 lock
requests, while fewer than 1% wait for 3 or more lock requests (Figure 3.4 truncated at 4 for clarity, as all
other probabilities are practically zero).

Interestingly, the number of lock waits for non-preemptive policies does not change significantly as a
function of the policy. Preemptive scheduling changes the distribution slightly, as preempting transactions

65

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Lock Waits

F
ra

ct
io

n
of

 T
xn

s

Standard
NPrio
NPrioinher
PAbort

Figure 3.4: Distribution on the number of times that high-priority transactions wait for a lock under common
lock scheduling policies (Similar for low-priority transactions). The probability of waiting for more than four
locks is practically zero in all cases, and are not shown here for clarity.

66

reduces the expected number of locks held in the database, reducing contention. None of the policies try to
directly reduce the number of times high-priority transactions wait on locks, which may involve knowledge
of future lock requests. While reducing the number of lock waits may be an effective strategy to improve
high-priority transactions, we only focus on reducing lock wait times once they occur.

(ii) How long are lock waits? The fact that high-priority transactions wait only for a few locks suggests
an answer to our second question: individual lock waits are very long. For confirmation, we examine
the average time that a transaction waits when it waits for a single lock request. We refer to this time as
QueueTime, measured from when the transaction initiates the lock request until it is granted. Note that for
preemptive policies, QueueTime includes preemptions, in which case it is made up of the time needed to
preempt the transaction(s) holding the lock, until the preempted transaction(s) release the lock.

1 2 3 4 5 7.5 10
0

0.5

1

1.5

Think Time (secs)

Q
ue

ue
T

im
e

(s
ec

)

NPrio QueueTime
NPrioinher QueueTime
PAbort QueueTime

Figure 3.5: Average high-priority QueueTime for NPrio, NPrioinher, and PAbort as a function of load (think
time).

Figure 3.5 depicts the QueueTime experienced by high-priority transactions for NPrio, NPrioinher, and
PAbort. On average, high-priority QueueTime makes up 40 – 50 % of the the high-priority response time for
all policies. Since 25% of transactions wait once and 40-60% wait twice, transactions are expected to include
one or two QueueTimes, slowing the transactions considerably. Part of the reason that PAbort outperforms
NPrioinher is that its QueueTime is only half as long.

(iii) How much lock waiting is attributed to current lock holders? It is important to understand
QueueTime in more detail, because, as we have seen, long QueueTimes prevent non-preemptive policies

67

from sufficiently improving high-priority response times. Under non-preemptive policies, a transaction’s
QueueTime is comprised of two components: (i) WaitExcess, the time from when the lock request is made
until the first transaction waiting for the lock is woken and acquires the lock, and (ii) WaitRemainder, the time
from when the first waiter acquires the lock until the lock request is finally granted. Intuitively, WaitExcess
is the time that a transaction waits for current holders to release the lock, and WaitRemainder is the time the
transaction waits for other transactions in the queue with it. The question we want to address is which of
WaitExcess or WaitRemainder is most responsible for high-priority QueueTimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

P
r[

 T
im

e
<

 x
]

Time (sec)

NPrioinher HP QueueTime
NPrioinher HP WaitExcess

NPrio HP QueueTime
NPrio HP WaitExcess

NPrio Aggregate WaitExcess

Figure 3.6: CDF of high-priority QueueTime and WaitExcess for NPrio and NPrioinher for high load along
with aggregate high- and low-priority WaitExcess for NPrio.

Figure 3.6 compares the probability distributions for high-priority QueueTime and WaitExcess for NPrio
and NPrioinher under high load. The two leftmost (upper) overlapping lines are NPrioinher high-priority
QueueTime and high-priority WaitExcess. The three rightmost (lower) overlapping lines are NPrio high-
priority QueueTime, high-priority WaitExcess, and overall average NPrio WaitExcess.

The fact that the high-priority QueueTime distribution is exactly the same as high-priority WaitExcess
proves that high-priority transactions never wait behind other transactions in the queue, and only wait for the
current lock holder. Figure 3.6 also demonstrates that priority inheritance (NPrioinher) reduces WaitExcess
by boosting the priority of the current lock holders. Additionally, high-priority NPrio WaitExcess is identical
to overall average NPrio WaitExcess, reflecting the fact that NPrio does not improve the response time of
current lock holders.

Since high-priority WaitRemainder is effectively zero for the non-preemptive policies, the only remain-
ing issue affecting high-priority performance is WaitExcess. While priority inheritance can help reduce
WaitExcess by speeding up lock holders, there are limits to its effectiveness, and no clear way to extend the
policy to improve its QueueTimes further.

(iv) How much do lock waits contribute to response times? Thus far we’ve seen that long response
times can be attributed to waiting on a few locks with large WaitExcess times. We now ask how exactly the
response time is correlated to the number of locks that a transaction waits on. Figure 3.7 depicts the average
response time of a transaction as a function of the number of times the transaction waits for a lock request,
for the Standard policy and high load (1 second think time). The average response time of transactions

68

<= 0 <= 1 <= 2 <= 3 <= 4
0

1

2

3

4

5

6

7

8

9

Lock Waits

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Figure 3.7: Average transaction response time as a function of the number of times a transaction waits under
high load, when using the Standard policy.

69

that never wait for locks is a factor of 18 smaller than the overall average response time. In addition, these
transactions complete faster than the mean high-priority response time under both NPrioinher and PAbort
(a factor of 3.7 and 2.2 improvement respectively). This statistic shows that an accurate predictor for the
length of a transaction’s remaining execution time is whether the transaction is about to wait for locks or
not. A desirable feature of this predictor is that it has low overhead, as it requires no history or bookkeeping
in order to provide an estimation.

In conclusion, in this section we show that for TPC-C workloads, while high-priority transactions acquire
numerous locks during their lifetime, they are forced to wait on very few (almost always less than 3 waits).
This suggests, and we confirm, that the time spent waiting for these blocking lock requests comprises a large
portion of high-priority transaction response times. We also show that high-priority transactions almost
never wait for other transactions in the queue with them, and just wait for the current holders of the lock
to release them. Finally, we show that those transactions which wait for one or fewer locks (40% of all
transactions) have extremely short response times.

3.7.2 Low-Priority Performance under Preemptive Policies

While high-priority response times under PAbort are very promising, the effect of PAbort on low-priority
transactions is disastrous. Our goal is to examine the statistical evidence to determine exactly the cause and
significance of this problem.

In this section, we examine the well-known penalties for preemption that lead to poor performance: (i)
the cost of rolling back transactions, (ii) the number of times transactions are preempted, and (iii) the work
lost executing transactions that are subsequently preempted. We show that (iii) is almost the exclusive reason
for poor low-priority performance.

Individual rollback costs in PAbort have two primary consequences. First, rollbacks delay both the pre-
empting high-priority transaction and the preempted low-priority transaction(s). To ensure ACID properties,
a high-priority transaction cannot immediately acquire the lock of a transaction it preempts, but must wait
for the preempted transaction to rollback and release the needed lock. The high-priority transaction need not
wait for the entire rollback, but only until the needed lock is released. Typically, low-priority transactions are
not resubmitted until the rollback is complete. Second, rollbacks require DBMS CPU and I/O resources to
clean up the preempted transaction which could otherwise be used for other transactions, potentially slowing
down transactions overall.

We find that transaction rollback costs average about .5 seconds over all loads. This cost is nontrivial
relative to the cost of a high-priority transaction. By contrast it is insignificant for low-priority transactions,
which take between 5 to 16 seconds on average. It should be noted that in optimized commercial systems,
rollbacks should be even less significant.

The next question is whether there are simply too many rollbacks, in which case the total cost of sev-
eral small rollbacks may be significant. We find, however, that this is not the case. Figure 3.8 shows the
probability distribution on the number of times a transaction is preempted by PAbort under high load (1
second think time). About 80% of transactions are never preempted. For those that are preempted, the trend
is approximately geometric with about 12% being preempted once, 5% twice, 2.5% three times, etc. On
average, the number of preemptions (and rollbacks) per transaction is less than 0.4, and the expected cost
of rollbacks overall is not large relative to the average low-priority response time. Something else must hurt
the low-priority response times.

70

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Preemptions

F
ra

ct
io

n
of

 T
xn

s

Figure 3.8: Probability distribution on the number of times a transaction is preempted by PAbort under high
load (1 second think time).

71

Finally, we examine the amount of work wasted in processing transactions that are eventually preempted.
For all loads, the age of a transaction when it is preempted is between 75% and 90% of the length of an
average transaction. Thus, a preempted transaction essentially doubles its expected execution cost (assuming
independence). The conclusion is that the work lost due to preemption is the most significant flaw of PAbort.

3.8 Preempt-On-Wait Scheduling

In Section 3.6 we conclude that high-priority transaction performance is hindered under NPrioinher because
transactions wait too long for current lock holders. Similarly, low-priority transactions are hurt under PAbort
because too many transactions (20%) are preempted after completing a significant amount of work. In this
section, we describe and evaluate the Preempt-On-Wait (POW) lock scheduling policy, which combines the
best of both worlds: PAbort’s good high-priority performance and NPrioinher’s good low-priority perfor-
mance.

Section 3.8.1 describes the POW algorithm and its implementation in Shore. Section 3.8.2 demonstrates
that POW achieves the best of PAbort and NPrioinher. Section 3.8.3 compares POW to several state-of-the-
art preemptive policies. Finally, Section 3.8.4 provides a statistical analysis explaining why POW meets its
performance goals.

3.8.1 The POW Algorithm

POW is motivated by the following logic: consider a low-priority transaction L that blocks a high-priority
transaction H . We have seen that if L is preempted, much work is lost, penalizing low-priority response
times. If L is not preempted, its remaining time depends on whether it waits for a lock (in which case its
remaining time is long) or doesn’t wait for a lock (in which case its remaining time is very short).

In POW, when a high-priority transaction H waits for a lock X1 held by a low-priority transaction L, L
is preempted if and only if L currently, or in the future, waits for some other lock X2. Additionally, lock
queues are reordered as in NPrio to ensure that high-priority transactions are first to get the lock when it is
released.

The implementation of POW for Shore builds on the implementations of NPrio and PAbort as described
in Section 3.6.1. The only additional state needed is a boolean flag fpow for each transaction, which requires
almost no computational overhead. If H must wait for L, and L is currently waiting for another lock, fpow
is set. On all blocking lock acquisitions, if fpow is set, the transaction is aborted.

For example, consider that low-priority transactions L1, L2, and L3 all hold a lock X in shared mode.
L1 is currently waiting to acquire another lock, L2 will need to wait on another lock in the future before it
completes, and L3 will not wait for any more locks before it completes (though it may acquire several more).
If high-priority transaction H requests an exclusive lock on X , it will immediately preempt L1, and set the
flag on L2 and L3. When L2 makes its first lock request and is forced to wait, POW sees that L2’s flag is
set, thus L2 is aborted. Since L3 does not block on any more locks, it completes. In this case, H acquires
the lock X as soon as all of L1, L2, and L3 have either completed or aborted.

72

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrioinher - HP

PAbort - HP
POW - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrioinher - LP

PAbort - LP
POW - LP

(b) Low-Priority

1 2 3 4 5 7.5 10
0

1

2

3

4

5

6

Think Time (sec)

A
vg

 R
es

po
ns

e
T

im
e

(R
el

at
iv

e
to

 S
td

)

NPrio
NPrioinher
PAbort
POW

(c) Overhead

Figure 3.9: Average response time for high- and low-priority transactions for POW, PAbort, and NPrioinher
as a function of load (3.9(a) and 3.9(b)). Aggregate high- and low-priority average response time relative to
Standard (3.9(c)).

73

NPrioinher PAbort POW
HP improvement 3.41x 5.45x 5.60x
LP penalty 1.36x 2.27x 1.16x

Table 3.3: High- and Low-priority response time speedup relative to Standard policy.

3.8.2 POW Performance Evaluation

Figure 3.9 compares the performance of POW with that of the common lock-scheduling policies, as a func-
tion of load. POW high-priority response times are nearly identical to those for PAbort for all loads. Si-
multaneously, POW low-priority response times are nearly identical to those for NPrioinher. Therefore,
POW outperforms both PAbort and NPrioinher (and also NPrio). As the probability of a transaction being
high-priority varies from 1% to 10%, the same trend holds.

Table 3.3 shows the high-priority improvement and low-priority penalty under POW and the common
policies, averaged over the range of think times. POW’s improvement to high-priority transactions (a factor
of 5.6 improvement over Standard) exceeds even that of PAbort. POW’s penalty to low-priority transactions
(a factor of 1.16 above Standard) is even lower than that of NPrioinher.

As explained in Section 3.6.2, response times of high-priority transactions remain relatively constant
as the load increases, and the number of high-priority transactions in the system at any time is relatively
constant (between 1.1% and 5.2%).

Figure 3.9(c) depicts the overhead (overall average transaction response time relative to Standard) for
POW. The overhead of POW is always comparable with NPrioinher and (to a lesser extent) NPrio. By
comparison, the overhead of PAbort is disastrous (See Figure 3.3(c)).

3.8.3 POW vs Other Preemptive Polices

In this section, we compare POW to other types of state of the art preemptive lock scheduling policies
from the literature: WDL (wait-depth-limited) [32] and CR (conditional restart). Since POW allows long
lock chains to form, it is not itself a WDL policy. Additionally, its preemption conditions differ from those
employed in typical CR policies.

First, we consider WDL1, a simple wait-depth-limited policy without prioritization. This policy simply
preempts transactions to ensure that a lock chain contains no more than 2 transactions. When three transac-
tions wait in a chain T1 → T2 → T3, T2 is preempted. We find that WDL1 performs poorly on our workload,
particularly under high loads, since it has hot-spots and and high contention. Transactions are preempted
too frequently (more than 50 times each) and make no forward progress. Our attempts to extend WDL1 to
respect priorities fail to resolve this problem.

We also consider a variation of the CR policy, CR300. CR300 is identical to PAbort, except that trans-
actions are given a reprieve time (300ms) to complete before being preempted. By contrast, CR preempts
transactions immediately, but must make difficult predictions about transactions’ remaining times. CR300
safely avoids this issue, relying on the fact that high-priority transactions wait only for WaitExcess, and those
WaitExcesses are very short (we find 30% are less than 300ms and 50% are less than 500ms). Varying the
reprieve time from 100ms to 1000ms does not change performance significantly.

74

Figure 3.10 illustrates high- and low-priority transaction response times for each of the policies Standard,
CR300, and POW. Invariably, the best policy for both high- and low-priority transactions is POW. CR300
performs similarly to NPrioinher for both high- and low-priority transactions. POW manages to outperform
CR300 by preempting more transactions that greatly slow down high-priority transactions (POW preempts 4
times as many under high loads). It turns out that whether a transaction waits for a lock is a better predictor
of its remaining time than whether it completes within its reprieve time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
CR300 - HP

POW - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
CR300 - LP

POW - LP

(b) Low-Priority

Figure 3.10: Average response time for high- and low-priority transactions with preemptive policies CR300
and POW.

3.8.4 Explaining POW Performance

In order to understand why POW improves high-priority transaction response times as much as PAbort
without hurting low-priority response times, we conduct a statistical evaluation of TPC-C under POW.

Low-Priority Penalty. As determined in Section 3.6.2, the primary reason low-priority transactions
suffer with PAbort is work lost to transactions later preempted. Two factors affect the amount of this wasted
work: (i) the number of preempted transactions and (ii) the age of a transaction when preempted.

We find that POW preempts less than 1% of transactions (∼ 265 preemptions), while PAbort preempts
20% of the transactions (∼ 5000 preemptions). These figures are fairly constant over all loads. Thus, POW
allows almost all low-priority transactions that block high-priority transactions to complete during their
“reprieve.” Thus, only a handful (1%) of transactions are penalized more with POW than with NPrioinher.
The result is that low-priority response times and overhead for POW are similar to that of NPrioinher.

High-Priority Improvement. POW improves high-priority transaction response times because it sig-
nificantly reduces high-priority QueueTime. We consider QueueTime in two cases: in the case where the lock
holder completes (QueueTime|Wait) and in the case where the lock holder is preempted (QueueTime|Preempt).

Figure 3.11 compares the average high-priority QueueTime for POW and PAbort. While POW’s (QueueTime|Preempt)
can be large, (QueueTime|Wait) is similar to PAbort’s QueueTime. Since POW preempts so few transactions,
the overall average POW QueueTime is similar to the average PAbort QueueTime. The variability in POW’s
(QueueTime|Preempt) in Figure 3.11 is a result of so few preemptions.

75

1 2 3 4 5 7.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Think Time (secs)

Q
ue

ue
T

im
e

(s
ec

)

POW QTime|Preempt
POW QTime|Wait
POW QTime Avg
PAbort QTime

Figure 3.11: Average time for high-priority QueueTime, QTime|Preempt, and QTime|Wait as a function of
load.

76

POW is as good for high-priority transactions as PAbort because whenever a high-priority transaction
waits for a lock, it waits no longer than it would have if it preempted the current holder(s). In the few cases
where POW preempts the lock holder(s), the waiting time will be extraordinarily large. Furthermore, the
time lost waiting to determine whether to preempt the holders is not very long (2-3 times an average lock
wait).

3.9 Conclusion

The goal of this work is to provide user priority classes for OLTP applications, such as TPC-C, using priority
scheduling in the DBMS. As Shore (and similarly, IBM DB2) exhibits lock bottlenecks for these workloads,
we consequently focus exclusively on lock scheduling. Experimental evaluation of common preemptive and
non-preemptive lock scheduling policies in this environment reveals that no policy is clearly superior. The
common policies have limited ability to improve high-priority response times without significantly hurting
those for low-priority transactions.

Consequently, we formulate a novel and detailed statistical analysis of locking in TPC-C on Shore with
the common lock scheduling policies. We draw two primary consequences from this analysis. First, with
non-preemptive lock scheduling, WaitExcess dominates the delays experienced by high-priority transactions,
and WaitExcess is not greatly reduced by techniques such as priority inheritance (Figures 3.5 and 3.6).
Furthermore, if a transaction waits for a WaitExcess, its response time is 5-18 times longer than if it does
not (Figure 3.7). As a result, while non-preemptive scheduling policies such as NPrioinher barely penalize
low-priority transactions, they insufficiently improve high-priority transactions. Second, for preemptive lock
scheduling, though preemption can introduce many overheads, the only relevant penalty is work wasted on
transactions later preempted.

The above analysis suggests prioritization policies must exploit the tradeoff between wasted work and
WaitExcess. To that end, we propose and implement the POW lock scheduling policy for TPC-C workloads
on lock-based DBMS. POW exploits the statistical profile of locking in the workload, combining the ex-
cellent high-priority performance of PAbort with the good low-priority performance of NPrioinher. This is
the first application and evaluation of POW for OLTP DBMS and workloads. Experimental results show
that POW improves high-priority transaction response times by a factor of 5.6 on the average, while hurting
low-priority transactions by only 16%. Thus, preemption can be effective with a low penalty in traditional
DBMS and OLTP applications.

This work has several high-level impacts: First, POW-like policies can be used in online and commercial
OLTP environments to increase profits, both by enabling service-level agreements and by ensuring good
performance and satisfaction for high-profit customers. Second, analytical DBMS performance models
may use our statistical profile of TPC-C locking to develop more accurate and tractable models for OLTP
workloads. The dominating factors of WaitExcess and work lost in preempted transactions allow modelers
to ignore irrelevant aspects of the system. Last, our analysis forms a basis for studying other workloads
and building a taxonomy of workloads’ statistical profiles, invaluable for DBMS algorithm development and
tuning.

77

3.10 Impact

POW lock scheduling provides the ability to provide performance isolation to high-priority queries in DBMS
workloads when those workloads are lock-bound. Lock-bound workloads arise in industry-standard OLTP
benchmarks (TPC-C) designed to mimic and reflect the performance of real-world OLTP workloads, sug-
gesting many real-world workloads may stand to benefit from POW.

While preexisting scheduling policies are able to provide good high-priority performance isolation in
many situations, no policies are especially good with lock-bound workloads. With lock-bound workloads,
preexisting policies are all sub-optimal, and are either not effective at providing high-priority performance
isolation, or have too many disadvantages (for low-priority query performance or overall throughput). POW
fills this vacuum, and provides excellent performance isolation for high-priority queries without excessively
hurting the performance of low-priority queries. POW is the first lock scheduling policy to achieve this level
of performance in lock-bound OLTP TPC-C workloads.

POW is an essential piece of technology necessary to provide comprehensive query prioritization in
DBMS. Query prioritization, as discussed in Chapter 2, has many important ramifications. Most impor-
tantly, it can be used to both (i) provide better user satisfaction to important users and/or queries, and (ii)
provide better performance where it is important with less expensive and less powerful hardware. Both
of these accomplishments directly lead to improving companies’ bottom lines. By providing better user
satisfaction, as in (i), companies increase their market share and revenues by gaining repeat business. By
spending less on hardware, as in (ii), companies save on the initial hardware costs, tuning costs, and most
likely on energy and cooling costs.

Beyond simple cost savings, POWmay be a first step to help improve online applications to provide better
service and reduce user frustration. As mentioned in Section 2.9, concurrency control is a major problem
facing modern DBMS-based web and online services. It is difficult to provide both good performance
and data consistency, and many companies sacrifice data consistency to reduce locking and provide better
performance [26]. The lack of data-consistency is frustrating to users, reducing customer satisfaction, which
can hurt profits. POW gives companies the option to increase data consistency, and manage the performance
penalty that arises due to increased locking and data contention. Paired with knowledge of users’ workflow,
companies can improve response times for portions of the workflow where users must maintain their flow
of thought, which can reduce frustration. Likewise, companies could opt to improve the performance of
important customers, paying customers, or customers likely to pay.

3.11 Future Directions

Evaluation of POW on different DBMS implementations and with different workloads will help determine
how widely applicable it is. POW is strongly based on the statistical model of locking and preemption in
the lock-bound OLTP TPC-C workloads developed in Section 3.6. It is expected that POW will be effective
at providing high-priority performance isolation whenever the workload locking behavior is consistent with
that statistical model. If the model does not fit the workload, however, it may provide insight into how POW
should be changed to provide better performance isolation. Further research is necessary to identify other
workload types for which POW is not effective, and to develop alternative scheduling policies to handle these
cases.

The statistical model developed in Section 3.6 helps to determine whether or not POW will be effective.

78

The model is relatively simple, and the data needed for the model is relatively easy to collect by instrument-
ing the DBMS lock subsystem with little overhead. Thus, the DBMS may be able to automatically (without
user intervention) determine whether POW will be effective at providing high-priority performance isolation.
The DBMS may choose to use POW only when the workload fits the model described in this chapter, and
switch to an alternative lock scheduling policy when it does not. Automatically tuning the DBMS scheduling
policies satisfies a growing interest in self-tuning “knob-less” databases, which make DBMS easier to use
and administer. Research is necessary to determine the appropriate control mechanism to determine when
to switch scheduling policies in such a self-tuning system.

A final direction for continuing the work on POW is to develop a rigorous mathematical analysis of its
performance based on queueing theory. Gaining theoretical insight into the performance of POW may lead
to better predictions of POW’s effectiveness, as well as better understanding of the benefits and drawbacks of
POW scheduling. The key challenge here is in integrating the statistical model developed in Section 3.6 into
queueing models. The statistical properties of locking in lock-bound OLTP TPC-C workloads is particularly
non-Markovian and will be difficult to model using traditional queueing theoretic approaches. Using the
statistical properties of OLTP locking measured in this chapter will provide a much easier means by which
to model locking than to examine query data dependencies directly. Progress on this front will not only
provide better insight into POW, and DBMS, but also help to analyze many other systems with locks.

79

80

Chapter 4

Providing Isolation for Mixed DBMS
Workloads (IDD)

81

4.1 Background and Overview

In the previous chapters, we looked at how to use internal prioritization of DBMS devices and resources
to effect query prioritization at the DBMS. The goal, of course, is to provide high-priority queries with
good performance isolation, giving them good response times even when there are low-priority queries in
the DBMS. At different times, we find that different devices and resources within the DBMS are more
important for effecting high-priority performance isolation, depending on which resource is the bottleneck
resource. Sometimes, CPU, I/O, or Locks are the bottleneck, depending on the DBMS implementation or
workload. We show that implementing prioritization on the bottleneck resource usually yields the best high-
priority performance isolation. Some resources, such as Locks, are particularly difficult to prioritize to good
effect, and Chapter 3 addresses and solves that issue.

Internal prioritization is not always applicable. Unfortunately, internal prioritization cannot be used
to effect prioritization in many DBMS applications. The primary reason this is so is because DBMS vendors
rarely provide internal prioritization (and those that do do not provide comprehensive implementations that
are needed). It is almost impossible to use internal prioritization on DBMS applications using legacy DBMS,
since those DBMS cannot be easily upgraded. Applications that use modern (non-legacy) DBMS still have
to wait for DBMS vendors to decide to implement internal prioritization.

Admission control works where internal prioritization does not. Without using internal prioritization,
high-priority query performance isolation and query prioritization can be provided using admission control.
Admission control (illustrated in Figure 4.1) conceptually sits between the DBMS and (either some, or all
of) the users, and limits the number of those users in the DBMS at one time. The idea is to limit the number
of low-priority queries in the DBMS, to limit the performance impact they have on high-priority queries.
Admission control can easily be implemented independent of and external to the DBMS and the users. Thus,
admission control is applicable even when the DBMS or the users are not specifically designed to support it.

Admission control is difficult to configure. Unfortunately, it is difficult to determine how to configure
admission control to achieve the desired high-priority performance isolation. The primary question is how to
set the low-priority MultiProgramming Level (MPL), defined as the number of low-priority queries allowed
in the DBMS at any one time. Clearly, by limiting the number of low-priority queries in the DBMS to zero,
one effects complete performance isolation to high-priority queries. The main drawback, however, is that
the low-priority queries starve when none are admitted. As the number of low-priority queries increases,
low-priority queries no longer starve (and low-priority performance improves), but one expects that the
performance isolation for high-priority queries should decrease as a result (and high-priority performance
should suffer). The key problem is that it is difficult to predict and quantify how changes to MPL affect the
performance of either high- or low-priority queries (These problems are due to the factors discussed in the
introduction Section 1.5).

Admission control is hard to configure because CPU performance is unpredictable. This chapter
will address the issues that make configuring admission control to provide performance isolation difficult.
It will be seen in this chapter that one of the underlying issues is that CPU performance can change dras-
tically depending on the number of low-priority queries that are admitted into the DBMS. It turns out that
two factors contribute to this issue: When the number of low-priority queries increases (the low-priority
MPL increases), both (i) queries require more CPU service, and (ii) the CPU becomes less efficient, and it
takes more time to provide queries with the same amount of service. The contribution of these factors can
reduce the strength of the CPU(s) by a factor of 2 or more, and thus they are extremely significant. Neither
of these factors are predicted by preexisting models (such as from queueing theory), and are essential to

82

understanding performance of the high- and low-priority queries.

No research addresses admission control for prioritization. While admission control is sometimes
used in practice to limit the impact that one workload has on another, there is very little research that ad-
dresses that issue directly. Almost all research on admission control focuses on limiting the total number
of all queries in the DBMS, so as to limit thrashing on specific system resources, such as locks (as seen
by Thomasian et al. [83]). The primary goal of this chapter is specifically to determine how to use admis-
sion control to effect query prioritization, quantifying the effectiveness via both analysis and experimental
performance evaluations with real-world systems.

Two key ideas are employed in this chapter. First, is that we evaluate the performance isolation provided
by admission control on a wide range of real-world workloads (parameterized TPC-W workloads). This
reveals interesting performance issues that would be difficult to discover without observing individual work-
loads. Second, is that, to model the DBMS performance, we start with simple queueing models for which
analysis is tractable, and then we augment them to reflect the performance issues that are observed, main-
taining tractability. This chapter combines these two ideas, one of performance evaluation, and the other of
modeling and analysis, to produce the Isolated Demand Decomposition (IDD) approach, which accurately
models DBMS performance with admission control.

DBMS

TransWeb
TPC−W

Low Priority
TPC−W

TransWeb

Admission
Control

High Priority

Figure 4.1: The system configurations considered in this chapter: Transactional Web workloads with high-
and low-priority queries, sharing a DBMS. High-priority queries are prioritized by using admission control
to limit the number of low-priority queries in the DBMS at any time.

This chapter examines systems of the form illustrated in Figure 4.1, and described in detail in Section 1.7.
A DBMS is shared between two Transactional Web (TPC-W) query workloads, one high- and one low-
priority. Admission control is used external to the DBMS in order to provide performance isolation to
the high-priority queries. This chapter shows how to quantify and predict the performance isolation that
admission control can give to the high-priority queries.

The above scenario arises in many commercial systems, but is of particular interest when companies
have to mix different and independent workloads on the same DBMS. This is of particular interest when
adding new applications, functionality, users, or services to an existing DBMS. Companies spend a lot of
time and money setting up and running their DBMS application services. Changes to those systems that
cause additional query workload to be sent to the DBMS risk hurting the performance of existing services,
and hurting their primary, established business. Using admission control to prioritize existing workloads
over new workloads can help reduce the risk that existing business will be hurt during such upgrades.

83

It should be observed that the scenario consisting of two Transactional Web TPC-W workloads sharing
the DBMS is surprisingly rich and complex, and presents many unexpected performance-related issues.
Restricting the scope to address TPC-W workloads does not significantly limit the impact of this work, but
does make the evaluation more tractable. In fact, the analysis methods developed within this chapter are
expected to be easily applied to many other scenarios and systems.

This chapter has three main contributions: (i) We establish that real-world systems can exhibit a non-
intuitive performance problem, which we call The Hump, and which causes very large query response times.
The hump is not only non-intuitive, but is also not predicted by conventional queueing-theoretic approaches
to modeling DBMS performance. This is described below in Section 4.1.1. (ii) We perform a statistical
analysis of DBMS performance, and identify the underlying systems issues that cause the Hump. This
is described below in Section 4.1.2. (iii) I develop a modeling approach called IDD that adapts conven-
tional queueing models to correctly incorporate the underlying causes of the Hump. IDD accurately pre-
dicts DBMS performance, and compensates for the fact that DBMS violates several key assumptions that
queueing-theoretic models rely on. IDD is described further in Section 4.1.3.

The primary questions addressed in this chapter include:

(i) What factors cause the Hump? Or, in other words, what factors cause Locals to receive good response
times even with many Federators in the DBMS at the same time?

(ii) How do you model the DBMS and predict query performance when the DBMS is shared by Locals and
Federators?

(iii) How do you determine how many Federator queries can be admitted into the DBMS so as to achieve
specific performance goals for Locals?

4.1.1 Performance Evaluation: The Hump

The first contribution of this section consists of a performance evaluation study of two TPC-W workloads
running on the same DBMS: one high-priority, and one low-priority. The high-priority TPC-W workload
(called the Local workload in the chapter) is fixed, and the low-priority TPC-W workload (called the Fed-
erator workload in the chapter) is varied by the size of its database. This allows us to examine how the two
workloads share the DBMS (with various admission control settings) as the workloads’ bottleneck resource
ranges from CPU to I/O.

Clearly, this type of evaluation study is most directly representative of real-world systems in which two
different, but relatively similar Transactional Web applications share a DBMS. For instance, an online retailer
(such as Amazon.COM) may provide two different store fronts, one is the high-priority workload (e.g.
Amazon.COM’s book-selling store front) and the other is a lower-priority workload (e.g. Amazon.COM’s
shoe-selling store front, Endless.COM). More generally, however, the insight gathered into how workloads
mix as a function of their bottleneck resources proves to be applicable for a much wider range of scenarios.

Key Idea

The key idea employed in th performance evaluation in this chapter is that first (i) parameterizing workloads
and DBMS and second (ii) comprehensively evaluating performance as the parameters change is essential

84

to fully understand DBMS performance. Many critical performance issues in DBMS, however, are only
evident under limited conditions, and are only revealed through fairly exhaustive performance evaluations.

Summary of results

The main result from this portion of the chapter is the discovery of an unintuitive, and significant perfor-
mance trend, called The Hump. When admission control lets in many low-priority queries, sometimes query
response times (both high- and low-priority) remain low, yielding good high-priority performance isolation,
while other times query response times grow large, yielding poor high-priority performance isolation. This
trend of large growth in (high-priority) query response times define The Hump, and is due to changes in the
DBMS efficiency and service rate.

In particular, when the high-priority queries are CPU-bound, then the DBMS efficiency (service rate)
is high whenever the low-priority queries are either strongly CPU-bound or I/O-bound. When the low-
priority queries transition between CPU-bound and I/O-bound, however, the efficiency (service rate) drops
dramatically, causing both high- and low-priority response times to grow significantly. The result is that
high-priority queries experience poor performance isolation when admission control is high.

This trend is observed with two TPC-W workloads running on the same IBM DB2 DBMS with different
tuning parameters. Furthermore, the trend is also observed with a TPC-H workload (an industry standard
data warehousing workload) and a TPC-W workload running on the same PostgreSQL DBMS (either TPC-
H or TPC-W can be the high-priority workload). Thus the data indicates this is a general trend that occurs
in many real systems.

4.1.2 Statistical Analysis

The second contribution of this chapter is a statistical analysis of the performance issues that cause The
Hump.

Key Idea

The key idea employed in this portion of the chapter is essentially a bottleneck analysis and profiling of
the DBMS. This approach is similar to the bottleneck analysis performed in Chapter 2, and focuses on the
major physical and logical devices in the DBMS, such as CPU, I/O and Locks. The key distinction is that
the analysis in this chapter takes the analysis inside these devices, and in particular, looks at where queries
spend their time, and in particular inside the CPU device.

Summary of results

The primary result from the statistical analysis portion of this chapter the identification of the underlying
performance issues that cause The Hump. In particular, the analysis reveals that there are two factors that
contribute to the The Hump: At the peak of the hump, (i) queries require far more CPU service than they
do otherwise, and (ii) the CPU service rate (the efficiency of the CPU) decreases significantly. These factors
are caused by the details of how DBMS queries share the CPU resources.

85

4.1.3 IDD

The final contribution of this chapter is an analysis method called Isolated Demand Decomposition (IDD)
that can be used to predict the performance of two workloads that share the same DBMS when one workload
is limited via admission control.

Key Idea

The key idea is to start with a simple queueing theoretic performance model for DBMS, which is easily
understood and relatively easy to analyze via simulation or numerical methods. Then, we augment the
model to reflect how (i) queries’ CPU demands change, and (ii) the CPU service rate changes when two
different workloads are mixed on the same DBMS. Predicting how queries’ CPU demands change and CPU
service rate changes are slightly more self-contained problems, and thus slightly easier than fully integrating
them into the queueing theoretic model.

Summary of results

We show that preexisting queueing models for DBMS performance completely miss the underlying per-
formance issues at the CPU that cause the Hump. The result is that the performance predictions from
preexisting performance models can be arbitrarily bad in many real-world DBMS. Furthermore, they do not
even provide indication of what the basic performance trends.

Our novel IDD modeling approach is able to both (i) predict the performance trends seen in real-world
systems (such as The Hump), ad (ii) predict the performance of both high- and low-priority query response
times with an average relative error of only 11.7% in a real-world system.

4.2 Organization of this chapter

The remainder of this chapter proceeds as follows: Section 4.3 introduces and motivates the problem of
using admission control to achieve prioritization for DBMS workloads. Section 4.4 discusses common
applications in which this problem arises. Section 4.5 is a performance evaluation of TPC-W workloads
sharing a DBMS, and documents the discovery of The Hump performance trend, and demonstrates that
preexisting modeling techniques do not predict The Hump.

Section 4.6 consists of the statistical analysis to identify the underlying causes of The Hump, and the
development of the Isolated Demand Decomposition (IDD) modeling approach which incorporates these
causes into simple performance models. Section 4.6 also consists of an analysis of IDD to ensure that
it accurately predicts performance. Section 4.7 discusses future work to improve IDD by improving the
accuracy of predictions for CPU cache miss penalties. Section 4.8 discusses prior research pertinent to this
chapter, and Section 4.9 summarizes the research. Section 4.10 describes the impact of the research found
in this chapter, and Section 4.11 discusses future directions in which the research can be taken.

86

4.3 Introduction

One might expect that different people in a company would want to share their DataBase Management
Systems (DBMS) with all other users in the company, since they all work to benefit the company. In reality,
we find that DBMS users are greedy, and rarely want to share a DBMS with other users, even when both
users are in the same corporate “family.” The reason is simple: DBMS performance is fragile and hard to
predict, and users are afraid that others will hurt their performance.

Often, only a small set of DBMS users are performance-sensitive, and the rest are happy with best-effort
service. Throughout this chapter, we focus on a specific scenario described in Section 4.4, in which there
are two classes of users: Performance-sensitive Local users and Best-effort Federator users.

Often, admission control is used to help provide better performance to Local users, by limiting the
Federator MultiProgramming Level (MPL). The Federator MPL is the maximum number of concurrent
Federator queries allowed in the DBMS. Excess Federator queries (beyond the Federator MPL) are queued
outside the DBMS until other Federator queries depart the DBMS. Intuitively, admission control works since
the fewer Federator queries that are in the DBMS, the fewer resources they consume, and the less likely they
are to hurt Local response times. There are two problems, however: First, it is difficult to tune admission
control and choose the optimal Federator MPL. Second, the intuition for admission control does not always
hold. Sometimes allowing more Federators will not hurt (and may even help) Local performance.

If the Federator MPL is too low, DBMS devices may be under-utilized, and Federator users’ performance
may suffer unnecessarily. If Federator MPL is too high, Local response times may be hurt too much. Sadly,
administrators have little to no guidance in choosing Federator MPL to achieve Local performance isolation.
Tuning the Federator MPL is currently a time-consuming process of trial-and-error, until a suitable level is
found. Further complicating the situation, the optimal Federator MPL changes whenever system hardware
or software components change, or when the exogenous workload changes. Thus, the administrator must
constantly monitor performance and perform costly retuning.

Our goal is to develop tools to reason about how Local and Federator users affect each other’s per-
formance (response times), as the Federator MPL is varied. Thus, administrators can answer “what-if”
questions to help them configure Federator MPL to meet their performance requirements. As a basis for
our analysis, we assume that we can make simple measurements of both the Local and Federator workloads
running alone on the DBMS. Our approach uses simple, low-overhead measurements that do not require
rewriting or replacing the DBMS, making our approach widely applicable. While we focus on admission
control in this chapter, our work applies to any scenario with mixing DBMS workloads.

Throughout this chapter, we experiment with a commercial DBMS that serves two users’ workloads, Lo-
cal and Federator. Both the Locals and Federators TPC-W e-Commerce DBMS benchmark [21] workloads.
We explore how response times for a CPU-bound Local workload change as the Federator workload varies
from CPU-bound to I/O-bound, and as the Federator MPL varies from low to high.

We make a surprising discovery about the performance of mixed TPC-W workloads. Given that the
Locals are CPU-bound, one might expect that the Locals are hurt the most by CPU-bound Federators (since
they compete for the same resource) and are hurt the least by I/O-bound Federators (since they use different
resources). Hence, one expects that Federator MPL must be kept low when Federators are CPU-bound, and
can be higher when Federators are I/O-bound. We find this is not the case.

Instead, we find that CPU-bound Locals are not hurt much by either CPU-bound Federators (surpris-
ingly) or I/O-bound Federators (expectedly). We also find (surprisingly) that CPU-bound Locals are, in fact,

87

significantly hurt when Federators have simultaneously high CPU- and I/O-demands. This trend is illus-
trated in Figure 4.2(a), whereby Local response times rise and then fall as the Federator workload shifts
from CPU-bound to an I/O-bound workload (especially when Federator MPL is high). Throughout this
chapter, we refer to this trend as “The Hump,” (described in detail in Section 4.5), and we show it is not
predicted by conventional queueing models.

Federators
CPU−bound
Federators

I/O−bound
Federators

Response
Local

Time

CPU− and I/O−bound

(a) The Hump
Federators

Federator
MPL

Desired

CPU−bound
Federators

I/O−bound
Federators

CPU− and I/O−bound

(b) Federator MPL Policy

Figure 4.2: Illustration of the observed trends. Counter to intuition, response times for CPU-bound Locals
are good both when Federators are CPU-bound or Federators are I/O-bound, and in these cases, Federator
MPL can be high. When Federators have simultaneously large CPU- and I/O-demands, Local response times
are bad, and Federator MPL must be kept low.

The Hump leads us to conclude (non-intuitively) that Federator MPL can be kept high when Federa-
tors are CPU-bound or when Federators are I/O-bound. Likewise, Federator MPL must be kept low when
Federators have both high CPU- and I/O-demands. Figure 4.2(b) illustrates the desired Federator MPL as a
function of the Federator’s bottleneck resource.

We provide an approach (described in Section 4.6), called Isolated Demand Decomposition (IDD), that
predicts Local and Federator response times when run concurrently on the same DBMS based on how they
run in isolation. This is important, as it is often undesirable to actually run the workloads together without
knowing the performance ramifications. IDD’s key idea is to measure each workload’s device demands in
isolation, and predict the demands in the mixed workload. IDD estimates Local and Federator response
times using these demand estimates, with error between 11% and 17% in our experimental system. All
measurements needed by IDD can be measured with minimal overhead without modifying the DBMS, which

88

makes IDD easy to deploy, even in legacy DBMS. We will also show that, unlike conventional queueing
models, IDD accurately predicts The Hump.

4.4 Common Application

This work is motivated by problems witnessed in the real-world with Federated DBMS. Federated DBMS
are used to unify several different physical DBMS, made by different vendors and holding different data,
into a single logical DBMS. The Federated DBMS has a Federator, to which users can send queries that
refer to data stored in any number of physical DBMS. The Federator will automatically (and efficiently)
generate and send queries to all the physical DBMS as necessary and merge the results for the user.

Each physical DBMS in the Federation handles queries from both Local Users, and queries from Fed-
erated Users. Local users send queries directly to the physical DBMS, referring to data stored on only that
physical DBMS. Federated users send queries to the Federator, which, in turn, sends queries to the physical
DBMS.

Admission control is important in Federated DBMS since some Local users have sensitive performance
needs, and have no interest in being part of the Federation of DBMS. Those Local users only need access
to the data on their own Local DBMS, and are concerned that the extra work coming from other users’
Federated queries will hurt their performance. Without understanding how the Federated workload will
affect their performance, Locals often fight the deployment of the Federated DBMS, and succeed.

It is a simple process to install admission control to hold back Federator queries at a physical DBMS.
Admission control can be installed externally to the DBMS, and does not require any modifications to the
existing DBMS hardware or software, or to Local users’ client software. All of these factors are critical in
real-world systems, particularly those with legacy components or limited development and testing budgets.

4.5 The Hump

We are primarily interested in the effect Federators have on Local response times as Federator MPL is varied
and as the Federator bottleneck resource varies from CPU-bound to I/O-bound. Throughout this chapter, we
will vary the Federator DB size to vary the Federator bottleneck resource. When the Federator DB size
is small (100MB), Federators are CPU-bound. As the Federator DB size increases, Federators consume
increasingly more I/O and less CPU. When the Federator DB size is large (1500MB), Federators are I/O-
bound. Thus, all experiments consider Local response times as a function of two axes: Federator MPL and
Federator DB size.

Intuitively, one might expect that response times increase monotonically along each axis: (1) Increasing
MPL slows Locals, due to the additional demand and contention for resources caused by the Locals. (2)
Increasing Federator DB size slows Locals, since Federators create both more I/O requests (they have more
buffer pool/cache misses) and slower I/O requests (their data is further apart on disk), which slows down
Local I/Os. Both of these trends (1 and 2) are predicted by conventional queueing models of DBMS, such
as the one presented in Section 4.5.3.

In practice, while we find that increasing Federator MPL does generally increase Local response times,
increasing Federator DB size does not always increase Local response times. In fact, we find that as Fed-

89

erator DB size increases, Local response times rise, then fall, creating a “hump” trend, discussed in Sec-
tion 4.5.2. The hump affects how admission control’s Federator MPL should be configured. When the
Federator DB size is within the hump region, increasing the Federator MPL hurts Local response times
nearly an order of magnitude more than when the Federator DB size is outside the hump. Section 4.6 is
dedicated to explaining the reasons for, and predicting, the hump.

4.5.1 Architecture and Experimental Setup

(a) Low Memory Config (b) High Memory Config

Figure 4.3: The Hump: Local response times shown as a function of Federator MPL and Federator DB size.
Local response times rise then fall as Federator DB size increases, as seen in many DBMS configurations.

Throughout this chapter, we consider a system with a single DBMS server, and two TPC-W workloads:
the Locals, and the Federators. The DBMS holds two TPC-W databases, one for the Locals and one for
the Federators. Each workload is generated in a “closed loop” whereby a fixed number of users repeatedly
submit queries to the DBMS. We use 50 Local users and 50 Federator users.

Locals wait for an exponentially distributed “think time” between each DBMS query. We tune the Local
think time so that the average number of Locals in the DBMS is one (when there are no Federators). When
Federators are let into the DBMS, the number of Locals in the DBMS increases, since they slow down. This
simulates a typical online arrival process, where there are usually few users, but there are sometimes many
during periods of high-load. Federators have no think time, but the number of Federators in the DBMS is
limited to the Federator MPL by admission control.

Throughout this chapter, we experimentally vary two axes: the Federator MPL, and the Federator DB
size, and measure Local response time as these parameters change. We vary Federator MPL from 0 (no
Federators) to 50 (all Federators) and Federator DB size from 100MB to 1500MB. This has the effect of
shifting Federator queries from CPU-bound (100MB) to I/O-bound (1500MB). The Local DB size is always
fixed at 100MB, making Locals CPU-bound. While both the Locals and Federators use different sets of data,
both share the same disk.

Recall from Chapter 2, that TPC-W is almost always CPU-bound. To shift the workload from CPU-
bound to I/O-bound, we increase the DB size outside of the parameters specified by TPC-W. It should be

90

observed that in all configurations, lock wait time is negligible.

Section 4.5.3 is exceptional since we vary Federator MPL and Federator I/O rate (rather than Federator
DB size). This is because in Section 4.5.3, we formulate our problem as a queueing model, and changing
the Federator I/O rate in the model most closely reflects changes to Federator DB size in the real system.
As the Federator I/O rate decreases, the Federator I/O service times get longer, and individual Federator
I/O requests slow down. Likewise, as Federator I/O rate increases, Federator I/O requests speed up. Note
that Federator I/O rate and Federator DB size are inversely related. One might also consider changing
Federator CPU rate to model changes to the Federator DB size, since the DBMS must process more data
as the Federator DB size grows. We find, however, that Federator I/O rate is an order of magnitude more
significant than Federator CPU rate, thus we concentrate on Federator I/O rate. We still, however, consider
the effect of varying Federator CPU rate in Section 4.5.3 for completeness.

Our experimental setup uses two computers, one for the DBMS and one for the workload generators.
The DBMS uses a dual-core 2.8-GHz Intel Xeon machine with 3GB of RAM and two SCSI disk drives, one
for DBMS data, and one for DBMS logs. We use IBM DB2 as our DBMS. We spent a considerable amount
of time tuning the DBMS to optimize its performance, with advice from IBM itself.

The workload-generation machine is a single-processor 2.4-GHz Intel Xeon machine, with 3GB of RAM
and two IDE hard drives. The Local and Federator workloads are generated according to the industry-
standard TPC-W e-Commerce benchmark [21]. Our implementation is in Java, and is based on the Univer-
sity of Wisconsin TPC-W implementation [55].

We use the TPC-W Browsing mix throughout this chapter. It is similar to the Shopping mix used in
Chapter 2, but has a higher fraction of browse-related queries than buy-related queries. Both workload
mixes are CPU-bound and are extremely similar.

For performance reasons, we make the following two primary changes to the Wisconsin TPC-W imple-
mentation:

First, we remove the need for a web server, so clients send DBMS requests directly to the DBMS. We
do this since the web server should rarely be the bottleneck in online services, as web servers can typically
be scaled and parallelized. Scaling DBMS performance is much more difficult.

Second, we modify the queries and architecture of the TPC-W workload to improve its efficiency. Several
queries are changed to generate more efficient query plans and force the use of indexes when available. We
make use of SQL FOR UPDATE clauses to improve the use of DBMS locks. Finally, unique identifiers
and sequence numbers are generated more efficiently either at the application level or by DBMS sequence
primitives.

4.5.2 Commercial DBMS in practice

We examine the mean Local response time as we vary the Federator MPL and the Federator DB size as
described in Section 4.5.1. Since DBMS performance can depend on how the DBMS is configured, we
consider a range of configurations. We find, however, that the trends in these configurations to be similar. We
present two configurations here: a Low Memory Configuration (LMC) and a High Memory Configuration
(HMC). The HMC differs from the LMC in two ways: (i) it uses more memory to store lock data structures
and reduce spin locking, and (ii) it more aggressively cleans dirty data from the buffer pool. It should be
noted that sometimes the LMC exhibits the best performance, whereas sometimes the HMC exhibits the best

91

performance.1

Figure 4.3 depicts the mean Local response time from these experiments. Figure 4.3(a), shows the LMC
configuration and Figure 4.3(b) shows the HMC configuration. Both graphs show that Local response times
exhibit a striking non-monotonic “hump” when the Federator DB size increases, corresponding to when the
Federator workload shifts from CPU-bound to I/O-bound.

In general, Local response time increases monotonically with Federator MPL. The rate of increase,
however, depends on whether the Federator DB size corresponds to a hump or non-hump region. Within
the hump region, the penalty that increasing the Federator MPL has on Local response times is an order of
magnitude higher than outside the hump region. In order to tune admission control, it is critical to understand
how increases to Federator MPL change Local response times in a given system.

In particular, when the Federator DB size is small (100MB) or large (1500MB), increasing Federator
MPL to 50 penalizes Local response times less than a factor of 10 (under 0.6 seconds per query). These
cases correspond to when (i) Federator I/O requests are fast and Federators are CPU-bound (small Federator
DB size) and (ii) Federator I/O requests are slow and Federators are I/O-bound (large Federator DB size).
When the Federator DB size is “medium” (300MB to 800MB), and the Federators shift from CPU-bound to
I/O-bound, increasing Federator MPL to 50 penalizes Local response times by a factor of 75 (3 to 4 seconds
per query). We see this type of behavior under many DBMS configurations.

Our results indicate that common intuition about mixing workloads can be misguided. Intuition suggests
that workloads that use different devices would mix well and have low response times, whereas workloads
that use the same devices would compete and mix poorly. In our system, we find (as expected) that CPU-
bound Locals and I/O-bound Federators (1500MB Federator DB size) do mix well. Surprisingly, we find
that CPU-bound Locals and CPU-bound Federators (100MB Federator DB size) also mix well. Furthermore,
it is hard to understand why we find that CPU-bound Locals mix poorly with Federators as Federators shift
from CPU-bound to I/O-bound (300MB to 600MB Federator DB size).

All of Section 4.6 explains why the hump occurs, and describes how to use the IDD method to predict
it. We will make the surprising discovery: the hump exists because Local queries’ CPU demands increase
when run together with Federators (relative to when run in isolation). In the next section (Section 4.5.3), we
examine why conventional queueing models do not predict the hump.

4.5.3 Queueing Models are not enough

In an attempt to explain the hump seen in Section 4.5.2, we model the mixed Local and Federator DBMS
with a queueing model. Our model is similar to those used by Thomasian and Ryu [71, 86], which have
been used to successfully predict the effect MPL has on throughput (with a single class of users). We show
that models of this type do not predict the hump seen in the real DBMS.

Our basic model is depicted in Figure 4.4, and consists of “device servers” for each important device in
the DBMS: the CPU device, the primary I/O device, and a set of Think Time servers (which model the time
Locals spend outside the DBMS). We consider many variations of this model, which consider different I/O
scheduling policies, or incorporate the DBMS buffer pool or Log I/O device. We find that the Local response
time trends are similar in each case.

We model Locals and Federators which run in a closed-loop, as in the experimental system. We model

1The HMC was reached after working with the DBMS vendor to improve performance at the peak of the hump (described below).

92

50 Local users and a number of Federator users equal to the Federator MPL (to model admission control).
Queries move through the model as they would in a real DBMS: They start in the CPU and then either (i)
complete or (ii) go to I/O. When Local queries complete, they depart the DBMS and wait in Think Time
before returning to the DBMS. When Federator queries complete, they return immediately to CPU. All
queries return to the CPU after serving at I/O.

Each server in the model (e.g. CPU, I/O, Think) processes queries at a fixed service rate, and service
times are exponentially distributed. Service rates differ for Local and Federator queries, giving the Local
service rate at server i: µLoc

i and the Federator service rate at server i: µFed
i . We analyze the model using a

Markov chain that tracks the number of Local queries in Think, CPU, and I/O (NLoc
Think, NLoc

CPU , and NLoc
I/O),

and the number of Federator queries in CPU and I/O (NFed
CPU and NFed

I/O). When we consider Random and
FIFO I/O scheduling, we also track the number and order of queries in the I/O queue.

Transitions in the Markov chain are determined by the service rates and the scheduling policy at each
server. The CPU uses processor-sharing (PS) scheduling. Given NCPU = NLoc

CPU + NFed
CPU queries at the

CPU, Locals leave the CPU with rate µLoc
CPU/NCPU and Federators with rate µFed

CPU/NCPU . I/O uses either
FIFO, Random, or PS scheduling. PS for I/O is handled similarly to the CPU case. For FIFO and Random,
the first query in the I/O queue leaves at rate at rate µLoc

IO if it is Local or µFed
IO if it is Federator.

One might think that this model is a closed classed Jackson queueing network, for which mean response
time can be determined by closed-form formulas. This is not the case, however, since service rates depend
on the class (Local or Federator) of the queries. As a result, we solve the Markov model using simulation.

DBMS

CPU

I/O

Thinking

Figure 4.4: DBMS queueing model

As discussed in Section 4.5.1, we model the Federator DB size using the Federator I/O rate: µFed
I/O. The

modeled Federator DB size is inversely proportional to µFed
I/O. For example, small modeled Federator DB

size corresponds to a high Federator I/O rate.

We attempt to recreate the experiment from Figure 4.3(a) in Section 4.5.2 using the model, and measure
Local response time as a function of Federator MPL and modeled Federator DB size. Our results are in
Figure 4.5, and are representative of the trends produced by the model over a wide range of configurations.
As Federator MPL increases, the model predicts monotonic increases to Local response time, as seen in the
real DBMS. As Federator DB size increases, the real DBMS exhibits a hump, while the model exhibits a
distinctive “dip.” When Federator DB size is small, Local response times are constant. When Federator DB
size grows, Local response times dip suddenly, then grow large monotonically. To understand the cause of
the dip, we will further examine what causes the (i) constant and (ii) monotonic regions.

93

DLoc
CPU The per-job demand on the CPU by a Local job running in a Local-only workload.

DFed
CPU The per-job demand on the CPU by a Federator job running in a Fed-only workload.

DLoc
Spin The portion of DLoc

CPU spent spinning on spin locks in a Local-only workload.
DFed

Spin The portion of DFed
CPU spent spinning on spin locks in a Federator-only workload.

DMix
CPU The per-job demand on the CPU by all jobs running in the mixed Local and Federator workload.

DFed,Mix
CPU The per-job demand on the CPU by a Federator job running in a Mixed workload.

DLoc,Mix
CPU The per-job demand on the CPU by a Local job running in a Mixed workload.

IPSLoc Number of instructions retired per second in the Local-only workload.
IPSFed Number of instructions retired per second in the Federator-only workload.
IPSMix Number of instructions retired per second in the Mixed workload.

P{Loc} Fraction of Local jobs in the Mixed workload.
P{Fed} Fraction of Local jobs in the Mixed workload.

T Fed
sys The measured system response time for a Federated job running in a Mixed workload.

T Loc
sys The measured system response time for a Local job running in a Mixed workload.

T Mix
sys The measured system response time for all jobs running in a Mixed workload.

T Fed
mod The response time for a Federated job running in a Mixed workload, as estimated by the model in Section 4.6.3.

T Loc
mod The response time for a Local job running in a Mixed workload, as estimated by the model in Section 4.6.3.

ULoc
CPU CPU utilization in a Local-only workload.

UFed
CPU CPU utilization in a Federator-only workload.

XLoc Throughput (queries per second) in a Local-only workload.
XFed Throughput (queries per second) in a Federator-only workload.

Table 4.1: Primary notation used for IDD parameters (Section 4.6). CPU can be replaced with I/O throughout
the above.

94

Figure 4.5: Local response times as a function of Federator MPL and modeled Federator DB size (Federator
I/O rate). Conventional queueing models predict a Local response time dip, not the hump seen in real-world
DBMS. Compare to Figure 4.3(a).

The constant region is caused because Federators are CPU-bound in the region. Federator I/O is faster
than Federator CPU, and all Federators pile up in the CPU bottleneck. Locals are slowed down by a constant
factor since the CPU uses PS scheduling and there are a fixed number of Federators in the DBMS. The
monotonic region is caused because Federators are I/O-bound in the region and all Federators pile up in the
I/O bottleneck. Local queries can often complete without needing I/O, but periodically do need I/O, and
must wait behind many slow Federators to get it. As modeled Federator DB size grows, Federator I/O slows
down, which increasingly hurts Local response times.

The dip in Figure 4.5 as Federator DB size increases is a discontinuity produced as the Federators shift
from CPU-bound to I/O-bound. The dip corresponds to the case where all the Federators start to move from
CPU to I/O so that both (i) Locals get more of the CPU which makes Locals faster, and (ii) Federator I/O
is fast enough that it does not hurt Locals too much. The magnitude of the dip grows as the Federator CPU
rate increases. We find that the model does not predict a hump over any combination of Federator I/O rates
and Federator CPU rates.

We have considered modeling Federator DB size using other methods. One method models Federator
DB size using Federator I/O rate. Another method sets Local CPU and I/O service rates as measured from
the real Local-only system, and then sets Federator CPU and I/O service rates as measured from the real
Federator-only system, for a given Federator DB size (this approach is similar to applying IDD without
estimating mixed device demands). In all cases, the model is incapable of producing the response time
hump.

The primary difficulty faced when modeling DBMS performance is that the DBMS processes queries
differently when they are mixed with others. When by themselves, queries have one set of CPU and I/O
service rates, and when run with others, the service rates are often very different. Models must be able to
predict how service rates must change when workloads are mixed. The next section (Section 4.6) (i) explains
why the service rates change when workloads are mixed, and (ii) outlines IDD, which predicts how service
rates change in order to determine Local (and Federator) response times in the mixed workload.

95

4.6 Our Approach: IDD

We now introduce the main Isolated Demand Decomposition (IDD) procedure. Given measurements from
Local and Federator workloads running in isolation, IDD models DBMS performance when the workloads
run concurrently (mixed workload), and accurately estimates the Local response time and the Federator
response time in the mixed workload.

IDD consists of four steps: (1) Run the Local and Federator workloads in isolation to measure the
isolated device demands (Section 4.6.1); (2) Estimate the mixed device demands by modeling how isolated
device demands change when the workloads are run together (Section 4.6.2); (3) Employ a queueing model
which uses the estimated mixed device demands to estimate performance metrics for Locals and Federators
(such as throughput, response time, etc.), when run together; (4) Use operational laws to improve upon the
estimated performance metrics above, yielding a final estimate for Local (and Federator) response times
(Section 4.6.4) for the mixed workload.

IDD relies intrinsically on device demands. The device can be either CPU or I/O. The CPU device
demand represents the average amount of work needed to be done per query (or “job”) on the CPU, i.e., the
“CPU time” required per query in the system. Observe that the CPU demand excludes the time the query
spends waiting or queueing for the CPU or time spent at other devices.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000 1200 1400 1600

In
st

ru
ct

io
n

s/
S

ec
o

n
d

Federator DB Size (MB)

Actual IPS-MIX
Weighted Avg IPS-MIX

Figure 4.6: Actual and estimated IPSMix as a function of Federator DB size with Federator MPL set to
50. CPU stalls reduce CPU strength by a factor of 2, which is accurately estimated by IDD.

DFed
CPU denotes the CPU (per-job) demand for Federator jobs running in isolation on the DBMS. Likewise

DLoc
CPU denotes the CPU (per-job) demand for Local jobs running in isolation on the DBMS. An important

96

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000 1200 1400 1600

S
ec

o
n

d
s

Federator DB Size (MB)

Local Dcpu Alone
Local Dcpu with Locals

(a) Local Demands

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 200 400 600 800 1000 1200 1400 1600

S
ec

o
n

d
s

Federator DB Size (MB)

Federator Dcpu Alone
Federator Dcpu with Locals

(b) Federator Demands

Figure 4.7: Local and Federator CPU demands as a function of Federator DB size, with Federator MPL
set to 50. (a) DLoc,Mix

CPU differs from DLoc
CPU and (b) DFed,Mix

CPU differs from DLoc
CPU , proving that demands

change when workloads mix.

contribution of this chapter is that the device demands change when Locals and Federators are run concur-
rently. We call this a mixed workload. This fact necessitates defining additional terminology: DFed,Mix

CPU

will denote the CPU demand for Federator jobs running in a mixed workload on the DBMS (mix of Locals
and Federators). The remaining similar notation is defined in Table 4.1. Note that response times are always
defined for the case of mixed workload (Locals and Federators running concurrently).

IDD measures the isolated device demands, e.g., DFed
CPU , DFed

I/O, etc. from the real DBMS when running

Locals and Federators in isolation. In contrast, IDD estimates the mixed device demands, e.g., DLoc,Mix
CPU ,

DFed,Mix
CPU , etc.

When describing IDD, we focus on CPU demands, in particular when estimating mixed device demands.
This is because (in our system) the CPU is the device with maximum demand, making it the bottleneck
device, and hence the dominant component in response time. Figure 4.8 shows the CPU and I/O demands
in our mixed Local and Federator workload, showing that CPU is almost always the bottleneck. IDD should
also apply when I/O is the bottleneck resource. Here again the isolated I/O demands will differ from the
mixed I/O demands.

4.6.1 Measure Isolated Device Demands

The first step of IDD is to measure the isolated device demands for each device i: DLoc
i and DFed

i . We only
consider CPU and I/O devices, since other device demands (e.g. locks) are negligible in our system (as
seen in Chapter 2, TPC-W workloads have almost no lock waiting).

We rely on the fact that device demands are related to throughput (queries per second) and device utiliza-
tion (the time-average fraction of time the device is busy working on any query) via the following operational
laws:

DFed
i = UFed

i /XFed

DLoc
i = ULoc

i /XLoc

97

Figure 4.8: DMix
CPU and DMix

I/O as a function of Federator MPL and Federator DB size. CPU is almost always
the bottleneck, especially in the hump region.

where UFed
i is the device utilization for device i and XFed is the throughput, when Federators are run in

isolation (and similarly for Locals).

It is easy to measure throughput and device utilizations on most DBMS and operating systems, with low
overhead and without modifying the DBMS. For example, on Linux and UNIX, device utilizations can be
measured using iostat and vmstat. Throughput can be measured by the application, the DBMS, or
anywhere in the communication stream between them.

Device demands need to be measured for each device in the DBMS. We find this includes all CPUs and
I/O devices, except for the DBMS log I/O device (which has negligible demands). We find that DBMS lock
demands are negligible in our system, and thus, applying IDD to lock demands is beyond the scope of this
chapter.

DBMS locks will not need to be considered in many large-scale commercial DBMS applications, due to
the fact that many, such as Amazon [26], are designed to eliminate locking (and lock demands) as much as
possible. In the event that lock demands are significant, and are responsible for significant fractions of query
response times (as seen in TPC-C workloads in Chapter 2), IDD is still applicable as long as each workload
accesses independent data, since lock demands are not expected to change. When workloads access the
same data, however, demands will have to be adjusted according to the amount of incompatible data sharing.
Approaches that model the amount of lock contention, such as those by Thomasian et al. [83] will need to
be used.

4.6.2 Estimate Mixed Device Demands

When two workloads are mixed, we might expect that the device demands in the mixed workload are simply
the weighted average of the device demands for the workloads running in isolation. In other words, for
device i, we expect:

DMix
i = P{Loc}DLoc

i + P{Fed}DFed
i (4.1)

where P{Loc} and P{Fed} are the fraction of Local and Federator queries that complete in the mixed
workload.

98

In measured DBMS performance, however, equation (4.1) does not hold. This is because the device
demands for a query change when it is mixed with other queries. By definition, the following is true:

DMix
i = P{Loc}DLoc,Mix

i + P{Fed}DFed,Mix
i (4.2)

However, DLoc,Mix
i 6= DLoc

i and DFed,Mix
i 6= DFed

i , hence (4.1) does not follow. To see this, we measure
the Local and Federator CPU demands in the mixed workload, DLoc,Mix

CPU and DFed,Mix
CPU , and compare these

with the measured isolated CPU demands DLoc
CPU and DFed

CPU , as shown in Figure 4.7. Demands are shown
as a function of Federator DB size with a fixed Federator MPL of 50.

In general, Local CPU demands are much larger in the mixed workload than in isolation, while the Fed-
erator CPU demands are much lower in the mixed workload than in isolation (Figure 4.7). Thus, Local and
Federator CPU demands in the mixed workload are comparable. In addition, P{Loc} dominates P{Fed}
in the mixed workload (seen later in Figure 4.10), especially as Federator DB size increases. Combining
these facts means that P{Loc}DLoc,Mix

CPU dominates DMix
CPU in equation (4.2).

Given that CPU is almost always our bottleneck resource, and that P{Loc}DLoc,Mix
CPU dominates DMix

CPU ,
we focus on how to estimate DLoc,Mix

CPU in the remainder of this section.

The fact that DLoc,Mix
CPU is larger than DLoc

CPU can be attributed to either: (1) CPU devices become slower
or less efficient in the mix, or (2) queries perform more CPU work in the mix. We find that both of these
reasons are responsible, via (1) CPU stalling (Section 4.6.2) and (2) spin locking (Section 4.6.2). It will turn
out that these cause the experimental hump.

Our goal in Section 4.6.2 and Section 4.6.2 is to determine how to estimate DLoc,Mix
CPU and DFed,Mix

CPU

based on how CPU stalls and spin locks affect DLoc
CPU and DFed

CPU .

The final estimates are as follows:

DLoc,Mix
CPU ≈ DLoc

CPU

IPSLoc

IPSMix
+ DFed

Spin

IPSFed

IPSMix
(4.3)

DFed,Mix
CPU ≈ DFed

CPU

IPSFed

IPSMix
+ DLoc

Spin

IPSLoc

IPSMix
(4.4)

where IPSLoc is the CPU instructions per second (IPS) measured in the Loc-only workload, IPSFed is the
CPU IPS measured in the Fed-only workload, IPSMix is the CPU IPS estimated for the mixed workload,
DFed

Spin is the spin lock demand for the Loc-only workload, and DFed
Spin is the spin lock demand for the Fed-

only workload.

We will discuss how to estimate P{Loc} and P{Fed} in Section 4.6.3. Together these will give us all
the inputs we need for equation (4.2), enabling us to get DMix

i , which will then be used in Section 4.6.4 to
get the mixed workload response times.

CPU Stalling

It is well-known that DBMS performance suffers due to CPU stalling, particularly with modern CPUs [8].
CPU stalling decreases the number of instructions retired per second (IPS) that the CPU is able to execute.
Since queries must execute a fixed number of instructions with or without stalling, stalling increases the
CPU demand of the queries.

99

We find that TPC-W stalls are predominantly due to memory stalls. Several techniques, such as those
from Zhang et al. [90] and Jacob et al. [46]), can be used to model memory stall penalties. These techniques
use parameters describing the workload locality (e.g. Zhang et al.’s α and β), and costs associated with cache
misses at each level of the memory hierarchy, to determine the amount of CPU stalling. Unfortunately, these
techniques concentrate on modeling single workloads, and cannot be directly applied to predict miss rates
when mixing multiple workloads. The primary difficulty is to determine the locality parameters for the
mixed workload, based on the locality parameters of the workloads running in isolation. Given the difficulty
required in determining these parameters, we choose not to take this approach, and largely leave it to future
work.

Instead, we present a simpler method to estimate CPU stalling. We measure the number of instructions
retired per second (IPS) for Locals alone and Federators alone, and average these together to predict the
IPS in the mixed workload. This method ignores the fact that the locality of the mixed workload is worse
than that of the workloads in isolation. Thus, in general, we predict lower miss rates and stall penalties than
actually may occur in practice. Section 4.7 discusses how to address this problem.

Specifically, IDD models the effect that CPU stalling has on DLoc
CPU and DFed

CPU using the follow-
ing procedure: (1) Measure IPSLoc and IPSFed from the isolated Local and Federator workloads; (2)
Estimate IPSMix using the weighted average of IPSLoc and IPSFed; (3) Scale DLoc

CPU by the ratio:
IPSLoc/IPSMix and DFed

CPU by the ratio: IPSFed/IPSMix.

The above steps are described below, but first, we attempt to quantify the effect of CPU stalling in our
mixed workload system. Figure 4.6 shows the Actual IPSMix as a function of Federator DB size when
Federator MPL is 50. Over the experimental range, CPU IPS drops by approximately 48%, effectively
cutting CPU strength in half and doubling CPU demands. If CPU is the bottleneck, doubling the CPU
demands can approximately double response times.

Step (1). We measure IPSLoc and IPSFed from the isolated Local and Federator workload systems.
We rely on the Linux OProfile tool [54] to do this for us. OProfile uses the x86 hardware performance
counters to measure the number of instructions executed (retired) in each workload, and does not require
modifying the DBMS in any way. Similar tools are available on a wide range of CPU architectures and
operating systems, and generally have negligible overhead.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200 400 600 800 1000 1200 1400 1600

S
ec

o
n

d
s

Federator DB Size (MB)

Local
Fed

Estimate (CPU Stalls)
Actual Mix

(a) Stalling

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 200 400 600 800 1000 1200 1400 1600

S
ec

o
n

d
s

Federator DB Size (MB)

Locals Alone
Feds Alone

Estimate (CPU Stalls, Spin Locks)
Actual Mix

(b) Stalling + SpinLock

Figure 4.9: Estimates for DMix
CPU as a function of Federator DB size with Federator MPL set to 50. Estimates

use measured DLoc
CPU and DFed

CPU , and account for (a) CPU stalls alone, and (b) CPU stalls and spin locks.

100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

P
ro

b
ab

ili
ty

Federator DB Size (MB)

Actual P{Loc}
Estimated P{Loc}

Figure 4.10: Actual and estimated P{Loc} as a function of Federator DB size with Federator MPL set to
50. IDD’s queueing model, correctly estimates P{Loc} and P{Fed}.

Step (2). We estimate IPSMix using a simple weighted average of IPSLoc and IPSFed:

IPSMix =
NLoc · IPSLoc + NFed · IPSFed

NLoc + NFed

where NLoc and NFed are the number of Locals and Federators in the mixed workload. This estimate
is quite crude, although it produces accurate results, especially when NLoc and NFed are large. Figure 4.6
compares the actual IPSMix to the weighted average estimate, with 50 Locals and 50 Federators, which
has an average relative error of only 9% over the experimental range. Section Section 4.7 discusses how to
improve this estimate, particularly for other systems.

Step (3). To estimate DLoc,Mix
CPU , we scale DLoc

CPU by a factor kLoc = IPSLoc

IPSMix . kLoc is actually a product
of two terms:

kLoc =
IPSLoc

IPSPeak
· IPSPeak

IPSMix

where IPSPeak represents the peak number of instructions the CPU(s) can retire per second.

The first term in kLoc is a scaling factor which erases the stalling found when running Locals in isolation,
and the second term is a scaling factor to account for the stalling expected in the mixed workload. Similarly,
DFed,Mix

CPU is scaled by a factor kFed, where kFed = IPSF ed

IPSMix .

Figure 4.9(a) compares the actual DMix
CPU with the estimated DMix

CPU using DLoc
CPU and DFed

CPU adjusted
for CPU stalls, as described above. The estimate’s average relative error is 14% over the experimental range.
We show next that this error is primarily due to spin locking.

Spin Locks

Spin locks are used in DBMS to protect internal DBMS data structures for short periods of time. To wait
for a spin lock, a query “spins” by repeatedly trying to acquire the lock until the lock is released (by another
query). As queries spin, they execute more CPU instructions, increasing CPU demand. IDD models the
effect spin locking has on DLoc

CPU and DFed
CPU using the following procedure:

101

Step (1). We measure DLoc
Spin and DFed

Spin, the portions of DLoc
CPU and DFed

CPU caused by spinning, by
measuring (i) the mean number of instructions executed per query for Locals (ILoc) and Federators (IFed),
and (ii) the mean number of spin-lock instructions executed per query for Locals (ILoc

Spin) and Federators
(IFed

Spin). DLoc
Spin and DFed

Spin are then:

DLoc
Spin =

ILoc
Spin

ILoc

DFed
Spin =

IFed
Spin

IFed

ILoc, ILoc
Spin, IFed, and IFed

Spin are measured by OProfile, which (statistically) counts the number of instruc-
tions executed by each function in the DBMS. Thus, we must determine which DBMS functions correspond
to spin locking, which is usually an easy task (otherwise, the DBMS vendor can help).

Step (2). We model the effect spin locking has on CPU demands by increasing DLoc
CPU by DFed

Spin and
DFed

CPU by DLoc
Spin.

The intuition for this is as follows: Consider the system with Locals running in isolation. An average
Local query spins for DLoc

Spin seconds to acquire its spin locks, so those locks are held on average for DLoc
Spin

seconds. We assume that Federators need the same locks as the Locals. Thus, when Federators are mixed
in, Federators spin for approximately the time Federators spin in isolation (included in DFed

CPU) plus the time
Locals spin in isolation.

The final estimates for DLoc,Mix
CPU and DFed,Mix

CPU are computed by first: increasing DLoc
CPU and DFed

CPU

to model spin locks as above, and then scaling by kLoc and kFed to model CPU stalls (as described in
Section 4.6.2). These estimates are summarized in Equation 4.4.

Figure 4.9(b) compares the actual DMix
CPU with the estimated DMix

CPU based on the final estimates of DLoc
CPU

and DFed
CPU , accounting for both CPU stalling and spin locking. The estimate’s average relative error is only

10% over the experimental range. The error is an overestimate, which leads IDD to conservatively estimate
response time. We find that, in our system, spin locking is only an issue within the hump region, and is
caused by the Federators. Note when there is no spin locking, the hump will still exist, and IDD is even
more accurate.

4.6.3 Solve a New Queueing Model

In this section, IDD builds a simple queueing model using the estimated mixed device demands estimated
from the prior section, and then solves that model to estimate performance metrics for the mixed workload
system. In particular, we estimate (i) P{Loc} and P{Fed}, the fraction of Local and Federator queries that
complete in a time period, and (ii) TLoc

mod and TFed
mod , the Local and Federator response times.

IDD uses a simple variant of the queueing models presented in Section 4.5.3. Our model has three
servers: a processor-sharing CPU server, processor-sharing I/O server, and Local think time. Locals and
Federators are routed probabilistically to I/O from the CPU device. The I/O-probability is set so that the
mean number of I/O requests for Local and Federator queries is equal to the number measured when running
each workload in isolation.

102

Since we model I/O using processor-sharing, states in the Markov chain are simple 5-tuples: NCPU
Fed ,

N
I/O
Fed , NThink

Loc , NCPU
Loc , and N

I/O
Fed . The transitions are similar to those described in Section 4.5.3.

Each server has a separate Local and a Federator service rate. IDD sets the service rates in so that the
device demands in the model are equal to IDD’s estimated mixed device demands. For example, Local
CPU service rate, µLoc

CPU is determined as follows: First, calculate the expected number of visits to the CPU
device by Local queries (V Loc

CPU), using the Local I/O routing probability. Then, µLoc
CPU = V Loc

CPU/DLoc,Mix
CPU .

Similar computation is used to determine all the other service rates.

We find that the model predicts P{Loc} and P{Fed} accurately. Figure 4.10 compares P{Loc} es-
timated by the model with P{Loc} actually measured in the mixed workload, as a function of Federator
DB size with Federator MPL fixed at 50. The average relative error over the range of the estimate is 5.6%,
and the maximum relative error is 16%. Given its simplicity, the Markov chain can be solved quickly using
simulation. Results are within 0.06% error after simulating 10,000 Local queries, which takes less than a
second.

Unfortunately, the model poorly predicts mean Local (and Federator) response times: TLoc
mod and TFed,mix

mod ,
giving an average error of over 26%. In the next section, we will use operational laws to improve these re-
sponse times, completing the IDD procedure.

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
 L

o
ca

l/F
ed

 R
es

p
o

n
se

 T
im

e
(s

ec
s)

Federator DB Size (MB)

Estimated
Actual

(a) T Mix Estimate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
 L

o
ca

l R
es

p
o

n
se

 T
im

e
(s

ec
s)

Federator DB Size (MB)

Estimated
Actual

(b) T Loc Estimate

Figure 4.11: IDD’s final estimates for (a) TMix
sys and (b) TLoc

sys (and TFed
sys) as a function of Federator DB size

with Federator MPL set to 50. IDD’s estimates are accurate and correctly predict the hump.

It should be observed that estimating mixed device demands as described in Section 4.6.2 is essential.
When unadjusted isolated device demands are used to configure the queueing model, (1) the relative error
for Local response time is up to 93%, and (ii) the the ratio of TLoc

mod to TFed
mod relied on in Section 4.6.4 is off

by 60%. Due to these factors, without accurately estimating mixed device demands, we cannot predict the
hump.

4.6.4 Improve Response Time Estimate

The final step of IDD produces an accurate estimates for TMix
sys , the mean Local response time in the mixed

workload, TLoc
sys , the mean Local response time in the mixed workload, and TFed

sys , the mean Federator re-

103

sponse time in the mixed workload. The estimates are made using statistics estimated earlier in the IDD
procedure, based on measurements from the Local and Federator workloads running in isolation. In par-
ticular, we use (i) the estimated mixed device demands from Section 4.6.2 and (ii) the predictions from the
queueing model in Section 4.6.3 for P{Loc}, P{Fed}, TLoc

mod and TFed
mod .

First, we estimate TMix
sys . We rely on the following operational law (based on Little’s law):

T ≥ max
(∑

Di, N ·Dmax − E[Z]
)

(4.5)

where T is the mean response time, N is the number of users in the system, Dmax is the demand of the
device with highest demand, and E[Z] is the mean think time. All variables on the right side of the bound
are either known from the system (N and E[Z]) or have been estimated earlier in IDD (Dmax from the
estimated mixed device demands). When N is high, and the system is under high load, the N ·Dmax−E[Z]
term dominates, and the bound is tight. We are most interested in performance under high load, so we use
the bound itself as an estimate for the response time.

We use Equation (4.5) to estimate TMix
sys . We estimate Dmax in the mixed workload using (i) the es-

timated mixed device demands from Section 4.6.2 and (ii) the estimated P{Loc} and P{Fed} from Sec-
tion 4.6.3. Figure 4.11(a) compares the estimated TMix

sys to the actual TMix
sys as a function of Federator DB

size with Federator MPL set to 50. We find that the estimate has average relative error of only 11.7% over
the experimental range.

Next, we use TMix
sys , TLoc

mod and TFed
mod to estimate TLoc

sys and TFed
sys . In Section 4.6.3, we found that the

estimates TLoc
mod and TFed

mod were inaccurate. Given that the model estimates P{Loc} and P{Fed} correctly,
we make the assumption that the ratio TLoc

mod/TFed
mod is an accurate estimate for TLoc

sys /TFed
sys . We define the

ratio cmod = TLoc
mod/TFed

mod . By definition, TMix
sys = P{Loc} · TLoc

sys + P{Fed} · TFed
sys . Solving this for TLoc

sys

and substituting TFed
sys = TLoc

sys /cmod gives TLoc
sys :

TLoc
sys =

TMix
sys · cmod

P{Loc} · cmod + P{Fed}

Figure 4.11(b) depicts TLoc
sys estimated as described above, as a function of Federator DB size with

Federator MPL set to 50. We find that the estimate accurately predicts the response time hump, and has an
average error of only 17% over the experimental range.

4.6.5 IDD Summary

• Run each workload in isolation and measure the isolated device demands (DLoc
i and DFed

i) and OPro-
file measurements.

• Estimate mixed device demands (DLoc,Mix
i and DFed,Mix

i) from isolated device demands (DLoc
i and

DFed
i) so that Equation (4.1) holds.

• Build a simple queueing model using the estimated mixed device demands. Solve the model to predict
performance statistics for the mixed workload system: P{Loc}, P{Fed}, TLoc

mod and TFed
mod .

• Use operational laws (Equation (4.5)) to improve response time estimates for TMix
sys , TLoc

sys , and TFed
sys

from the queueing model.

104

4.7 Improving Cache Miss Penalty Prediction

Section 4.6.2 presents an estimate for the CPU stall penalty (due to cache misses) in a mixed workload.
This estimate is a simple linear combination of the CPU stall penalty of each of the workloads in the mixed
workload. Unfortunately, this estimate does not work in all systems. For instance, changing the think time
for one of the workloads’ arrival processes significantly can reduce the accuracy of this type of estimate by
a factor of 30% to 50%. An error of this magnitude would greatly reduce the accuracy IDD’s performance
predictions, reducing its overall effectiveness.

It is a difficult problem to accurately estimate the CPU stall penalty seen by two workloads running
together based on the CPU stall penalties each workload sees running independently of one another. Most
existing research attempts to model CPU cache miss rates and stall penalties, and determine the magnitude
of these penalties as a function of the cache size or cache design. This research all focuses on a single
workload, and does not consider the effects of mixing two workloads on the same CPU, as we do in this
chapter. Most such research does not constrain itself only to DBMS workloads, and focuses on the more
general problem of running general programs.

4.7.1 Stack Depth Distributions

The primary approach to modeling cache performance is to statistically characterize the workload’s pattern
of memory references, estimate the probability of each memory access to miss in the cache (assuming
independence), and then model system performance based on this probability. The predominant model for
memory references is the stack-depth model [90, 78].

The stack-depth model conceptually keeps a stack of every memory access made by a program during
its execution. The model assumes that every memory access is made by probabilistically choosing a depth,
and accessing the datum located at that depth on the stack. Accessing the datum removes the datum from
the conceptual stack, and pushes it onto the front of the stack.

The central idea is that more-recently accessed data is very likely to be accessed again, and less-recently
accessed data is much less likely to be accessed again. In the stack depth model, a workload is characterized
by the probability distribution of stack depths. The probability density function, p(x) governs the probability
of accessing a datum at depth x on the stack, and P (x) is the cumulative probability distribution function. It
should be observed that the relevance of P (x) is that 1−P (x) gives the cache miss rate for a fully-associative
LRU cache of size x.

In the stack depth model, p(x) characterize the locality of the program, and can take various forms. We
rely on the form used by Zhang et al. [90], which parameterizes p(x) with two locality parameters α > 1
and β > 1:

P (x) = 1− 1
(x/β + 1)α−1

p(x) =
βα−1 (α− 1)

(x + β)α

The form of the distribution function arises due to the “30% Rule” [78], which says that doubling the

105

cache size should reduce cache misses by 30%. Solving the recurrence relation 0.7f(x) = f(2x) yields
a polynomial of the form f(x) = βxα. The form simply ensures that the function is a relatively simple
probability distribution. Research has demonstrated that many real-world CPU workloads result in memory
reference patterns that are compatible with the above stack distance distributions [46, 77, 78].

Mixed Stack Depth Distributions

When two programs that reference memory according to a stack depth model are executed together on a
CPU (and interleaved using processor sharing or time slices), the resulting mixed workload (in general) does
not follow a stack depth model. Thus, it can be difficult to predict and quantify the cache miss rate of the
mixed workload, which makes it difficult to then predict the CPU stall penalty.

The cache miss rate of the mixed workload (of two other workloads) depends on (i) the stack-depth distri-
bution of the first workload, (ii) the stack-depth distribution of the second workload, and (iii) the scheduling
quantum: how long a query from one workload executes on the CPU before another query from another
workload executes (because the first query completes, is preempted by the CPU scheduler, or is forced to
wait for I/O or locks).

To understand how the above three factors affect the cache miss rate of the mixed workload, we imple-
ment a cache simulator, that simulates two programs and a unified fully-associative LRU CPU cache. The
simulator alternates between executing the first workload and second workload, and a configurable quantum
size determines how many memory accesses of each are made before switching between workloads. Each
program has its own stack-depth distribution and accesses its own data (just as the workloads throughout
this chapter access their own data). Throughout, we vary the stack depth distributions of each workload, as
well as the quantum size. We simulate 5 million memory accesses for each experiment.

The first question we address is how α and β for each workload’s stack depth interact to determine the
cache miss rate for the mixed workload.

We start by exploring all possible combinations of α and β for the first workload (α1 and β1) and for the
second workload (α2 and β2). α1 and α2 range between 1.1 and 10.0, while β1 and β2 range between 2.0
and 2000.0. Using these settings, the first and second workloads have hit rates (when run in isolation) that
range between 2% and 99.999%, allowing us to explore all possible combinations of workloads with high
and low hit rates.

We find that the individual α1, α2, β1, and β2 parameters chosen do not affect the hit rate of the mixed
workload. The only factors that affect the hit rate of the mixed workload are the hit rates of the two input
workloads. Thus, any two workloads with different α and β parameters but the same hit rate (when run in
isolation) are interchangeable from a performance standpoint.

The second question we address is: What is the hit rate of the mixed workload based on the hit rates
of the component workloads in isolation? To do this, we simulate and explore mixtures of two workloads,
where each workload ranges from 2% hit rates to 99.999% hit rates, and measure the hit rate of the mixed
workload from the simulation.

Figure 4.12 and Figure 4.13 depict the results of this experiment. The hit rate of the first workload
is varied over each row of graphs in these figures. Each graph varies the hit rate of the second workload
on the x-axis. Each graph shows the results using both the linear-combination “Average HR” estimate for
cache penalties in the mixed workload (used in Section 4.6.2) as well as the simulation results labeled as
“Simulation HR”.

106

The left graphs depict the hit rate of the mixed workload, while the right graphs depict the modeled
response time based on the hit rate depicted in the left graph.2

The left graphs in Figure 4.12 and Figure 4.13 compare the estimates for the hit rate in the mixed
workload based on (a) Simulated HR: simulating the component workloads running together and measuring
the simulated hit rate, and (b) Average HR: averaging the hit rates of the component workloads together.
The graphs show that the simple average almost always overestimates the hit rate of the mixed workload,
by up to 30%. The difference between these two estimates is smallest when both workloads have either an
extremely large or small hit rate, and are somewhat small when either one of the workloads has either an
extremely large or small hit rate. The difference is greatest when the workloads both have “mid-range” hit
rates between 30% and 90%

It is difficult to determine whether the 30% error between the simulated and average estimates of mixed
workload hit rates is significant or not. The right graphs in Figure 4.12 and Figure 4.13 use the estimated
mixed workload hit rates for both simulation and the average estimates to model the expected query response
time in the mixed workload. We find that the error between the estimates are, in fact, significant, and can lead
to differences in response times up to a factor of 2 (this factor should be even larger when considering higher
loaded systems). The error is particularly egregious when both the component workloads’ hit rates are low.
Increasing either one of the workloads’ hit rates gradually reduces the error in estimating the response time,
despite the fact that the hit rate estimates may have large error.

The data presented in Figure 4.12 and Figure 4.13 can be used to improve the estimates used by IDD.
Using the measured miss rates of each of the component workloads in isolation, one can look up the hit rate
of the mixed workload in these Figures, according to the simulation. Using knowledge of the cache-miss
penalties of the CPU (which are easily measured), one can then model the cache miss penalty expected in
the mixed workload. While this approach should lead to more accurate predictions by IDD, it has yet to be
validated.

4.8 Prior Work

In practice, DBMS users are greatly concerned that their performance will degrade if they share their DBMS
with second class of users. There is little research, however, on the magnitude of this degradation, and how
to control this degradation using admission control.

Some studies [35, 14, 16] examine the performance effects of mixing two workloads on the same DBMS.
These studies all use specialized micro-benchmarks that are easily parameterized for experimental purposes.
Much of this work focuses on understanding issues of varying the amount of data shared between workloads.
In contrast, we study much more complicated TPC [21] benchmark workloads, which we believe are more
representative of real-world workloads. Our work does not consider the effects of data sharing between
workloads, which can be important. Furthermore, while existing work does not directly model and predict
the performance of mixed workloads, we develop the initial steps in this direction.

Most research on admission control [41, 47, 19, 49] addresses DBMS with only a single class of users,
and attempts to choose the overall MPL to either maximize throughput or minimize overall mean query
response time. It is difficult to apply the results of this research to our 2-class scenario.

2 The modeled response time uses a simple Markov model with a single CPU server with a service rate of HitRate ·
CacheHitT ime + (1 − HitRate) · CacheMissT ime. CacheHitT ime and CacheMissT ime are measured on our DBMS
hardware as being 0.0053 seconds and 0.0343 seconds, respectively.

107

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(a) 5% HR : Hit Rate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(b) 5% HR : Response Time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(c) 30% HR : Hit Rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(d) 30% HR : Response Time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(e) 50% HR : Hit Rate

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(f) 50% HR : Response Time

Figure 4.12: Simulated hit rates (left) and response times (right) for a mixed workload comprised of two
stack-depth workloads as a function of the first workload hit rate, and the second workload hit rate. Each
graph shows the results determined from simulating two stack-depth workloads (“Simulated HR”) and using
a simple average of the two workloads (“Average HR”). First workload hit rates range from 5% to 50%.

108

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(a) 85% HR : Hit Rate

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(b) 85% HR : Response Time

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(c) 99.6% HR : Hit Rate

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(d) 99.6% HR : Response Time

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
it

R
at

e

2nd Workload Hit Rate

with Simulated HR
with Average HR

(e) 99.999% HR : Hit Rate

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
[T

] (
se

cs
)

2nd Workload HR

with Simulated HR
with Average HR

(f) 99.999% HR : Response Time

Figure 4.13: Continuation of Figure 4.12. First workload hit rates range from 50% to 100%. Simulated
hit rates (left) and response times (right) for a mixed workload comprised of two stack-depth workloads as
a function of the first workload hit rate, and the second workload hit rate. Each graph shows the results
determined from simulating two stack-depth workloads (“Simulated HR”) and using a simple average of the
two workloads (“Average HR”).

109

Some pioneering work on admission control [87, 83, 86, 70, 71, 33] uses queueing-theoretic models to
predict DBMS performance. While these approaches also focus on understanding overall throughput with
only a single class of users, the models can, in theory, be modified to incorporate two classes of users with
admission control. Unfortunately, we show in Section 4.5.3 that these existing models do not sufficiently
predict response times in real systems with multiple classes of users, due to effects such as spin locking and
CPU stalling.

Thereska et al. [81, 80] and Narayanan et al. [60] instrument storage systems and DBMS to collect device
demand statistics similar to our approach. They use these statistics to model system performance to answer
“what-if” questions regarding changes to system configuration (such as buffer pool sizes, replication, etc).
Their approach differs from ours because it requires modification to the DBMS to collect device demand
statistics, which is impossible to do on legacy systems and can be very costly. In fact, we find that, with
respect to performance in our commercial DBMS, collecting performance statistics can degrade performance
by a factor of 3. Our approach, in contrast, requires only non-invasive statistics collection that does not hurt
overall system performance.

Schroeder et al. [72] and McWherter et al. [56, 57] (see Chapter 2 and Chapter 3) focus on prioritizing
one DBMS workload over another on the same DBMS. McWherter et al. [56, 57] (see Chapter 2 and Chap-
ter 3) use priority scheduling inside the DBMS to prioritize one class of users over another. The approach
here requires modifying the DBMS source code to implement prioritization internally. There is no admission
control used whatsoever.

Schroeder et al. [72] combine admission control and priority scheduling inside the admission controller
to prioritize high-priority users. Their approach uses a single MPL to limit the total number of users (both
high- and low-priority). This may force high-priority users to wait outside the DBMS indefinitely, if low-
priority jobs are long, which is very different from our goal of insulating the high-priority from low-priority
users. The reason that we only place admission control on the low-priority users is that it is often politically
or technically difficult to convince high-priority users to access their own DBMS through the admission
controller.

4.9 Conclusion

This chapter studies sharing of DBMS between two sets of users, Locals and Federators, with the goal of
limiting the effect of Federators on Locals, by appropriately setting the Federator MPL. The chapter makes
two primary contributions:

First, we make the surprising discovery of the Local response time hump as the Federator DB size is
increased. The hump determines how well admission control can isolate the performance of Local queries
from Federator queries, and directly affects how Federator MPL should be chosen. Within the hump, even
minute increases in the Federator MPL greatly degrade Local performance. We show that conventional
queueing models for DBMS do not predict the existence of the hump.

Second, we introduce a new modeling approach, called Isolated Demand Decomposition (IDD), which
uses demands computed from Locals and Federators running in isolation to predict the performance of
Locals and Federators running together. IDD allows us to predict both the existence and the magnitude of
the hump with unprecedented accuracy. We estimate the combined Local and Federator mean response time
with error of 11.7%, and the Local response time with error of 17%, over the experimental range.

110

The direct impact of IDD is that DBMS administrators have, for the first time, a tool that predicts how
Local response times change when a new Federator workload is added. Administrators will also be able to
predict how setting Federator MPL with admission control affects Local (and Federator) response times.

The broader impact of this work is that it takes the first steps in predicting the performance of workloads
when they mix. Variations of the IDD approach should apply to many scenarios with mixing workloads
in systems ranging from DBMS, storage systems, and web servers. We also believe that IDD will also be
useful in single-workload systems with background tasks, such as buffer pool cleaning or disk scrubbing.
IDD should allow us to design background tasks so that they do not hurt the performance of the primary task
too much.

111

4.10 Impact

The primary contributions of the research in this chapter are (i) discovery of a distinctive performance trend
seen in DBMS: the Hump, (ii) conclusive proof of the underlying causes of the Hump, and (iii) the devel-
opment of a new modeling approach, called Isolated Demand Decomposition (IDD), which can accurately
predict the performance of mixed DBMS workloads where preexisting models fail.

The discovery of the Hump, and the identification of its underlying causes, has a significant impact
for both (i) DBMS researchers as well as (ii) commercial users and administrators of DBMS. (i) DBMS
researchers must make use of the fact that the microarchitectural design of modern CPU(s) can have a huge
impact on DBMS performance, and can hurt performance by orders of magnitude. These factors can simply
no longer be ignored if we want accurate performance models for modern systems. (ii) Commercial users
and administrators of DBMS must be aware of the existence of the Hump when designing and tuning their
DBMS. Understanding of the trend can help guide the design, development, and tuning of DBMS-based
applications to help ensure these applications avoid the poor performance at the peak of the Hump. In
particular, applications may be designed and tuned to improve locality and reduce the CPU cache pressure,
minimizing the performance penalties that lead to the Hump. For instance, queries that operate on the same
data can be scheduled together, so they are not interleaved with queries that operate on different data.

The IDD modeling approach has a direct impact on both (i) DBMS researchers and (ii) commercial
DBMS users. (i) The direct impact from a research standpoint is that IDD pioneers the use of analy-
sis to study admission control in DBMS shared by many users and in providing performance isolation to
high-priority queries. IDD also demonstrates how to augment simple queueing models to incorporate the
fundamental performance issues central to modeling the performance of modern CPU(s) in shared DBMS.
This will lead to more accurate DBMS performance modeling, and also more accurate modeling of many
other computer systems. (ii) The direct impact that IDD has for users and administrators of commercial
DBMS is that, they have, for the first time, a tool that can advise how to configure the admission control
MPL (how many low-priority queries should be admitted to the DBMS) to provide performance isolation
to high-priority queries. Administrators will have accurate quantitative predictions of how the performance
of high-priority queries will be hurt when adding additional low-priority queries to the DBMS. The primary
result is that administrators will need to expend less time and effort in order to configure admission control
in such situations, saving considerably on costs (since DBMS administrators’ time is expensive).

The broader impact of this work is that it helps to understand the performance of running multiple work-
loads on the same system. Nothing ties IDD only to the study of DBMS: the techniques developed in this
chapter do not depend at all on the internal design and architecture of DBMS (or only do so superficially).
IDD should apply to most systems and workloads with both significant CPU and I/O components. Such
systems are far-reaching and many, ranging from storage systems, to operating systems, to distributed sys-
tems, and so on. For example, storage systems often have to accommodate many background tasks, such
as data scrubbing, which are low-priority since they should not interfere with the I/O requests from users.
IDD may be used, for instance, to predict the performance isolation that the (high-priority) user I/O requests
will receive when background tasks are run (and the number of concurrent background tasks), and can be
used to determine when to run them. Thus, the performance of user I/O requests in storage systems may be
improved.

Another major impact of IDD is that we can use it to help understand how to deploy systems and provi-
sion hardware. A common deployment question is whether to collocate two applications, such as a DBMS
and a web server on the same hardware, or to put them on different hardware. We can use the IDD approach

112

to model the performance of running the applications on the same hardware or on separate hardware, and use
that to make such decisions. In this case, IDD requires us to examine the DBMS workload in isolation, and
the web server workload in isolation, and then we can use the same methodology to predict the performance
of the mixed DBMS and web server workload.

4.11 Future Directions

The immediate future directions of this research are to evaluate and validate the accuracy of the IDD meth-
ods on (i) different workloads, (ii) different DBMS implementations, and (iii) sharing a DBMS among more
than two workloads at a time. The scope of this chapter had to be restricted so as to make sufficient re-
search progress, and focus on a finite set of performance issues. Despite this fact, there are many other
DBMS implementations widely found in industry, and every different DBMS-based application produces a
different DBMS workload. The variations between these DBMS implementations and workloads are poorly
understood, and it is important to know whether IDD applies in all possible contexts (and if not, what needs
to be addressed to improve the analysis). Likewise, it is important to understand whether there are factors
which reduce or exaggerate the magnitude of the Hump.

One of the more involved directions for future research is to focus on evaluating and modeling the
performance of shared DBMS which are I/O- or Lock-bound. Just as CPU devices have microarchitectural
performance issues that can cause significant performance problems (the Hump) when workloads share a
DBMS, similar issues may arise for I/O devices and Lock resources. While much research has been done
on predicting the performance of locking in DBMS [71, 86], this research focuses on DBMS with a single
workload (with no prioritization). Little research has focused on DBMS with multiple workloads of different
priorities, as those considered in this research.

One of the keystones of IDD is the measurement of device demands throughout the DBMS. IDD relies
on rather coarse estimates for device demands: time-average statistics collected for all the queries running
together in the DBMS. This is due to the fact that we require the statistics to be collected without assistance
from the DBMS (so that IDD is applicable in legacy DBMS). The primary consequence of this fact is
that workloads have to be run separately to construct a device demand profile for the workload. If device
demands could be collected on a per-query basis, IDD could construct a model of separate workloads even
after they have been mixed on the DBMS. This would make IDD even more powerful, as we could reason
about how different sets of queries contribute to performance. The primary difficulty is to determine how to
measure and record per-query device demand statistics while minimally hurting overall performance. This
requires collecting and storing huge amounts of data, which can be difficult to manage in most scenarios.
Furthermore, it is an open problem to determine how to account for per-query device demands on certain
devices. One such device is I/O, where an individual I/O request may be issued due to one or more queries.
For example, when a query needs to access data, it may first have to evict a page from another query from the
buffer pool, which may require writing that page to disk. It is unclear which query should take responsibility
for this write.

Another open route for future research is how to more accurately predict CPU cache miss rates and
penalties when two workloads share a DBMS. IDD relies on accurate predictions of the CPU cache miss
penalty in the mixed workload, based on the cache miss penalties of each workload in the mixture. In
particular, IDD uses a simple linear combination of the measured number of instructions per second (IPS)
retired by the CPU(s) in each workload running in isolation to predict the IPS of the mixed workload. While

113

this is an effective predictor in the systems considered within this research, there are many other systems
for which the predictor is inaccurate (by factors as large as 30% to 50%). We need more accurate estimates
of CPU cache penalties to be truly applicable to many real-world systems. Section 4.7 formulates a strong
basis of this work, by simulating CPU cache performance for workloads which run concurrently. Better
prediction of CPU cache performance will improve the accuracy of IDD, as well as increase our ability to
predict the performance in other computer systems.

114

Chapter 5

Conclusions

5.1 Conclusion

This thesis examines new methods for providing performance isolation to queries running in a DBMS. Two
problems are considered:

First, it addresses how to prioritize high-priority queries within a single OLTP or transactional web
workload comprised of high- and low-priority queries. The goal is to ensure high-priority queries get the
same performance as if running alone, without low-priority queries.

Second, it addresses how to use admission control to protect the performance (query response times) of
one transactional web workload (Locals) from a second workload (Federators) running on the same DBMS.

In the process of addressing the above problems, this thesis introduces and develops several tools and
analysis techniques. Both the tools and techniques can be applied to a range of DBMS and other systems
to provide performance isolation. The following Section 5.1.1 describes the key tools, and Section 5.1.2
outlines the key techniques put forth in this thesis.

5.1.1 Tools

The two primary tools developed for providing performance isolation in this thesis are Preempt-On-Wait
(POW) lock scheduling (discussed in Part II), and Isolated Demand Decomposition (IDD) modeling (dis-
cussed in Part III).

Preempt-On-Wait (POW)

POW is a new scheduling policy that provides performance isolation for high-priority queries in a DBMS.

POW fills a void in the space of existing DBMS query prioritization algorithms, and is able to outperform
existing scheduling policies. Many scheduling policies have difficulty isolating high-priority queries from
low-priority queries in lock-bound OLTP workloads, which either hurts high- or low-priority queries too

115

much. POW is able to provide near-perfect isolation to high-priority queries, without hurting low-priority
query response times too much.

POW is relatively easy to implement in a DBMS. Only two changes are required: (i) the DBMS must
store and have a way to set the priority class of each query (some commercial systems support this already),
(ii) the DBMS must change the order that it wakes up waiters for locks, (iii) the DBMS must set a flag on
a query whenever a query of higher priority waits for it, and (iv) the DBMS must be able to abort and roll
back lower-priority queries when they need to be preempted (most DBMS have the primitives to support this
already, due to ACID compliance).

Isolated Demand Decomposition (IDD)

IDD is a new queueing modeling approach that models and predicts the performance of two workloads when
they run together on the same DBMS. IDD predicts the performance of each workload when run together,
based on statistics and measurements made when those workloads are run by themselves on the DBMS.

The key problem that IDD addresses is that many of the assumptions that queueing theory relies on are
violated in DBMS, particularly those running multiple workloads. As a result, standard queueing models
produce not only inaccurate predictions, but completely miss dominant performance trends. I show that ex-
isting models often fail due to their inability to model variable efficiency of the DBMS CPU. IDD augments
queueing models to properly account for how DBMS CPU efficiency changes when workloads mix on the
DBMS, to produce accurate performance predictions.

IDD is designed to be minimally invasive, so that the statistics and measurements it needs can be easily
collected from standard operating system and CPU counters, and the DBMS does not need to be modified
or instrumented to collect this data. As a result, IDD is widely applicable, even in the legacy systems found
at many companies.

5.1.2 Analysis Techniques

In addition to developing the new tools described above, this thesis contributes a blueprint for both (i)
analyzing DBMS performance, and (ii) identifying and resolving performance problems. The approach
is based on results and models from queueing theory, especially bottleneck analysis, scheduling policies,
operational laws, and Markov modeling.

This thesis (particularly in the analysis sections of Part II and Part III) details the process of instrumen-
tation, measurement, and analysis necessary to understand DBMS performance issues. This process helps
DBMS developers and administrators to make intelligent design and tuning decisions to more quickly and
easily meet performance goals.

Without such strong analytical support, it would be extremely difficult to determine where to concentrate
engineering effort, and what changes would need to be made to yield the desired effect. DBMS are extremely
complex systems, comprised of many subsystems that interact in many ways. When DBMS are shared
between multiple workloads, those interactions are even more complicated.

The analysis process developed in this thesis was essential to the development of the tools outlined above
in Section 5.1.1. In Part I and Part II, for instance, while CPU and I/O utilization are often both high, a more
detailed bottleneck analysis reveals that locks are the true source of performance problems. Likewise, in Part

116

III, isolating individual workload resource demands in a multi-workload DBMS reveals that CPU demands
change for the worse when the workloads are mixed.

5.1.3 Impact

When a DBMS serves a workload comprised of both high- and low-priority queries, or when a DBMS
serves multiple query workloads, many performance issues arise due to how queries share the DBMS and its
resources. In general, users do not want queries to share the DBMS in an uncontrolled manner, because (i)
users have specific performance goals that they want the DBMS to meet, and (ii) uncontrolled sharing can
result in slow and/or unpredictable performance.

The primary impact of this work is to provide the effective tools necessary to control the way that queries
share a DBMS. Specifically, it provides tools to ensure performance isolation to the high-priority users in a
single DBMS workload, or to one of the workloads in a DBMS shared by multiple different workloads.

Cost Savings

The clearest impact of this work is that companies can use the tools and techniques developed here to save
on costs. Cost savings are primarily achieved by helping companies to meet their performance goals while
using less powerful and cheaper DBMS hardware.

DBMS hardware costs are often extraordinarily high because high-end DBMS applications absolutely
need the performance and functionality provided by the highest-end hardware (“server grade hardware”). It
is expensive to design and build high-end hardware, and at the same time, the market is relatively small. As a
result, high-end hardware does not enjoy the economies of scale that make commodity hardware affordable.

Using less powerful and cheaper hardware leads to secondary cost savings: First, using less powerful
hardware often results in lower power consumption and less power dissipation. As a result, companies spend
less on energy and cooling costs at their data centers. Second, if a company can delay a hardware upgrade,
they can save on the time-consuming work of tuning the DBMS to run on new hardware. Given that DBMS
administrators’ time is usually expensive, less tuning can result in huge cost savings.

POW lock scheduling and IDD, the key developments in this thesis, both help to achieve the cost savings
described above.

POW lock scheduling helps realize cost savings by providing query prioritization when all users of a
DBMS do not have the same performance requirements: some high-priority users need very low response
times, while the other low-priority users need only best-effort response times. Without query prioritization,
the DBMS can use hardware wastefully, to make all queries faster, and not just the important high-priority
queries. With POW, high-priority queries run almost in isolation, meaning that less powerful hardware is
needed to achieve the same level of performance.

IDD helps realize cost savings in two ways:

First, if two workloads share a DBMS, and one workload has stronger performance requirements than
the other, IDD helps administrators use admission control to ensure that workload gets the necessary per-
formance. This use is very similar to the use of query prioritization as described above for POW, but since
it uses admission control instead of internal scheduling, it works on any DBMS. As a downside, admission
control has less control over sharing after queries have been admitted to the DBMS.

117

Second, IDD can serve as an adviser to help administrators provision their systems. Often, DBMS need
to be upgraded to handle increasing load, or additional functionality. It is typically extremely difficult to
predict the performance of a DBMS workload on new hardware, and thus, difficult to know how much new
hardware must be purchased. Using the models described in IDD, administrators can quickly and easily
get a better understanding of the performance benefits of new hardware before making any purchases or
performing costly performance testing.

User Satisfaction and Profit Maximization

Providing performance isolation to users in a DBMS can lead to increased revenues and profits due to
increased user satisfaction. The reason is simple: without performance isolation, performance can be slow
or unpredictable, which is frustrating for users and disrupts their flow of thought [61].

On the Internet, the Google maxim of “fast is better than slow” [36] is the rule of law. When users
have two services that provide generally similar functionality, they usually prefer and choose the faster
one [59, 69]. As a result, faster systems get more users, greater mind share, and greater market share, all of
which lead to increased sales and revenues. Using the tools developed in this thesis, such as POW and IDD,
DBMS administrators are better able to ensure that users receive acceptable performance.

Reliable Feature Deployment

Adding new tasks and functionality to existing DBMS applications, especially online services and e-Commerce
sites, is a process fraught with difficulty. Accurately predicting the performance ramifications of adding a
new feature is particularly challenging. Real-world systems often address this problem with incremental de-
ployment of new features, which can introduce additional complexities to support the incremental upgrade,
and cause user confusion (since different users see different versions of the service).

IDD improves administrators’ ability to predict the DBMS performance of the upgraded workload, based
on the performance of the original workload and basic properties of the additional features. IDD can be used
in this way long before attempting to deploy new functionality, which gives developers, designers, and
administrators additional time to prepare for the deployment of upgrades. IDD has the potential to have a
huge impact on making upgrades smoother and reducing performance and other technical difficulties that
may otherwise arise.

IDD applies because many upgrades and feature additions simply add an additional query workload to
a DBMS processing an existing query workload. Thus, the existing workload can be considered the first
(Local) workload and the additional features can be considered the second (Federator) workload as seen in
IDD. IDD can predict the response times of the original workload queries, the new workload queries, and
the aggregate workload queries when they run together on the same DBMS.

5.1.4 Lessons Learned

DBMS must collect more statistics

Many commercial DBMS collect many measurements and performance statistics that are necessary to con-
duct the analysis outlined in this thesis. They do not, however, collect all of the necessary data, making

118

it impossible to build a clear and complete picture of the system without doing significant work. Some of
the data can be gathered from the operating system or CPU-level counters, but other data requires further
instrumentation of the DBMS to acquire. This is impractical for production DBMS.

This reveals two problems that must be addressed: First, DBMS must provide support for collecting
statistics from all major subsystems, including the lock manager. At the very least, the DBMS must provide
hooks by which users can instrument the system themselves. Second, DBMS should collect all relevant
data (e.g. from the operating system and CPU) and present it all as a unified picture so that administrators
and users can better tune their systems. Doing this work once at the DBMS prevents it from being re-
implemented and re-invented (potentially incorrectly) by every DBMS user.

Understand the bottleneck resource

Understanding the bottleneck resource is critical to understanding and improving system performance. Part
I and Part II of this thesis show that implementing prioritization on non-bottleneck resources provides lim-
ited or no performance isolation for high-priority queries. Implementing prioritization at the bottleneck
resource, on the other hand, yields much better performance. In fact, Part I and Part II show that scheduling
CPU resources when locks are the bottleneck is no better than having no prioritization at all. Furthermore,
scheduling locks when locks are the bottleneck can improve high-priority query response times by a factor
of 3 over CPU scheduling (this factor can be arbitrarily high, as it is a function of system load).

As a result, the DBMS cannot (as widely believed [2]) simply implement CPU scheduling and rely
on CPU may be prioritization to implicitly give queries prioritized access to other resources. At worst,
this approach will have no effect (as I find), and at best, the prioritization will be sub-par. DBMS must
implement query prioritization at all major system resources that may become the bottleneck, including the
lock manager.

Understand Device Demands

As discussed previously, DBMS violate general assumptions that queueing theory tends to rely on. One of
the major violations is that DBMS are not work conserving: the amount of work that each query brings into
the system is not fixed, and instead depends on the state of the DBMS. That is, the device demands (for each
device) that each query brings to the DBMS are variable. Ordinarily, queueing theory is unable to cope with
systems that are non-work conserving. The result is typically a gross failure to accurately predict DBMS
performance. This failure is exemplified in Part III of this thesis, in Section 4.5.3.

With the introduction of IDD, thesis makes new strides towards using queueing theory to correctly model
DBMS performance, even in the face of variable device demands. The key idea is to measure device demands
and predict how they change, and use that data into queueing theoretic models.

Preemption is powerful; Selective preemption is more so

Preemption is a powerful tool, and can eliminate many performance roadblocks in DBMS and other systems,
and can drastically improve high-priority query response times. Preemption does, however, come with sig-
nificant drawbacks, including the potential to starve low-priority queries. The problem is that preemption is
indiscriminate, and kills many queries that have no significant effect on performance. Selective preemption

119

(or conditional preemption) can provide as much benefit to high-priority queries as unconditional preemp-
tion, while keeping low-priority queries from starving. This is demonstrated with lock scheduling in OLTP
DBMS in Part II.

The key to selective preemption is what condition(s) low-priority queries should be preempted. Experi-
mentation with existing conditional preemption algorithms in Part II reveals that using different conditions
yields very different performance. While other researchers have indicated success with these other algo-
rithms, it is clear that they are not as effective as Preempt-On-Wait (POW) in the OLTP workload and
DBMS context.

A few queries can hurt everyone

The performance of a very small number of queries in a DBMS can greatly affect the performance of the rest
of the queries in the DBMS. In Part II, it was seen in OLTP workloads that high-priority queries often get
stuck waiting for a few low-priority queries to finish (their “excess”) before being able to continue. Using
preemption to kill (and then restart) these few low-priority queries, which account for two percent of the
queries in the workload, is able to improve high-priority query response times by a factor of 3.

The primary cause for the above behavior is that some resources, such as locks, can be held for arbitrarily
long periods of time once they are allocated (unlike, for instance, CPU, which is allocated only in small time
slices, and shared between all queries). This, combined with large variability in query response times results
in unpredictably large waiting times for those resources.

Micro-architectural performance is important

Often, when analyzing DBMS performance, researchers build queueing models that represent major system
resources — CPU(s), disk drive(s), lock(s), etc. Unfortunately, the micro-architectural characteristics of
these resources, particularly that of CPUs, are starting to have a major effect on DBMS performance.

The analysis for IDD in Part III of this thesis shows that the behavior of the CPU cache and CPU
efficiency (instructions per second) can dominate and significantly hurt overall query performance. Queueing
models that fail to capture these trends fail to accurately predict DBMS performance, and can completely
mispredict the performance trends.

Monitoring CPU counters that measure the behavior of the CPU micro-architecture (such as cache
events, instruction completion rate, etc) has relatively little overhead, but provides a wealth of data which
can help identify and address performance problems. Stochastic sampling of these counters can also provide
more comprehensive pictures of the CPU behavior (since only a few CPU counters can typically be active at
any one time) and further reduce the performance overhead.

5.1.5 Limitations and Real-World Applicability

There are number of limiting assumptions are made in this thesis work. While these assumptions make the
research tractable, they make it less clear how the research impacts real-world systems. Here, we discuss
these limiting assumptions, and how they affect the application of this research to real-world systems.

The main limitations of this work are in (i) the number of DBMS implementations studied, (ii) the

120

number of workloads studied, (iii) the arrival processes studied, and the (iv) data distributions and data
access patterns studied. These issues are discussed in turn below.

DBMS Implementations

Throughout this thesis, only a limited number of DBMS implementations are studied: IBM DB2, Post-
greSQL, and Shore. Chapter 2 focuses on all three DBMS implementations to discover their individual
bottlenecks, Chapter 3 focuses on developing new lock scheduling algorithms on IBM DB2 and Shore,
while Chapter 4 focuses on modeling IBM DB2 with IDD.

There are many other DBMS implementations available, the most important of which are MySQL, Mi-
crosoft SQL Server, and Oracle. Furthermore, there are many versions available of each DBMS, and we
consider only on a specific version of each. It is not immediately clear how the results in this thesis apply to
different DBMS implementations and versions of DBMS implementations.

In regard to the bottleneck analysis of Chapter 3, we believe that the general trends in that chapter
are representative of what would be seen in other DBMS: DBMS using 2PL concurrency control will be
lock-bound for TPC-C, and those using MVCC (and variants) will be either CPU-bound or I/O-bound for
TPC-C. This is due to the fact that the TPC-C workload has a significant amount of data contention, and
only two methods are available to deal with this contention: waiting (in the case of 2PL) or versioning (in
the case of MVCC). Likewise, we expect that TPC-W will almost always CPU-bound, regardless of the
DBMS implementation, due to the fact that there is little lock contention and that TPC-W database sizes are
typically very small, and the database is almost always resident in memory. When TPC-W database sizes
are scaled dramatically, and do not fit in memory, the workload becomes I/O-bound. While some DBMS
implementations may handle memory and I/O more or less efficiently than others, the implementations are
not so different so as to expect radically different performance trends.

In regard to the implementation of Preempt-On-Wait (POW) lock prioritization in Chapter 3, we expect
POW to be similarly effective on most DBMS, since DBMS lock subsystems are implemented similarly
(at least conceptually). We believe that POW will only prioritize effectively when locks are the bottleneck,
which means that it should work best on DBMS using 2PL concurrency control. DBMS using MVCC (and
variants) should benefit whenever concurrency is very high and locking is significant, but even then, the
impact should be weaker than for 2PL-based DBMS.

In regard to Isolated Demand Decomposition (IDD) modeling in Chapter 4, different DBMS implemen-
tations will change the device demands that queries bring into the DBMS and may change the way those
device demands change when multiple workloads share the DBMS. The methodology of measuring perfor-
mance data of each workload in isolation should remain unchanged, and the process of combining those
measurements should be similar. There may be architectural issues that arise that affect how queries mix
(such as spin locking and cache effects have done in IBM DB2) that will need to also be modeled. The
framework should, however, remain unchanged.

In regard to The Hump in Chapter 4, the magnitude of each factor that gives rise to the hump will
likely change as the DBMS implementation changes. Thus, we expect that as the DBMS implementation
changes, the hump will appear in different regions of the configuration space, and will appear with different
magnitudes. The underlying factors that drive the hump, especially the increase in pressure on CPU caches
due to forcing increasing amounts of data through the CPU, however, should be present in all systems.

121

Workloads

This thesis only considers a limited number of workloads: TPC-C and TPC-W. Chapter 2 focuses on both
workloads for bottleneck analysis, while Chapter 3 focuses only on lock prioritization in TPC-C and Chap-
ter 4 focuses only on modeling the performance of TPC-W with IDD.

Ideally, we would test our methods on all real-world workloads, but this is infeasible, since every DBMS
application generates a different DBMS workload, and real-world DBMS workloads are not available for
academic research. While TPC-C and TPC-W are not real-world workloads, they have been designed to be
representative of many of the workloads seen in real-world systems. The faith that industry places on these
workloads suggests that our results should carry over to at least some real-world systems.

In regard to the bottleneck analysis done in Chapter 2, we expect that bottleneck trends for real OLTP
and e-Commerce applications will follow trends similar to those seen by TPC-C and TPC-W, respectively.
In particular, in 2PL-based DBMS, we expect to see many more data dependencies and more lock waiting
in most OLTP applications than in e-Commerce applications. When the application is performance-critical,
however, we expect that application designers will follow in the footsteps of Amazon.COM [26] and sacrifice
application “correctness” (data consistency requirements) so as to reduce the need for locking. This will
never be feasible for some applications, however, and even Amazon does not eschew data consistency in all
areas of their application. In these applications (or areas), we expect to see lock bottlenecks arise again.

In regard to the POW prioritization done in Chapter 3, we expect that POW will only be effective for
some lock-bound workloads. POW relies on specific statistical properties seen in the TPC-C workload, and
to be effective on other workloads, these properties must also be found in those workloads. Without access
to real-world workloads, however, it is impossible to judge whether these properties are common in the
real-world. Fortunately, the statistical properties are easily measured. Thus, a DBMS engine could easily
measure statistics (the same statistics we describe in Chapter 3) in the locking subsystem, and determine
whether POW, or another prioritization algorithm would be most effective.

In regard to the IDD modeling done in Chapter 4, the essential aspects of the modeling approach are
relatively workload-independent. In particular, once device demands have been attained, solving a queueing
model using those demands should produce reasonably correct results. There are three potential problems
when looking at other workloads, however: (i) predicting how two workloads’ CPU demands change when
they run together, (ii) mixing workloads that share data, and (iii) Lock-bound and I/O-bound workloads. (i)
The techniques that were effective at predicting how CPU demands change when two TPC-W workloads
mix may not be effective at predicting how CPU demands change for other workloads. Chapter 4 outlines
the approach necessary to measure how device demands change, and how to validate such a prediction.
The major issues affecting CPU demands (spin locking and CPU cache pressure) are, however, likely to be
present in all workloads. (ii) When mixing workloads that share the same data, the potential to increase
the amount of locking in the workload is also increased. There has been some research in characterizing
the performance effects of different levels of data sharing [35, 14, 16], but little work on modeling and
predicting the performance effects. (iii) Locks and I/O have very different performance characteristics than
CPUs, and as a result, Lock-bound and I/O-bound workloads will likely have to be modeled differently than
the largely CPU-bound (and occasionally I/O-bound) workloads considered in Chapter 4. Some prior work
has modeled the effects of locking in DBMS [83], and may be used as a starting point to model locking
within IDD. Unfortunately, all of these potential problems are non-trivial, and may need to be the focus of
significant future work.

In regard to The Hump seen in Chapter 4, since the essential performance issues (spin locking and CPU

122

cache pressure) are nearly universal, we expect that hump-like trends will be seen in many workloads. The
key difference, however, is that we expect that changing the DBMS workload will change both the region in
which the hump occurs, as well as its magnitude.

Arrival Processes

Another major limitation in this thesis research is that we focus entirely on closed systems, where there are
a fixed number of users who alternately think (for an exponentially distributed amount of time) and issue
queries ad infinitum. While some DBMS are, in fact, closed systems (especially batch processing systems),
many are not. Other DBMS may be open systems, where a potentially infinite number of users arrive to
the DBMS according to some stochastic arrival process (often a Poisson process), issue a single query and
depart (observe that closed systems approach open systems as the number of users in the closed system
increases). Other DBMS may be partly-open systems [73], where an infinite number of users arrive to the
DBMS and issue several sequential queries, and depart.

The performance differences between closed, open, and partly-open arrival processes can be significant.

The performance of a DBMS often depends on whether the system is closed, open, or partly-open. Open
systems often have more performance variability than closed systems, because unlike closed systems, the
number of potential users in the DBMS at any one time is unbounded. This can be a big problem especially
when the DBMS is momentarily slowed down, as it can lead to incredibly large backlogs.

Furthermore, the performance of an open system depends on the exact nature of the arrival process.
Some arrival processes are evenly spread out (e.g. a constant time between each query’s arrival), while some
are bursty (e.g. a dozen queries are likely to arrive at the same moment). In general, the burstier an arrival
process is, the worse the DBMS performance, and the higher the performance variability.

It is important to understand the effect the arrival process has on DBMS performance, but it is a poorly
understood issue, wide open for future work. We will discuss two issues: (i) Openness: whether the system
is open or closed, and (ii) Burstiness: if it is an open system, how bursty the arrival process is.

We expect that in the bottleneck analysis done in Chapter 2, open systems and bursty open systems will
both experience increased lock waiting, and be more likely to be lock-bound than closed systems. This is
because it is well-known that lock wait times increases drastically with concurrency [84], and open systems
can have (periodically) more concurrent clients than closed systems, and bursty open systems have even
more.

If it is true that openness and burstiness lead to increased lock contention, it should make the impact
of lock prioritization even greater. The POW lock prioritization described in Chapter 3 may be well suited
to prioritize queries in the face of this increased contention, but it is difficult to determine whether it will
be best. Fortunately, it is easy to measure the lock manager statistics in the that determine whether POW
performs well or poorly, and enable POW only in the case that it performs well.

In regard to the IDD modeling done in Chapter 4, we believe that openness and burstiness in the Local
and Federator workloads may have a wide range of effects on the results of IDD. The problem is that it is
hard to tell whether the burstiness of each workload “lines up” (occurs at the same time), or is “staggered”
(when Locals burst, Federators are idle, and when Federators burst, Locals are idle). The degree to which
bursts overlapped must be characterized, and factored into the IDD modeling to properly understand how
device demands change and how performance is affected.

123

Data Access Patterns

It is well-known that real-world data access patterns often follow power-law relationships, as is characterized
by Zipf’s Law [91]. The law specifies that the frequency of any item is inversely proportional to its rank
in the frequency table. That is, fk = 1/k, where fk is the frequency of the k’th most popular item. In
e-Commerce, this suggests that the most popular item is twice as likely to be accessed as the second most
popular item, which itself is twice as likely to be accessed as the third most popular item, and so forth.

While the TPC-C benchmark does not use Zipf distributions per se, it does access data via a skewed
non-uniform distribution (called NURand). Thus, we expect that using Zipf distributions for TPC-C will not
significantly affect the results.

In contrast to TPC-C, TPC-W, treats all books in its database as if they were equally (uniformly) popular.
Olston et al. [62] attempt to develop a more realistic workload by making books’ popularity follow a Zipf
distribution. In this Zipf TPC-W workload, books’ popularities are set according to the relationship: logQ =
10.526 − 0.871logR, where R is the sales rank of a book and Q is the number of copies of the book sold
within a short period of time.

We experimented with the Zipf TPC-W implementation to determine how Zipf distributions may effect
the results of this thesis. We find that the biggest difference between Zipf TPC-W and the standard TPC-W
implementation is that Zipf TPC-W is more CPU-bottlenecked than the standard TPC-W implementation.
While Chapter 2 showed that CPU takes up 80% of queries’ response times in standard TPC-W, CPU uses
more than 93% of queries’ response times in Zipf TPC-W. This is expected, since Zipf TPC-W is more likely
to access a smaller set of the data, and is more likely to hit in the buffer pool, and avoid I/O.

In regard to The Hump and IDD of Chapter 4, Zipf TPC-W still exhibits the same type of Hump behavior
seen in standard TPC-W. This result is, in fact, somewhat surprising. Since using a Zipf distribution reduces
the amount of distinct data accesses, one would expect it to reduce the pressure on the CPU caches, and
reduce CPU stalls. It appears, however, that in reality, this effect is not not strong enough to greatly reduce
the impact of CPU stalling (possibly due to the fact that the CPU cache is still too small).

5.1.6 Future Directions

Device Demands

While IDD is able to get a good handle on the device demands from workloads running on a DBMS, it is
limited in what it can accomplish. The biggest limitation is that IDD can only collect aggregate mean-value
device demands for a query workload running by itself. If one had the ability to break down device demand
measurements on a per-query basis (rather than in aggregate over all queries in the workload), it would open
many directions for future analysis. For instance, IDD may be able to make predictions or help configure
admission control without having to run workloads in isolation first; IDD could simply measure the device
demands of each workload independently, and measure directly how their demands change as a function of
time.

Unfortunately, DBMS generally do not provide per-query device demand measurements. When they
do, those measurements are often inaccurate or taken at too low a resolution to be useful (for instance,
per-query CPU demand measurements for transactional web workloads are reported by the DBMS as zero,
even though other methods reveal that is not true). Two major challenges must be addressed to resolve this

124

problem. First, and foremost, DBMS vendor and user awareness of the importance of device demands must
be raised. This thesis is a good step in that direction, but further progress is necessary. Second, it is difficult
to do per-query device demand accounting at some devices. For instance, it is sometimes difficult what query
is responsible for a given I/O request: when evicting dirty pages in the buffer pool, it is not clear whether to
account those I/O requests to the query (or queries) who last modified the pages, or to the query (or queries)
that need free space in the buffer pool. This second issue requires further study, to determine the correct
measurement policies to make the measurements meaningful.

Other resources

Much of the work in this thesis has concentrated on CPU and Lock resources — focusing on CPU issues in
Part III with admission control and Lock issues in Part I and Part II with query prioritization. The essential
analysis techniques and approaches taken in this thesis should extend relatively easily to other resources,
such as I/O devices, network, or memory.

As seen with CPU and Locks in this research, however, there are certainly performance-related details
that will require the analysis to be fine-tuned. For example, Part II found that the structure of locking within
the DBMS and lock holding times greatly affects the choice of scheduling policies. Likewise, Part III found
that the behavior of the CPU at the micro-architectural level significantly affects the overall performance of
the CPU and the DBMS.

I/O resources is likely to have micro-architectural performance issues which will need to be modeled
in some way. Disk seek times are particularly interesting, as they can lead to significant response-time
variability for I/O requests. Likewise, the “exotic” scheduling policies (e.g. elevator scheduling) used both
in the operating system and the I/O devices themselves are likely to need special treatment, since they can
result in hard-to-predict reorderings of queries’ I/O requests.

Conventionally, memory is treated as a very different type of resource than those considered in this
research. Instead of concentrating on the time memory requests take at the “memory resource,” as is done
with CPU, I/O, and Locks, researchers focus on how much memory to allocate to each query, query operator,
or process. How much memory a query gets can significantly affect its performance [24], as the DBMS can
choose more or less efficient algorithms given how much memory it has. The problem of allocating resources
such as memory are not addressed in this thesis, and there are many open questions about how to do so in
the context of this thesis. In particular, it will be important to understand how device demands change,
depending on how much memory a query has (and thus, which algorithms are used).

In the future, however, it is possible (and even likely) that we will have to start modeling memory like
the other resources in this research: as a “server” that queues and executes memory requests with some
scheduling policy. This is for two reasons:

First, main memories are getting larger, and holding terabytes of data, if not the whole database in main
memory, is increasingly realistic. Thus, memory allocation problems become much less significant.

Second, CPU architectures are moving towards multi-core packages, with many fast cores and fast on-
chip memory within the package, all sharing a slow memory bus to access main memory. This memory
bus is expected to become a performance bottleneck [8], especially as the number of cores grows. At the
same time, on-chip memory must be much smaller than main memory, since they also must be much faster.
Thus, data must often move between on-chip and main memory via memory requests. As these requests
start queueing, the approaches used in this research become particularly suited to modeling memory system

125

performance.

CPU Cache behavior

One of the key components of the IDD analysis is to predict the rate of computation at the CPU(s) when
two workloads mix on the DBMS. The CPU rate of computation depends on the CPU cache miss rate of the
mixed workload. While the work in IDD uses a simple predictor of the CPU computation rate that works for
the workloads considered in this thesis, it does not work in all situations, nor for all workloads.

Much research has been done to measure and predict the CPU cache miss rates of a single workload
running on a CPU [78, 77, 34]. In general, this work does not focus on DBMS workloads, and is not easily
extended to address multiple workloads.

The work in Section 4.7 begins to examine the nature of mixing workloads assuming that memory ac-
cesses and locality follow a particular “stack distance” distribution [78, 77]. In this thesis, much understand-
ing has been gathered about how the locality of mixed workloads depend on the locality of each workload
in the mix. Unfortunately, there is still a significant amount of work necessary to take this information and
make it directly applicable to IDD. I believe that this is a tractable problem, however, and will result in IDD
producing much more accurate predictions of performance.

Other workloads

Much of the research in this thesis focused on OLTP and transactional web DBMS workloads. Many other
types of DBMS workloads are widely available, including but not limited to data warehousing, decision
support, and ETL (Extract Transform Load). Furthermore, real-world workloads in each of these categories
all differ from one another greatly. Even different benchmarks from each category can differ greatly.

The work in this thesis depends in varying degrees to the type of workload in consideration. Part I
and Part II rather strongly focus on prioritization in OLTP and transactional web workloads. As a result,
to determine the effectiveness of different scheduling algorithms on a new workload, it is necessary to re-
apply similar bottleneck and analysis techniques seen in Part I. Likewise, POW, described in Part II, will
need to be evaluated in additional workloads, to determine whether its conditional preemption algorithm
remains effective. Part III, which describes IDD, is a much more general framework, and should largely
be independent of the workloads under study. Further evaluation is important, however, to ensure that its
applicability is, indeed, as wide as believed.

Open versus closed workloads

One of the observations made while conducting experiments for this thesis is that the query arrival process
had a large effect on performance.

All of the work in the thesis is done using a closed loop process: A fixed set of users, each of which
repeatedly sends a query and then waits before sending the next query. An alternative would be an open
loop process: Users arrive (from an infinite pool) at a steady stream according to a Poisson process (the time
between arrivals fits an exponential distribution), submit a query, and never again return to the system.

In general, queueing theory predicts that a closed loop system approaches the behavior of an open loop

126

system as the number of users in the closed system goes to infinity (and the waiting time increases accord-
ingly). Much of queueing theory, especially work that studies query scheduling, focuses on open arrival
processes. This is largely due to the fact that these systems are typically easier to analyze: Markovian mod-
els of systems with open arrival processes usually have a much smaller state space than those with closed
arrival processes.

When conducting experiments, I find that real-world DBMS do not handle open loop arrival processes
very well. Consider a DBMS with a transactional web (TPC-W) workload, with queries arriving according
to a Poisson process. If the arrival rate (average number of arrivals per second) is low, the load (the average
number of concurrent queries in the DBMS) is low, then response times are good. Low load corresponds
to an extremely under-utilized system, for instance, with CPU and I/O utilization under 50%. If the arrival
rate is increased continuously, at first response times increase continuously (as expected), but then become
chaotic, alternating from extremely high to low. It is interesting to observe that the use of admission control
to limit the number of concurrent queries in the DBMS does not appear to eliminate the chaos, so it is not
simply due to the fact that queries interfere with one another when there are many in the DBMS concurrently.
It is also interesting to observe that this problem is often seen across different DBMS implementations (such
as IBM DB2 and PostgreSQL).

The chaotic performance of DBMS with open arrival processes is a significant problem. There is debate
over whether real-world arrival processes are more like open or closed arrival processes, particularly in
online and e-Commerce DBMS systems [73]. If real-world DBMS arrival processes are open, it suggests
that any system experiencing moderate to high loads (even transiently) will see significant performance
problems and response time variability, which will hurt customer satisfaction.

Many companies often drastically over-provision their systems, so that they have enough hardware to
almost always run at relatively low loads. While this approach helps ensure good performance, it is also
extremely costly. Companies always want to reduce their operating costs, as long as sufficient performance
can be maintained, and thus would prefer to run their DBMS at higher loads. Understanding the essential
causes of chaotic performance for open arrival processes and developing tools and techniques to control it
will yield huge cost savings for many applications.

The analysis approaches outlined in this thesis may be a good starting point for discovering the issues
that cause chaotic performance problems. One significant difference, however, is that performance data will
need to be analyzed and collected as time-varying processes, and simply looking at averages collected over
an experimental run will not be sufficient. It is clear that the problems are transient, or time-dependent, as
an experimental run can see good performance for a long period of time, and then see its performance fall
apart.

127

128

Appendix A

Appendix: Workloads

A.1 TPC-W

TPC-W is of primary interest throughout the bottleneck analysis in Chapter 2 and the IDD modeling ap-
proach in Chapter 4.

TPC-W is an industry-standard benchmark designed by the Transaction Performance Council (TPC).
The TPC consists of over 30 member companies, who helped to design the benchmark to better represent
real-world system workloads.

TPC-W was designed by the TPC to model e-Commerce (Transactional Web) workloads, as seen in
companies such as Amazon.COM. TPC-W simulates customers that browse and buy products (books) from
an online retailer’s web site, performing the same queries and tasks that would be done by a real customer:
examining books, putting books into a “shopping cart,” making purchases, searching for books, updating
customer information, etc.

The TPC-W standard allows the relative amounts of browsing and buying in the workload to be ad-
justed, yielding different “mixes.” Three basic mixes are standard: Shopping, Browsing, and Ordering.
The difference between these mixes is simply the probability distribution of how simulated clients choose
queries/tasks. For example, after performing a given interaction on a given web page, the client can choose
an action to buy a product, or look for another product. In the Browsing mix, the client is more likely to
view another product, while in the Ordering mix, the client is more likely to buy the product.

The benchmark specifies that simulated clients loop, alternately “thinking” and issuing queries. This is
a closed-loop arrival process as seen in queueing theory, with the exception that the distribution of TPC-W
think times is a truncated exponential, rather than the non-truncated exponential distribution typically used
in queueing theory.

129

Figure A.1: The database schema for the TPC-W benchmark. Dotted lines represent one-to-one relation-
ships. Arrows represent one-to-many relationships.

Figure A.1 depicts the database schema used for the TPC-W benchmark. The database consists of tables
holding Customer, Orders, Order Line, Item, Credit Card Transaction, Country, Authors, and Address data.
The size of the database can be scaled up and down based on the number of entries in the items table (the
number of books in the database). The specification describes how to scale the sizes of the other tables for a
given number of items.

In comparison to TPC-C, TPC-W is a CPU-bound workload with very little I/O and almost no lock
contention. Chapter 2 uses to the TPC-W Shopping mix, with 80% browse queries and 20% buy queries.
Chapter 4 uses the TPC-W Browsing mix, with 95% browse queries and 5% buy queries. We find that both
workloads are relatively similar, especially with respect to the bottleneck resource, as both are almost always
CPU-bound. In all the standard mixes, TPC-W never has a lock bottleneck even as the amount of buying is
increased (and browsing is decreased).

A.2 TPC-C

TPC-C is of primary interest throughout the bottleneck analysis in Chapter 2 and the POW lock prioritization
algorithm in Chapter 3.

TPC-C is an industry-standard benchmark designed by the Transaction Performance Council (TPC).

130

TPC-C was designed to model an OnLine Transaction Processing (OLTP) workload. In particular, the
benchmark models the operations of a wholesale supplier, in which users manage the inventory at the ware-
houses of a company. The benchmark simulates a company which is comprised of warehouses, each of
which is comprised of many districts, each of which is used by many users. Users can place new orders for
items in the warehouses, request the status of orders, as well as enter payments, deliver orders, and monitor
stock levels.

TPC-C consists of many different query transaction types, including New-Order, Payment, Order-Status,
Delivery, and Stock-Level. The performance of New-Order transactions dominates the performance of the
TPC-C workload, due to its frequency and complexity. New-Order is a frequent, mid-weight read-write
transaction that simulates entering a new order for items in a warehouse. The specification dictates that
New-Order must have low response times so as to ensure that users are satisfied. After New-Order, the
remainder of the TPC-C workload is made up of Payment transactions (which must be at least 43% of all
the queries), but they are so light-weight that they have minimal effect on the overall performance.

Figure A.2: The database schema for the TPC-C benchmark. Numbers in entity blocks represent the car-
dinality of the tables (number of rows), and are factored by W, the scale of the database (the number of
Warehouses). Numbers next to relationship arrows represent the cardinality of the relationships.

Figure A.2 depicts the database schema used for the TPC-C benchmark. The TPC-C standard allows the
database size to be scaled by changing the number of warehouses in the database. TPC-C specifies that the
number of users (“terminals”) should grow with the number of warehouses, so that each warehouse has 10
terminals. The number of users and warehouses is scaled according to this rule for some of the experiments

131

in Chapter 2, while the other experiments vary the number of users and warehouses independently.

In comparison to TPC-W, TPC-C is a workload with greater I/O requirements as well as more lock
contention. TPC-C places much higher demands on the DBMS concurrency control subsystem, and requires
strong isolation and ACID properties.

132

Bibliography

[1] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions. In Proceedings of SIGMOD,
pages 71–81, 1988. 2.4.1

[2] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance evaluation. In
Proceedings of Very Large Database Conference, pages 1–12, 1988. 1.8.1, 2.1.2, 2.4.1, 3.4, 5.1.4

[3] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk resident data. In
Proceedings of Very Large Database Conference, pages 385–396, 1989. 2.4.1

[4] R. K. Abbott and H. Garcia-Molina. Scheduling I/O requests with deadlines: A performance evalua-
tion. In IEEE Real-Time Systems Symposium, pages 113–125, 1990. 2.4.1

[5] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance evaluation.
Transactions on Database Systems, 17(3):513–560, 1992. 2.4.1, 2.6.1, 2.7

[6] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control performance modeling:
alternatives and implications. ACM Trans. Database Syst., 12(4):609–654, 1987. 3.1

[7] A. Ailamaki, D. DeWitt, and M. Hill. Data page layouts for relational databases on deep memory
hierarchies, 2002. 3.1.1, 3.3

[8] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMS on a modern pro-
cessor: Where does time go? In VLDB’99, pages 266–277, 1999. 4.6.2, 5.1.6

[9] Charles Babcock. Data, data, everywhere. Technical report, InformationWeek, January 2006. 1.5.1

[10] L. Baccouche. Scheduling multi-class real-time transactions: A performance evaluation. In PWASET
05: Proceedings of World Academy of Science, Engineering and Technology, volume 6, June 2005.
2.4.1

[11] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed database systems. ACM
Comput. Surv., 13(2):185–221, 1981. 3.1

[12] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control - theory and algorithms.
TODS, 8(4):465–483, 1983. 2.3

[13] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping bubba, a highly parallel database system. IEEE Trans. on Knowl. and Data
Eng., 2(1):4–24, 1990. 1.5.1

133

[14] Haran Boral and David J DeWitt. A methodology for database system performance evaluation. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international conference on Management of
data, pages 176–185, New York, NY, USA, 1984. ACM. 4.8, 5.1.5

[15] K. P. Brown, M. J. Carey, and M. Livny. Managing memory to meet multiclass workload response time
goals. In Proceedings of Very Large Database Conference, pages 328–341, 1993. 2.4.2

[16] Kurt P. Brown, Michael J. Carey, David J. DeWitt, Manish Mehta, and Jeffrey F Naughton. Resource
allocation and scheduling for mixed database workloads. Technical Report TR-1095, University of
Wisconsin Madison, 1992. 4.8, 5.1.5

[17] M. Carey, D. J. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D. Schuh, M. Solomon,
C. Tan, O. Tsatalos, S. White, and M. Zwilling. Shoring up persistent applications. In Proc. of SIG-
MOD, May 1994. 1.2, 2.3, 2.5.2, 3.3, 3.5

[18] M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS resource scheduling. In Proceedings of Very
Large Database Conference, pages 397–410, 1989. 2.4.2

[19] Michael J. Carey, Sanjay Krishnamurthi, and Miron Livny. Load control for locking: The ’half-and-
half’ approach. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, pages 72–84, 1990. 4.8

[20] IBM Corporation. IBM DB2 query patroller administration guide. 1.2, 2.4.2, 3.3

[21] Transaction Processing Performance Council. TPC benchmarks. http://www.tpc.org. 1.3, 4.3,
4.5.1, 4.8

[22] Transaction Processing Performance Council. Tpc benchmark(tm) c standard specification. Technical
report, Transaction Processing Performance Council, February 2001. 1.3, 2.5.1

[23] Transaction Processing Performance Council. TPC benchmark W (web commerce). Number Revision
1.8, February 2002. 1.3, 2.5.1

[24] Benoı̂t Dageville and Mohamed Zait. SQL memory management in oracle9i. In Proceedings of the
28th VLDB Conference, 2002. 5.1.6

[25] Neil Davies, Judy Holyer, and Peter Thompson. A queueing theory model that enables control of loss
and delay at a network switch. Technical Report CSTR-99-011, University of Bristol Dept of Computer
Science, 1 1999. 1.5.2

[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardha n Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramani an, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In SOSP ’07, pages 205–220, 2007. 2.9, 3.1, 3.10, 4.6.1, 5.1.5

[27] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B. Kumar, and M. Mu-
ralikrishna. Gamma - a high performance dataflow database machine. In VLDB ’86: Proceedings
of the 12th International Conference on Very Large Data Bases, pages 228–237, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc. 1.5.1

[28] Sameh Elnitky, Erich M. Nahum, John Tracey, and Willy Zwaenepoel. A method for transparent
admission control and request scheduling in dynamic e-Commerce web sites. Unpublished Manuscript,
May 2003. 2.4.2

134

[29] A. K. Erlang. Solution of some problems in the theory of probabilties of significance in automatic
telephone exchanges. Elektrotkeknikeren, 13(513), 1917. 1.5.2

[30] IBM DB2 Product Family. http://www.ibm.com/software/data/db2. 3.5

[31] Peter Franaszek and John T. Robinson. Limitations of concurrency in transaction processing. ACM
Trans. Database Syst., 10(1):1–28, 1985. 3.4

[32] Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. Wait depth limited concurrency
control. In Proceedings of the Seventh International Conference on Data Engineering, pages 92–101,
Washington, DC, USA, 1991. IEEE Computer Society. 3.4, 3.8.3

[33] Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. Concurrency control for high con-
tention environments. ACM Trans. Database Syst., 17(2):304–345, 1992. 3.4, 4.8

[34] Davy Genbrugge, Lieven Eeckhout, and Koen De Bosschere. Microarchitecture-independent cache
modeling for statistical simulation. Technical Report P106-114, ELIS, Ghent University, Sint-
Pietersnieuwstraat 41, 9000 Gent, Belgium, 3 2003. 5.1.6

[35] Shahram Ghandeharizadeh and David J. DeWitt. Factors affecting the performance of multiuser
database management systems. In SIGMETRICS ’90: Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages 243–244, New York, NY, USA,
1990. ACM. 4.8, 5.1.5

[36] Google. Google corporate information - our philosophy. www.google.com/corporate/
tenthings.html, 2008. 5.1.3

[37] Gartner Group/Dataquest. Server storage and RAID worldwide. Technical report, Gartner, Inc www.
gartner.com, 1999. 1.2

[38] Varun Gupta, Mor Harchol-Balter, Karl Sigman, and Ward Whitt. Analysis of join-the-shortest-queue
routing for web server farms. Performance Evaluation, 64(9–12), October 2007. 1.5.2

[39] Laura M. Haas, Patricia G. Selinger, Elisa Bertino, Dean Daniels, Bruce G. Lindsay, Guy M. Lohman,
Yoshifumi Masunaga, C. Mohan, Pui Ng, Paul F. Wilms, and Robert A. Yost. R*: A research project
on distributed relational DBMS. IEEE Database Eng. Bull., 5(4):28 – 32, 1982. 1.5.1

[40] Jayant R. Haritsa, Michael J. Carey, and Miron Livny. Data access scheduling in firm real-time database
systems. Real-Time Systems, 4(3):203–241, 1992. 3.4

[41] Hans-Ulrich Heiss and Roger Wagner. Adaptive load control in transaction processing systems. In
VLDB ’91, pages 47–54, 1991. 4.8

[42] J. Huang, J.A. Stankovic, K. Ramamritham, and D. F Towsley. On using priority inheritance in real-
time databases. In IEEE Real-Time Systems Symposium, pages 210–221, 1991. 2.4.1

[43] Jiandong Huang, John A. Stankovic, Krithi Ramamritham, Don Towsley, and Bhaskar Purimetla. Pri-
ority inheritance in soft real-time databases. Real-Time Syst., 4(3):243–268, 1992. 3.4

[44] Jiandong Huang, John A. Stankovic, Krithi Ramamritham, and Donald F. Towsley. On using priority
inheritance in real-time databases. In IEEE Real-Time Systems Symposium, pages 210–221, 1991. 3.4

135

www.google.com/corporate/tenthings.html
www.google.com/corporate/tenthings.html
www.gartner.com
www.gartner.com

[45] IBM. Ibm db2 universal database administration guide version 5. Document Number S10J-8157-00,
1992. 2.3, 2.4.2, 2.5.2, 2.6.1, 3.3

[46] Bruce L. Jacob, Peter M. Chen, Seth R. Silverman, and Trevor N. Mudge. An analytical model for
designing memory hierarchies. IEEE Transactions on Computers, 45(10):1180–1194, 1996. 4.6.2,
4.7.1

[47] Abhinav Kamra, Vishal Misra, and Erich M. Nahum. Yaksha: a self-tuning controller for managing
the performance of 3-tiered web sites. In IWQoS, pages 47–56, 2004. 4.8

[48] K. D. Kang, Sang H. Son, and John A. Stankovic. Service differentiation in real-time main memory
databases. In Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Comput-
ing, 29 2002. 2.4.1

[49] Naoki Katoh, Toshihide Ibaraki, and Tiko Kameda. Cautious transaction schedulers with admission
control. ACM Trans. Database Syst., 10(2):205–229, 1985. 4.8

[50] L. Kleinrock. Queueing systems, volume II: Computer applications, 1976. 1.5.2

[51] L. Kleinrock. Creating a mathematical theory of computer networks. Operations Research, 50(1),
2002. 1.5.2

[52] Sailesh Krishnamurthy, Spiros Papadimitriou, Bianca Schroeder, and Anastassia Ailamaki. Post-
greSQL, chapter in Database System Concepts, by H. Korth, A. Sibershatz, and S. Sudarshan, McGraw
Hill, 5th Edition. 1.2, 2.3, 2.5.2, 3.5

[53] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981. 3.1

[54] John Levon. OProfile - a system profiler for linux. http://oprofile.sourceforge.net/,
2002. 4.6.2

[55] Mikko H. Lipasti, Trey Cain, Milo Martin, Tim Heil, Eric Weglarz, and Todd Bezenek. Java TPC-W
implementation. http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2000. 2.5.1, 4.5.1

[56] David T. McWherter, Bianca Schroeder, and Anastassia Ailamaki an d Mor Harchol-Balter. Priority
mechanisms for OLTP and transactional web applications. In Proc. of ICDE, 2004. 3.3, 3.4, 3.5, 3.6.1,
4.8

[57] David T. McWherter, Bianca Schroeder, and Anastassia Ailamaki an d Mor Harchol-Balter. Improving
preemptive prioritization via statistical characterizatio n of OLTP locking. In Proc. of ICDE, 2005. 4.8

[58] J Moad. The real cost of storage. Technical report, eWeek www.eweek.com, October 2001. 1.2

[59] Fiona Fui-Hoon Nah. A study on tolerable waiting time: How long are web users willing to wait?
Behavior and Information Technology, 23:153–163, 2004. 1.1, 5.1.3

[60] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for self-predicting
DBMS. In International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2005. 4.8

[61] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1994. 1.1, 5.1.3

136

http://oprofile.sourceforge.net/
www.eweek.com

[62] Christopher Olston, Amit Manjhi, Charles Garrod, Anastassia Ailamaki, Bruce M. Maggs, and Todd C.
Mowry. A scalability service for dynamic web applications. In In Proc. CIDR, pages 56–69, 2005.
5.1.5

[63] Takayuki Osogami. Analysis of Multi-server Systems via Dimensionality Reduction of Markov Chains.
PhD in Computer Science, Carnegie Mellon University (CMU), Pittsburgh, PA, 15213, 2005. 1.5.2

[64] Özgür Ulusoy and Geneva G. Belford. Concurrency control in real-time database systems. In CSC ’92:
Proceedings of the 1992 ACM annual conference on Communications, pages 181–188, New York, NY,
USA, 1992. ACM. 3.4

[65] Eileen Lin Piyush Gupta. DataJoiner: A practical approach to multidatabase access. In PIDS ’94:
Proceedings of the 1994 Conference on Parallel and Distributed Information Systems. IEEE, 1994. 1.6

[66] D. P. Reed. Naming and synchronization in a decentralized computer system. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1978. 3.1

[67] Ann Rhee, Sumanta Chatterjee, and Tirthankar Lahiri. The Oracle database resource manager:
Scheduling CPU resources at the application level. HPTS, 2001. 1.2, 2.4.2, 3.3

[68] Daniel J. Rosenkrantz, Richard E. Stearns, and II Philip M. Lewis. System level concurrency control
for distributed database systems. ACM Trans. Database Syst., 3(2):178–198, 1978. 3.3, 3.4

[69] Avi Rushinek and Sara F. Rushinek. What makes users happy? Communications of the ACM,
29(7):594–598, 1986. 1.1, 5.1.3

[70] In Kyung Ryu and Alexander Thomasian. Performance analysis of dynamic locking. In Proceedings
of 1986 ACM Fall joint computer conference, pages 698–708, 1986. 4.8

[71] In Kyung Ryu and Alexander Thomasian. Analysis of database performance with dynamic locking. J.
ACM, 37(3):491–523, 1990. 4.5.3, 4.8, 4.11

[72] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam Wierman. How to de-
termine a good multi-programming level for external scheduling. In Proceedings of ICDE’06, page 60,
2006. 4.8

[73] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus closed: a cautionary tale.
In NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Systems Design &
Implementation, pages 18–18, Berkeley, CA, USA, 2006. USENIX Association. 5.1.5, 5.1.6

[74] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. Technical Report CMU-CS-98-181, Carnegie Mellon University, 1987. 3.4

[75] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on Computers, 39(9), September 1990. 2.7.2, 3.4

[76] Vigyan Singhal and Alan Jay Smith. Analysis of locking behavior in three real database systems.
VLDB J., 6(1):40–52, 1997. 1.8.2

[77] A. J. Smith. A comparative study of set associative memory mapping algorithms and their use for
cache and main memory. IEEE Trans. Softw. Eng., 4(2):121–130, 1978. 4.7.1, 5.1.6

137

[78] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982. 4.7.1, 5.1.6

[79] John A. Stankovic, Sang Hyuk Son, and Jorgen Hansson. Misconceptions about real-time databases.
IEEE Computer, 32(6):29–36, 1999. 2.4.1

[80] Eno Thereska. Enabling what-if explorations in systems. Carnegie Mellon University PhD Thesis,
May 2007. 4.8

[81] Eno Thereska, Dushyanth Narayanan, and Gregory R. Ganger. Towards self-predicting systems: What
if you could ask “what-if”. Knowl. Eng. Rev., 21(3):261–267, 2006. 4.8

[82] Alexander Thomasian. Performance analysis of locking policies with limited wait depth. SIGMETRICS
Perform. Eval. Rev., 20(1):115–127, 1992. 3.4

[83] Alexander Thomasian. Two-phase locking performance and its thrashing behavior. ACM Trans.
Database Syst., 18(4):579–625, 1993. 4.1, 4.6.1, 4.8, 5.1.5

[84] Alexander Thomasian. On a more realistic lock contention model and its analysis. In Proceedings
of the Tenth International Conference on Data Engineering, pages 2–9, Washington, DC, USA, 1994.
IEEE Computer Society. 5.1.5

[85] Alexander Thomasian. A performance comparison of locking methods with limited wait depth. IEEE
Trans. on Knowl. and Data Eng., 9(3):421–434, 1997. 3.4

[86] Alexander Thomasian. Concurrency control: methods, performance, and analysis. ACM Comput.
Surv., 30(1):70–119, 1998. 4.5.3, 4.8, 4.11

[87] Alexander Thomasian and In Kyung Ryu. A decomposition solution to the queueing network model of
the centralized DBMS with static locking. In ACM SIGMETRICS conference, pages 82–92, 1983. 4.8

[88] William Wulf. Compilers and compiler architecture, July 1981. 1.5.1

[89] Erez Zadok, Jeffrey Osborn, Ariye Shater, Charles Wright, Kiran-Kumar Muniswamy-Reddy, and
Jason Nieh. Reducing storage management costs via informed user-based policies. In Conference on
Mass Storage Systems and Technologies (MSST) ’04 Proceedings, pages 193–198. IEEE, April 2004.
1.2

[90] Xiaodong Zhang, Zhichun Zhu, and Xing Du. Analysis of commercial workload on SMP multiproces-
sors. Proceedings of Performance 1999, August 1999. 4.6.2, 4.7.1

[91] George K. Zipf. Human behavior and the principle of least-effort. page 573, 1949. 5.1.5

138

	1 Introduction
	1.1 High Level Picture
	1.2 DBMS Fundamentals
	1.3 Workload Background
	1.4 Prioritization Mechanism Background
	1.5 Difficulties in Managing DBMS Delays
	1.5.1 Scaling up DBMS to eliminate delays is hard
	1.5.2 Analyzing and predicting DBMS performance is hard

	1.6 Impact of Prioritization
	1.7 Scope
	1.8 Roadmap
	1.8.1 Chapter 2: Prioritization in OLTP and Transactional Web Applications
	1.8.2 Chapter 3: Lock Prioritization in OLTP Applications with POW
	1.8.3 Chapter 4: Providing Isolation for Mixed DBMS Workloads (IDD)

	2 Prioritization in OLTP and Transactional Web Applications
	2.1 Background and Overview
	2.1.1 Bottleneck Analysis
	2.1.2 Scheduling Algorithm Analysis

	2.2 Organization of this chapter
	2.3 Introduction
	2.4 Prior Work
	2.4.1 Real-Time Databases
	2.4.2 Priority Classes

	2.5 Experimental Setup
	2.5.1 Workloads
	2.5.2 Hardware and DBMS

	2.6 The Bottleneck Resource
	2.6.1 DBMS Resources: CPU, I/O, Locks
	2.6.2 Breakdown Results

	2.7 Scheduling the Bottleneck
	2.7.1 Prioritization Workload
	2.7.2 Definition of the Policies
	2.7.3 Simple Scheduling
	2.7.4 Priority Inheritance
	2.7.5 Preemptive Scheduling

	2.8 Conclusion
	2.9 Impact
	2.10 Future Directions

	3 Lock Prioritization in OLTP Applications with POW
	3.1 Background and Overview
	3.1.1 Statistical Analysis
	3.1.2 Preempt-On-Wait (POW)

	3.2 Organization of this chapter
	3.3 Introduction
	3.4 Prior Work
	3.5 Bottleneck: Locks
	3.6 Evaluating Lock Scheduling Policies
	3.6.1 Experimental Setup and Methodology
	3.6.2 Performance Evaluation

	3.7 Statistical Profile of TPC-C Locking
	3.7.1 High-Priority Performance under Non-Preemptive Policies
	3.7.2 Low-Priority Performance under Preemptive Policies

	3.8 Preempt-On-Wait Scheduling
	3.8.1 The POW Algorithm
	3.8.2 POW Performance Evaluation
	3.8.3 POW vs Other Preemptive Polices
	3.8.4 Explaining POW Performance

	3.9 Conclusion
	3.10 Impact
	3.11 Future Directions

	4 Providing Isolation for Mixed DBMS Workloads (IDD)
	4.1 Background and Overview
	4.1.1 Performance Evaluation: The Hump
	4.1.2 Statistical Analysis
	4.1.3 IDD

	4.2 Organization of this chapter
	4.3 Introduction
	4.4 Common Application
	4.5 The Hump
	4.5.1 Architecture and Experimental Setup
	4.5.2 Commercial DBMS in practice
	4.5.3 Queueing Models are not enough

	4.6 Our Approach: IDD
	4.6.1 Measure Isolated Device Demands
	4.6.2 Estimate Mixed Device Demands
	4.6.3 Solve a New Queueing Model
	4.6.4 Improve Response Time Estimate
	4.6.5 IDD Summary

	4.7 Improving Cache Miss Penalty Prediction
	4.7.1 Stack Depth Distributions

	4.8 Prior Work
	4.9 Conclusion
	4.10 Impact
	4.11 Future Directions

	5 Conclusions
	5.1 Conclusion
	5.1.1 Tools
	5.1.2 Analysis Techniques
	5.1.3 Impact
	5.1.4 Lessons Learned
	5.1.5 Limitations and Real-World Applicability
	5.1.6 Future Directions

	A Appendix: Workloads
	A.1 TPC-W
	A.2 TPC-C

	Bibliography

