
3 Achieving QoS for Database Systems (DBMS)

We now turn our attention to Web servers servingdynamic rather than static content. Here response
times can be an order of magnitude slower than in the case of static content, due to delays incurred
at the backend database.

The problem Consider an online store with an inventory management system, whose customers
incur these delays every time they shop for an item. Given that a small fraction of customers,
the 10% “biggest spenders”, contribute more than half the total store revenue [5, 8], it is plau-
sible that one could significantly reduce delays for the few big spenders, without significantly
penalizing the remaining 90% of the customers, by givinghigh priority to big spenders. The
goal of our research is to provide prioritization and differentiated performance classes within a
traditional (general-purpose) relational database system (we use IBM DB2[11], Shore[15], and
PostgreSQL[16]) running representative benchmark workloads for online transaction processing:
TPC-C [20] and TPC-W [21].

Related prior work While the above problem sounds very natural, implementations of class-
based prioritization in general-purpose traditional DBMSdo not exist. While both IBM and Ora-
cle claim to provide such prioritization tools (IBM DB2gov and QueryPatroller [11, 6] and Oracle
DRM [17]), all of these are limited to CPU scheduling, and prove largely ineffective in our exper-
iments. On the research front, the work on class-based prioritization for general-purpose DBMS
is simulation-based, e.g., [4, 3]. There is a large body of literature on real-time database systems
(RTDBMS) [1, 2, 10], which differ from the general-purpose DBMS we study in implementation
and goals.

Implementation results In [13] we investigate the bottleneck resource for IBM DB2 and Shore
under the TPC-C workload and find that transactions spend more timewaiting in lock queues than
they do waiting for or using CPU or I/O. Figure 1(left) shows the resource breakdown of a trans-
action’s life for the Shore DBMS. The graph is almost identical for IBM DB2. The long lock wait
times stem from the fact that a database transaction can holda lock resource, whilesimultane-
ously waiting in another lock queue on a different resource. This result motivates us to implement
scheduling algorithms forprioritizing the lock queues, rather than prioritizing CPU, as was tried in
prior work above. After a detailed statistical characterization of what causes large waiting times,
we propose and implement a new preemptive lock-scheduling algorithm calledPOW (Preempt on
Wait) [14] which only preempts those transactions that are simultaneously holding one lock while
waiting on a second lock. As shown in Figure 1(right), for lowthink time (high load),POW im-
proves high-priority response times by almost afactor of ten, while low-priority transactions are
only penalized by 10%.

Where systems meets theory Our implementation in [14] involves scheduling lock queuesinter-
nal to the DBMS. In [18, 19], we ask, “Wouldn’t it be great to achieve this same performance differ-
entiation without ever touching the DBMS?” Our solution is to install a front-end box which limits
the number of transactions simultaneously in the DBMS, by temporarily delaying low-priority
transactions in anexternal queue, and allowing high-priority transactions through, thus reducing
the lock queue contention that high-priority transactionsexperience. Queueing analysis is used
in dynamically deriving the proper level of multiprogramming (the number of transactions to al-
low in) [19]. Surprisingly, we find thatexternal scheduling is as effective as internal scheduling.
The advantages of external scheduling are simplicity and portability across any DBMS, plus the
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Figure 1:Results for Shore with TPC-C: (Left) A transaction’s life is dominated on average by lock
wait times. (Right) POW lock prioritization improves high-priority response times dramatically
under high load (low think time).

fact that many different complex types of QoS are achievablevia external scheduling, including
variance and tail-delay guarantees [18].

Impact IBM has been very interested in productizing our work on externally-provided QoS guar-
antees for DBMS, and has filed a joint patent on this work with CMU. Several researchers have
followed up on this work. Some apply similar ideas to web requests [24], or propose to improve
upon our solution through the use of query progress indicators [12], or by making the scheduling
more adaptive [22, 23]. Others have provided lock scheduling policies with theoretical guarantees
[7] or I/O scheduling that can be used in combination with ourpriority mechanisms [9].
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