
SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

Chapter 1

Motivating Examples of the
Power of Analytical Modeling

1.1 What is Queueing Theory?

Queueing theory is the theory behind what happens when you have lots of jobs,
scarce resources, and subsequently long queues and delays.It is literally the “theory
of queues”: what makes queues appear and how to make them go away.

Imagine a computer system, say a web server, where there is only one job. The job
arrives, it uses certain resources (some CPU, some I/O), andthen it departs. Given
the job’s resource requirements, it is very easy to predict exactly when the job will
depart. There is no delay because there are no queues. If every job indeed got to run
on its own computer, there would be no need for queueing theory. Unfortunately,
that is rarely the case.

Arriving customers

Server

Figure 1.1: Illustration of a queue, in which customers wait to be served, and a
server. The picture shows one customer being served at the server and five others
waiting in the queue.

Queueing theory applies anywhere that queues come up (see Figure 1.1). We have
all had the experience of waiting in line at the bank, wondering why there are not
more tellers, or waiting in line at the supermarket, wondering why the express lane

5



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

6CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

is for 8 items or less rather than 15 items or less, or whether it might be best to
actually havetwoexpress lanes, one for 8 items or less and the other for 15 items or
less. Queues are also at the heart of any computer system. Your CPU uses a time-
sharing scheduler to serve a queue of jobs waiting for CPU time. A computer disk
serves a queue of jobs waiting to read or write blocks. A router in a network serves a
queue of packets waiting to be routed. The router queue is a finite capacity queue,
in which packets are dropped when demand exceeds the buffer space. Memory
banks serve queues of threads requesting memory blocks. Databases sometimes
have lock queues, where transactions wait to acquire the lock on a record. Server
farms consist of many servers, each with its own queue of jobs. The list of examples
goes on and on.

The goals of a queueing theorist are twofold. The first ispredicting the system
performance. Typically this means predicting mean delay ordelay variability or
the probability that delay exceeds some Service Level Agreement (SLA). How-
ever, it can also mean predicting the number of jobs that willbe queueing or the
mean number of servers being utilized (e.g., total power needs), or any other such
metric. Although prediction is important, an even more important goal is finding
a superior systemdesignto improve performance. Commonly this takes the form
of capacity planning, where one determines which additional resources to buy to
meet delay goals (e.g., is it better to buy a faster disk, or a faster CPU, or to add a
second slow disk). Many times, however, without buying any additional resources
at all, one can improve performance by just deploying a smarter scheduling policy
or different routing policy to reduce delays. Given the importance of smart schedul-
ing in computer systems, all of Part VII of this book is devoted to understanding
scheduling policies.

Queueing theory is built on a much broader area of mathematics called stochastic
modeling and analysis. Stochastic modeling represents theservice demands of
jobs and the interarrival times of jobs as random variables.For example, the CPU
requirements of UNIX processes might be modeled using a Pareto distribution [85],
whereas the arrival process of jobs at a busy web server mightbe well modeled
by a Poisson process with Exponentially distributed inter-arrival times. Stochastic
models can also be used to model dependencies between jobs, as well as anything
else that can be represented as a random variable.

Although it is generally possible to come up with a stochastic model that ade-
quately represents the jobs or customers in a system and its service dynamics, these
stochastic models are not always analytically tractable with respect to solving for
performance. As we discuss in Part IV,Markovian assumptions, such as assum-
ing Exponentially distributed service demands or a Poissonarrival process, greatly
simplify the analysis; hence much of the existing queueing literature relies on such
Markovian assumptions. In many cases these are a reasonableapproximation. For



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

1.2. EXAMPLES OF THE POWER OF QUEUEING THEORY 7

example, the arrival process of book orders on Amazon might be reasonably well
approximated by a Poisson process, given that there are manyindependent users,
each independently submitting requests at a low rate (although this all breaks down
when a new Harry Potter book comes out). However, in some cases Markovian
assumptions are very far from reality; for example, in the case in which service
demands of jobs are highly variable or are correlated.

While many queueing texts downplay the Markovian assumptions being made, this
book does just the opposite. Much of my own research is devoted to demonstrating
the impact of workload assumptions on correctly predictingsystem performance.
I have found many cases where making simplifying assumptions about the work-
load can lead to very inaccurate performance results and poor system designs. In
my own research, I therefore put great emphasis on integrating measured workload
distributions into the analysis. Rather than trying to hidethe assumptions being
made, this bookhighlightsall assumptions about workloads. We discuss specifi-
cally whether the workload models are accurate and how our model assumptions
affect performance and design, as well as look for more accurate workload models.
In my opinion, a major reason why computer scientists are so slow to adopt queue-
ing theory is that the standard Markovian assumptions oftendon’t fit. However,
there are often ways to work around these assumptions, many of which are shown
in this book, such as using phase-type distributions and matrix-analytic methods,
introduced in Chapter 21.

1.2 Examples of the Power of Queueing Theory

The remainder of this chapter is devoted to showing some concrete examples of the
power of queueing theory. Donotexpect to understand everything in the examples.
The examples are developed in much greater detail later in the book. Terms like
“Poisson process” that you may not be familiar with are also be explained later in
the book. These examples are just here to highlight the typesof lessons covered in
this book.

As stated earlier, one use of queueing theory is as apredictive tool, allowing one to
predict the performance of a given system. For example, one might be analyzing
a network, with certain bandwidths, where different classes of packets arrive at
certain rates and follow certain routes throughout the network simultaneously. Then
queueing theory can be used to compute quantities such as themean time that
packets spend waiting at a particular routeri, the distribution on the queue buildup
at routeri, or the mean overall time to get from router A to router B in thenetwork.

We now turn to the usefulness of queueing theory as adesign toolin choosing the



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

8CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

best system design to minimize response time. The examples that follow illustrate
that system design is often acounterintuitiveprocess.

Design Example 1 – Doubling Arrival Rate

Consider a system consisting of a single CPU that serves a queue of jobs in First-
Come-First-Served (FCFS) order, as illustrated in Figure 1.2. The jobs arrive ac-
cording to some random process with some average arrival rate, sayλ = 3 jobs per
second. Each job has some CPU service requirement, drawn independently from
some distribution of job service requirements (we can assume any distribution on
the job service requirement for this example). Let’s say that the average service
rate isµ = 5 jobs per second (i.e., each job on average requires1/5 of a second
of service). Note that the system is not in overload (3 < 5). Let E [T ] denote the
mean response time of this system, where response time is thetime from when a
job arrives until it completes service, a.k.a. sojourn time.

λ = 3

FCFS CPU

μ = 5

If λ g2λ, 

by how much 

should μ increase? 

Figure 1.2:A system with a single CPU that serves jobs in FCFS order.

Question: Your boss tells you that starting tomorrow the arrival rate will double.
You are told to buy a faster CPU to ensure that jobs experiencethe same mean
response time,E [T ]. Response time is the time from when a job arrives until it
completes. That is, customers should not notice the effect of the increased arrival
rate. By how much should you increase the CPU speed? (a) Double the CPU speed;
(b) More than double the CPU speed; (c) Less than double the CPU speed.

Answer: (c) Less than double.

Question: Why not (a)?

Answer: It turns out that doubling CPU speed together with doubling the arrival
rate will generally result in cutting the mean response timein half! We prove this
in Chapter 13. Therefore, the CPU speed does not need to double.

Question: Can you immediately see a rough argument for this result thatdoes not
involve any queueing theory formulas? What happens if we double the service rate
and double the arrival rate?



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

1.2. EXAMPLES OF THE POWER OF QUEUEING THEORY 9

Answer: Imagine that there are two types of time: Federation time andKlingon
time. Klingon seconds are faster than Federation seconds. In fact, each Klingon
second is equivalent to a half-second in Federation time. Now, suppose that in the
Federation, there is a CPU serving jobs. Jobs arrive with rate λ jobs per second
and are served at some rateµ jobs per second. The Klingons steal the system specs
and reengineer the same system in the Klingon world. In the Klingon system, the
arrival rate isλ jobs per Klingon second, and the service rate isµ jobs per Klingon
second. Note that both systems have the same mean response time, E [T ], ex-
cept that the Klingon system response time is measured in Klingon seconds, while
the Federation system response time is measured in Federation seconds. Consider
now that Captain Kirk is observing both the Federation system and the Klingon re-
engineered system. From his perspective, the Klingon system has twice the arrival
rate and twice the service rate; however, the mean response time in the Klingon
system has been halved (because Klingon seconds are half-seconds in Federation
time).

Question: Suppose the CPU employs time sharing service order (known asProcessor-
Sharing, or PS for short), instead of FCFS. Does the answer change?

Answer: No. The same basic argument still works.

Design Example 2 – Sometimes “Improvements” Do Nothing

Consider the batch system shown in Figure 1.3. There are alwaysN = 6 jobs in
this system (this is called the multiprogramming level). Assoon as a job completes
service, a new job is started (this is called a “closed” system). Each job must go
through the “service facility.” At the service facility, with probability1/2 the job
goes to server 1, and with probability1/2 it goes to server 2. Server 1 services
jobs at an average rate of 1 job every 3 seconds. Server 2 also services jobs at an
average rate of 1 job every 3 seconds. The distribution on theservice times of the
jobs is irrelevant for this problem. Response time is definedas usual as the time
from when a job first arrives at the service facility (at the fork) until it completes
service.

Question: You replace server 1 with a server that is twice as fast (the new server
services jobs at an average rate of 2 jobs every 3 seconds). Does this “improve-
ment” affect the average response time in the system? Does itaffect the through-
put? (Assume that the routing probabilities remain constant at1/2 and1/2.)

Answer: Not really. Both the average response time and throughput are hardly
affected. This is explained in Chapter 7.



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

10CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

N = 6 jobs

½

½

μ=⅓ 

Server 1

Server 2

μ=⅓ 

Figure 1.3:A closed system.

Question: Suppose that the system had a higher multiprogramming level, N . Does
the answer change?

Answer: No. The already negligible effect on response time and throughput goes
to zero asN increases.

Question: Suppose the system had a lower value ofN . Does the answer change?

Answer: Yes. If N is sufficiently low, then the “improvement” helps. Consider,
for example, the caseN = 1.

Question: Suppose the system is changed into an open system, rather than a closed
system, as shown in Figure 1.4, where arrival times are independent of service
completions. Now does the “improvement” reduce mean response time?

½

½

μ=⅓ 

Server 1

Server 2

μ=⅓ 

Figure 1.4:An open system.

Answer: Absolutely!

Design Example 3 – One Machine or Many?

You are given a choice between one fast CPU of speeds, or n slow CPUs each of
speeds/n (see Figure 1.5). Your goal is to minimize mean response time. To start,
assume that jobs arenon-preemptible(i.e., each job must be run to completion).



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

1.2. EXAMPLES OF THE POWER OF QUEUEING THEORY 11

versus

μ = 1

μ = 1

μ = 4

μ = 1

μ = 1

Figure 1.5:Which is better for minimizing mean response time: many slowservers
or one fast server?

Question: Which is the better choice: one fast machine or many slow ones?

Hint: Suppose that I tell you that the answer is, “It depends on the workload.”
What aspects of the workload do you think the answer depends on?

Answer: It turns out that the answer depends on the variability of thejob size
distribution, as well as on the system load.

Question: Which system do you prefer when job size variability is high?

Answer: When job size variability is high, we prefer many slow servers because
we do not want short jobs getting stuck behind long ones.

Question: Which system do you prefer when load is low?

Answer: When load is low, not all servers will be utilized, so it seemsbetter to go
with one fast server.

These questions are revisited many times throughout the book.

Question: Now suppose we ask the same question, but jobs arepreemptible, that
is, they can be stopped and restarted where they left off. When do we prefer many
slow machines as compared to a single fast machine?

Answer: If your jobs are preemptible, you could always use a single fast machine
to simulate the effect ofn slow machines. Hence a single fast machine is at least as
good.

The question of many slow servers versus a few fast ones has huge applicability
in a wide range of areas, because anything can be viewed as a resource, including
CPU, power, and bandwidth.



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

12CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

Host 1

Host 2

Host 3

Dispatcher 

(Load Balancer)
Arrivals

Figure 1.6:A distributed server system with a central dispatcher.

For an example involving power management in data centers, consider the problem
from [70] where you have a fixed power budgetP and a server farm consisting of
n servers. You have to decide how much power to allocate to eachserver, so as
to minimize overall mean response time for jobs arriving at the server farm. There
is a function that specifies the relationship between the power allocated to a server
and the speed (frequency) at which it runs – generally, the more power you allocate
to a server, the faster it runs (the higher its frequency), subject to some maximum
possible frequency and some minimum power level needed justto turn the server
on. To answer the question of how to allocate power, you need to think about
whether you prefer many slow servers (allocate just a littlepower to every server)
or a few fast ones (distribute all the power among a small number of servers). In
[70], queueing theory is used to optimally answer this question under a wide variety
of parameter settings.

As another example, if bandwidth is the resource, we can ask when it pays to par-
tition bandwidth into smaller chunks and when it is better not to. The problem is
also interesting when performance is combined with price. For example, it is often
cheaper (financially) to purchase many slow servers than a few fast servers. Yet in
some cases, many slow servers can consume more total power than a few fast ones.
All of these factors can further influence the choice of architecture.

Design Example 4 – Task Assignment in a Server Farm

Consider a server farm with a central dispatcher and severalhosts. Each arriving job
is immediately dispatched to one of the hosts for processing. Figure 1.6 illustrates
such a system.

Server farms like this are found everywhere. Web server farms typically deploy



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

1.2. EXAMPLES OF THE POWER OF QUEUEING THEORY 13

a front-end dispatcher like Cisco’s Local Director or IBM’sNetwork Dispatcher.
Supercomputing sites might use LoadLeveler or some other dispatcher to balance
load and assign jobs to hosts.

For the moment, let’s assume that all the hosts are identical(homogeneous) and that
all jobs only use a single resource. Let’s also assume that once jobs are assigned to
a host they are processed there in FCFS order and are non-preemptible.

There are many possibletask assignment policiesthat can be used for dispatching
jobs to hosts. Here are a few:

Random: Each job flips a fair coin to determine where it is routed.

Round-Robin: Theith job goes to hosti mod n, wheren is the number of hosts,
and hosts are numbered0, 1, . . . , n− 1.

Shortest-Queue: Each job goes to the host with the fewest number of jobs.

Size-Interval-Task-Assignment (SITA): “Short” jobs go to the first host, “medium”
jobs go to the second host, “long” jobs go to the third host, etc., for some def-
inition of “short,” “medium,” and “long.”

Least-Work-Left (LWL): Each job goes to the host with the least total remaining
work, where the “work” at a host is the sum of the sizes of jobs there.

Central-Queue: Rather than have a queue at each host, jobs are pooled at one
central queue. When a host is done working on a job, it grabs the first job in
the central queue to work on.

Question: Which of these task assignment policies yields the lowest mean response
time?

Answer: Given the ubiquity of server farms, it is surprising how little is known
about this question. If job size variability is low, then theLWL policy is best. If
job size variability is high, then it is important to keep short jobs from getting stuck
behind long ones, so a SITA-like policy, which affords shortjobs isolation from
long ones, can be far better. In fact, for a long time it was believed that SITA is
always better than LWL when job size variability is high. However, it was recently
discovered (see [91]) that SITA can be far worse than LWL evenunder job size
variability tending to infinity. It turns out that other properties of the workload,
including load and fractional moments of the job size distribution, matter as well.

Question: For the previous question, how important is it that we know the size
of jobs? For example, how does LWL, which requires knowing job size, compare
with Central-Queue, which does not?



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

14CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

Answer: Actually, most task assignment policies do not require knowing the size
of jobs. For example, it can be proven by induction that LWL isequivalent to
Central-Queue. Even policies like SITA, which by definitionare based on knowing
the job size, can be well approximated by other policies thatdo not require knowing
the job size; see [83].

Question: Now consider a different model, in which jobs are preemptible. Specifi-
cally, suppose that the servers are Processor-Sharing (PS)servers, which time-share
among all the jobs at the server, rather than serving them in FCFS order. Which
task assignment policy is preferable now? Is the answer the same as that for FCFS
servers?

Answer: The task assignment policies that are best for FCFS servers are often
a disaster under PS servers. In fact, for PS servers, the Shortest-Queue policy is
near optimal ([80]), whereas that policy is pretty bad for FCFS servers if job size
variability is high.

There are many open questions with respect to task assignment policies. The case
of server farms with PS servers, for example, has received almost no attention,
and even the case of FCFS servers is still only partly understood. There are also
many other task assignment policies that have not been mentioned. For example,
cycle stealing(taking advantage of a free host to process jobs in some otherqueue)
can be combined with many existing task assignment policiesto create improved
policies. There are also other metrics to consider, like minimizing the variance of
response time, rather than mean response time, or maximizing fairness. Finally,
task assignment can become even more complex, and more important, when the
workload changes over time.

Task assignment is analyzed in great detail in Chapter 24, after we have had a
chance to study empirical workloads.

Design Example 5 – Scheduling Policies

Suppose you have asingleserver. Jobs arrive according to a Poisson process. As-
sume anything you like about the distribution of job sizes. The following are some
possible service orders (scheduling orders) for serving jobs:

First-Come-First-Served (FCFS): When the server completes a job, it starts work-
ing on the job that arrived earliest.

Non-preemptive Last-Come-First-Served (LCFS):When the server completes
a job, it starts working on the job that arrived last.



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

1.2. EXAMPLES OF THE POWER OF QUEUEING THEORY 15

Random: When the server completes a job, it starts working on a randomjob.

Question: Which of these non-preemptive service orders will result inthe lowest
mean response time?

Answer: Believe it or not, they all have the same mean response time.

Question: Suppose we change the non-preemptive LCFS policy to a Preemptive-
LCFS policy (PLCFS), which works as follows: Whenever a new arrival enters the
system, it immediately preempts the job in service. How doesthe mean response
time of this policy compare with the others?

Answer: It depends on the variability of the job size distribution. If the job size dis-
tribution is at least moderately variable, then PLCFS will be a huge improvement.
If the job size distribution is hardly variable (basically constant), then PLCFS pol-
icy will be up to a factor of 2 worse.

We study many counterintuitive scheduling theory results toward the very end of
the book, in Chapters 28 through 33.

More Design Examples

There are many more questions in computer systems design that lend themselves
to a queueing-theoretic solution.

One example is the notion of asetup cost. It turns out that it can take both significant
time and power to turnon a server that isoff. In designing an efficient power
management policy, we often want to leave serversoff (to save power), but then we
have to pay the setup cost to get them back on when jobs arrive.Given performance
goals, both with respect to response time and power usage, animportant question
is whether it pays to turn a server off. If so, one can then ask exactly how many
servers should be left on. These questions are discussed in Chapters 15 and 27.

There are also questions involving optimal scheduling whenjobs have priorities
(e.g., certain users have paid more for their jobs to have priority over other users’
jobs, or some jobs are inherently more vital than others). Again, queueing theory
is very useful in designing the right priority scheme to maximize the value of the
work completed.

However, queueing theory (and more generally analytical modeling) is not cur-
rently all-powerful! There are lots of very simple problemsthat we can at best
only analyze approximately. As an example, consider the simple two-server net-
work shown in Figure 1.7, where job sizes come from a general distribution. No



SAMPLE

c©Mor Harchol-Balter – Do not distribute without permission f rom the copyright holder

16CHAPTER 1. MOTIVATING EXAMPLES OF THE POWER OF ANALYTICAL MODELING

Figure 1.7:Example of a difficult problem: The M/G/2 queue consists of a single
queue and two servers. When a server completes a job, it starts working on the job
at the head of the queue. Job sizes follow a general distribution, G. Even mean
response time is not well understood for this system.

one knows how to derive mean response time for this network. Approximations
exist, but they are quite poor, particularly when job size variability gets high [77].
We mention many such open problems in this book, and we encourage readers to
attempt to solve these!


