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Abstract

We consider a distributed server system and ask which policy should be used for
assigning jobs (tasks) to hosts. In our server, jobs are not preemptible. Also, the job’s
service demand is not known a priori. We are particularly concerned with the case
where the workload is heavy-tailed, as is characteristic of many empirically measured
computer workloads. We analyze several natural task assignment policies and propose
a new one TAGS (Task Assignment based on Guessing Size). The TAGS algorithm is
counterintuitive in many respects, including load unbalancing, non-work-conserving,
and fairness. We find that under heavy-tailed workloads, TAGS can outperform all task
assignment policies known to us by several orders of magnitude with respect to both
mean response time and mean slowdown, provided the system load is not too high.
We also introduce a new practical performance metric for distributed servers called
server expansion. Under the server expansion metric, TAGS significantly outperforms
all other task assignment policies, regardless of system load.

ACM Categories:
e C.1.4 — Processor Architectures: Parallel Architectures [Distributed Architectures]
e C.4 — Performance of Systems [Design Studies]
e D.4.8 — Operating Systems: Performance [Queueing Theory]
e D.4.8 — Operating Systems: Performance [Modeling and Prediction]
ACM General Terms: Algorithms, Design, Performance
Additional Keywords: Clusters, contrary behavior, distributed servers, fairness, heavy-
tailed workloads, high variance, job scheduling, load balancing, load sharing, supercomputing,

task assignment

*Author’s address: Mor Harchol-Balter, Computer Science Department, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15217. Author’s email: harchol@cs.cmu.edu



1 Introduction

In recent years, distributed servers have become increasingly common because they allow
for increased computing power while being cost-effective and easily scalable.

In a distributed server system, jobs (tasks) arrive and must each be dispatched to
exactly one of several host machines for processing. We assume for simplicity that these
host machines are identical and that there is no cost (time required) for dispatching jobs
to hosts. The rule for assigning jobs to host machines is known as the task assignment
policy. The choice of the task assignment policy has a significant effect on the performance
perceived by users. Designing a distributed server system often comes down to choosing
the “best” task assignment policy for the given model and user requirements. The question
of which task assignment policy is “best” is an age-old question which still remains open
for many models.

In this paper we consider the particular model of a distributed server system in which
jobs are not preemptible —i.e. each job is run-to-completion. Jobs can be aborted, but then
all work is lost and the job must be restarted from scratch. Our model is motivated by
distributed servers for batch computing at Supercomputing Centers. For these distributed
servers, each host machine is usually a multi-processor machine (e.g., an 8-processor Cray
J90) and each job submitted to the distributed server is a parallel job, intended to run on
a single host. In such a setup, jobs are usually run-to-completion, rather than time-shared,
for several reasons: First, the memory requirements of jobs tend to be huge, making it
very expensive to swap out a job’s memory [11]. Thus timesharing between jobs only
makes sense if all the jobs being timeshared fit within the memory of the host, which is
very unlikely. Also, many operating systems that enable timesharing for single-processor
jobs do not facilitate preemption among several processors in a coordinated fashion [22].
Examples of distributed server systems that fit the above description are given in Table 1.

Lastly, we assume that no a priori information is known about the job at the time
when the job arrives. In particular, the processing requirement of the job is not known.
We will use the terms processing requirement, CPU requirement, service demand, and size
interchangeably. Many studies have shown that even in cases where user estimates of
their job processing requirements are available, those estimates are grossly inaccurate.
For example one study shows that for 38% of jobs, the actual processing requirement is
only 4% of the user-predicted requirement, and for over 95% of jobs the actual processing
requirement is under 10% of the user-predicted requirement [10].

Figure 1 is one illustration of a distributed server. In this illustration, arriving jobs
are immediately dispatched by the central dispatcher to one of the hosts and queue up at
the host waiting for service, where they are served in first-come-first-served (FCFS) order.
Observe however that our model in general does not preclude the possibility of having a
central queue at the dispatcher where jobs might wait before being dispatched.

Our main performance goal, in choosing a task assignment policy, is to minimize mean
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Figure 1: Hlustration of a distributed server.
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Name Location No. Hosts | Host Machine

Xolas [18] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [17] MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
J90 distributed server [1] Pittsburgh Supercomputing Center 2 8-processor Cray J90 machine
C90 distributed server [2] | NASA Ames Research Lab 2 16-processor Cray C90 machine

Table 1: Ezamples of distributed servers described by the architectural model of this paper.
The schedulers used are Load-Leveler, LSF, PBS, or NQS. These schedulers typically only
support run-to-completion (non-preemptive) [22].

response time and more importantly mean slowdown. A job’s slowdown is its waiting
time divided by its service requirement. All means are per-job averages. Mean slowdown
is important because it is desirable that a job’s delay be proportional to its processing
requirement [8, 3, 13]. Users are likely to anticipate short delays for short jobs, and are
likely to tolerate long delays for longer jobs. A secondary performance goal is fairness.
We adopt the following definition of fairness: All jobs, long or short, should experience
the same expected slowdown. In particular, long jobs should not be penalized — slowed
down by a greater factor than are short jobs.!

Observe that for the architectural model we consider in this paper, memory usage is
not an issue with respect to scheduling. Recall that hosts are identical and each job has
exclusive access to a host machine and its memory. Thus a job’s memory requirement is
not a factor in scheduling. However CPU usage is very much an issue in scheduling.

Consider some task assignment policies commonly proposed for distributed server sys-
tems: In the Random task assignment policy, an incoming job is sent to Host 7 with prob-
ability 1/h, where h is the number of hosts. This policy equalizes the expected number

'For example, Processor-Sharing (which requires infinitely-many preemptions) is ultimately fair in that
every job experiences the same expected slowdown.
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Figure 2: The (a) Least-Work-Remaining policy and the (b) Central-Queue policy are
equivalent.

of jobs at each host. In Round-Robin assignment, jobs are assigned to hosts in a cyclical
fashion with the ith job being assigned to Host ¢« mod h. This policy also equalizes the
expected number of jobs at each host, and has slightly less variability in interarrival times
than does Random. In Shortest-Queue assignment, an incoming job is immediately dis-
patched to the host with the fewest number of jobs. This policy has the benefit of trying
to equalize the instantaneous number of jobs at each host, rather than just the expected
number of jobs.

Ideally we would like to send a job to the host which has the least total outstand-
ing work (work is the sum of the job processing requirements at the host) because that
host would afford the job the shortest waiting time. However, we don’t know a priori
which host currently has the least work, since we don’t know job processing require-
ments (sizes). Imagine for a moment that we did, however, know job sizes. Then we
could imagine a Least-Work-Remaining policy which sends each job to the host with
the currently least remaining work. It is in fact possible to achieve the performance
of Least-Work-Remaining without knowing job sizes: Consider a different policy, called
Central-Queue. The Central-Queue policy holds all jobs at the dispatcher in a FCFS
queue, and only when a host is free does the host request the next job. It turns out that
Central-Queue is equivalent to Least-Work-Remaining for any sequence of job requests
(see [12] for a rigorous proof and Figure 2 for an illustration). Thus, since Central-Queue
does not require a priori knowledge of job sizes, we can in fact achieve the performance of
Least-Work-Remaining without requiring knowledge of the job sizes.

It may seem that Least-Work-Remaining is the best possible task assignment policy.
In fact previous literature suggests that it is the optimal policy if the job size distribution
is ezponential (see Section 2). This is not in conflict with our results.

But what if job size distribution is not exponential? We are motivated in this respect
by the increasing evidence for high variability in job size distributions, as seen in many
measurements of computer workloads. In particular, measurements of many computer
workloads have been shown to fit heavy-tailed distributions with very high variance, as



described in Section 3 — much higher variance than that of an exponential distribution. Is
there a better policy than Least-Work-Remaining when the job size variability is char-
acteristic of empirical workloads? In evaluating various policies, we will be interested in
understanding the influence of job size variability on the decision of which policy is best.
For analytical tractability, we will assume that the arrival process is Poisson — previous
work indicates that the variability in the arrival process is much less critical to choosing
a task assignment policy than is the variability in the job size distribution [26].

In this paper we propose a new algorithm called TAGS — Task Assignment by Guess-
ing Size — which is specifically designed for high variability workloads. TAGS works by
associating a time limit with each host. A job is run at a host up to the designated time
limit associated with the host. If the job has not completed at this point, it is killed
and restarted from scratch at a new host. We will prove analytically that when job sizes
show the degree of variability characteristic of empirical (measured) workloads, the TAGS
algorithm can outperform all the above mentioned policies by several orders of magnitude.
In fact, we will show that the more heavy-tailed the job size distribution, the greater the
improvement of TAGS over the other policies.

The above improvements are contingent on the system load not being too high.? In the
case where the system load is high, we show that all the policies perform so poorly that
they become impractical, and TAGS is especially negatively affected. However, in practice,
if the system load is too high to achieve reasonable performance, one adds new hosts to
the server (without increasing the outside arrival rate), thus dropping the system load,
until the system behaves as desired. We refer to the “number of new hosts which must
be added” as the server expansion requirement. We show that TAGS outperforms all the
previously-mentioned policies with respect to the server expansion metric (i.e., given any
initial system load, TAGS requires far fewer additional hosts to perform well).

We describe three flavors of TAGS. The first, TAGS-opt-slowdown, is designed to mini-
mize mean slowdown. The second, TAGS-opt-waitingtime, is designed to minimize mean
waiting time. Although very effective, these algorithms are not fair in their treatment of
jobs. The third flavor, TAGS-opt-fairness, optimizes fairness. While managing to be
fair, TAGS-opt-fairness still achieves mean slowdown and mean waiting time close to the
other flavors of TAGS. The point of this paper is not to promote the TAGS algorithm in par-
ticular, but rather to promote an appreciation for the unusual and counterintuitive ideas
on which TAGS is based, namely: load unbalancing, non-workconserving, and fairness.

Section 2 elaborates on previous work. Section 3 provides the necessary background
on measured job size distributions and heavy-tails. Section 4 describes the TAGS algorithm
and all its flavors. Section 5 shows results of analysis for the case of 2 hosts, and Section 6

2For a distributed server, system load is defined as follows:
System load = Outside arrival rate - Mean job size / Number of hosts

For example, a system with 2 hosts and system load .5 has same outside arrival rate as a system with 4
hosts and system load .25. Observe that a 4 host system with system load p has twice the outside arrival
rate of a 2 host system with system load p.



shows results of analysis for the multiple-host case. Section 7 explores the effect of less-
variable job size distributions. Lastly, we conclude in Section 8. Details on the analysis
of TAGS are described in the Appendix.

2 Previous work on task assignment

Task assignment with no preemption

The problem of task assignment in a model like ours (no preemption® and no a priori
knowledge) has been extensively studied, but many basic questions remain open.

One subproblem which has been solved is that of task assignment under the further
restriction that all jobs be immediately dispatched to a host upon arrival. Under this
restricted model, Winston showed that when the job size distribution is exponential and
the arrival process is Poisson, then the Shortest-Queue task assignment policy is optimal
[30]. In this result, optimality is defined as maximizing the discounted number of jobs
which complete by some fixed time ¢t. Ephremides, Varaiya, and Walrand [9] showed that
Shortest-Queue also minimizes the expected total time for the completion of all jobs
arriving by some fixed time ¢, under an exponential job size distribution and arbitrary
arrival process. Koole, Sparaggis, and Towsley showed that Shortest-Queue is optimal
if the job size distribution has Increasing Likelihood Ratio (ILR) [16]. The actual perfor-
mance of the Shortest-Queue policy is not known exactly, but the mean response time is
approximated by Nelson and Phillips [20], [21]. Whitt has shown that as the variability
of the job size distribution grows, Shortest-Queue is no longer optimal [29]. Whitt does
not suggest which policy is optimal. Koole et. al. [16] later showed that Shortest-Queue
is not even optimal for all job size distributions with Increasing Failure Rate.

Under the model assumed in this paper, but with exponentially-distributed job sizes,
several papers ([20], [21])) claim that the Central-Queue (or equivalently, Least-Work-Remaining)
policy is optimal. Wolff [31] suggests that Least-Work-Remaining is optimal because
it maximizes the number of busy hosts, thereby maximizing the downward drift in the
continuous-time Markov chain whose states are the number of jobs in the system.

Another model which has been considered is the case of no preemption but where
the size of each job is known at the time of arrival of the job. Within this model, the
SITA-E algorithm (see [12]) has been shown to outperform the Random, Round-Robin,
Shortest-Queue, and Least-Work-Remaining algorithms by several orders of magnitude
when the job size distribution is heavy-tailed. In contrast to SITA-E, the TAGS algorithm
does not require knowledge of job size. Nevertheless, for not-too-high system loads (< .5),
TAGS improves upon the performance of SITA-E by several orders of magnitude for heavy-
tailed workloads.

SAll the results here assume FCFS service order at each host machine.



When preemption is allowed

Throughout this paper we maintain the assumption that jobs are not preemptible. That
is, once a job starts running, it can not be stopped and re-continued where it left off.
By contrast there exists considerable work on the very different problem where jobs are
preemptible and maybe even migrateable, (see [13] for many citations).

TAGS-like algorithms

The idea of purposely unbalancing load has been suggested previously in [6] and in [4],
under different contexts from our paper. In both these papers, it is assumed that job
sizes are known a priori. In [6] a distributed system with preemptible jobs is considered.
It is shown that in the preemptible model, mean waiting time is minimized by balancing
load, however mean slowdown is minimized by unbalancing load. In [4], real-time schedul-
ing is considered where jobs have firm deadlines. In this context, the authors propose
“load profiling,” which distributes load so that the probability of satisfying the utilization
requirements of incoming jobs is maximized.

To the best of our knowledge, the TAGS idea of associating artificial “time-limits” with
machines, killing jobs which exceed the time-limit on their machines, and restarting those
jobs on hosts with higher time-limits, has not been considered before.

3 Heavy tails

As described in Section 1, we are concerned with how the distribution of job sizes affects
the decision of which task assignment policy to use.

Many application environments show a mixture of job sizes spanning many orders of
magnitude. In such environments there are typically many short jobs, and fewer long jobs.
Much previous work has used the exponential distribution to capture this variability, as
described in Section 2. However, recent measurements indicate that for many applications
the exponential distribution is a poor model and that a heavy-tailed distribution is more
accurate. In general a heavy-tailed distribution is one for which

Pr{X >z} ~a™7,

where 0 < v < 2. The simplest heavy-tailed distribution is the Pareto distribution, with
probability mass function

flz)=akz™> 1 a k>0, 2>k,
and cumulative distribution function

Fz)=Pr{X <z} =1-(k/2)~.



Distribution of process lifetimes (log plot)
(fraction of processes with duration > T)

12
va
18
1/16 g
AN

132 \

1/64

.,_\\

1 2 4 8 16 32 64
Duration (T secs.)

Figure 3: Measured distribution of UNIX process CPU lifetimes, taken from [13]. Data
indicates fraction of jobs whose CPU service requirement exceeds T' seconds, as a function

of T.
A set of job sizes following a heavy-tailed distribution has the following properties:
1. Decreasing failure rate: In particular, the longer a job has run, the longer it is
expected to continue running.

2. Infinite variance (and if o < 1, infinite mean).

3. The property that a tiny fraction (< 1%) of the very longest jobs comprise over half
of the total load. We will refer to this important property throughout the paper as
the heavy-tailed property.

The lower the parameter «, the more variable the distribution, and the more pronounced
is the heavy-tailed property, i.e. the smaller the fraction of long jobs that comprise half
the load.

As a concrete example, Figure 3 depicts graphically on a log-log plot the measured
distribution of CPU requirements of over a million UNIX processes, taken from [13]. This
distribution closely fits the curve

Pr{Process CPU requirement > 7'} = 1/7T.

In [13] it is shown that this distribution is present in a variety of computing environments,
including instructional, research, and administrative environments.

In fact, heavy-tailed distributions appear to fit many recent measurements of comput-
ing systems. These include, for example:

e Unix process CPU requirements measured at Bellcore: 1 < a < 1.25 [19].



e Unix process CPU requirements, measured at UC Berkeley: a =~ 1 [13].
e Sizes of files transferred through the Web: 1.1 < a < 1.3 [5, 7].

e Sizes of files stored in Unix filesystems: [14].

e 1/0 times: [24].

e Sizes of F'TP transfers in the Internet: .9 < a < 1.1 [23].

e Pittsburgh Supercomputing Center (PSC) workloads for distributed servers consist-
ing of Cray C90 and Cray J90 machines [26]*.

In most of these cases where estimates of o were made, « tends to be close to 1, which
represents very high variability in job service requirements.

In practice, there is some upper bound on the maximum size of a job, because files
only have finite lengths. Throughout this paper, we therefore model job sizes as being
generated i.i.d. from a distribution that is heavy-tailed, but has an upper bound — a very
high one. We refer to this distribution as a Bounded Pareto. 1t is characterized by three
parameters: «, the exponent of the power law; k, the shortest possible job; and p, the
largest possible job. The probability density function for the Bounded Pareto B(k, p, «)
is defined as:

ol E<a <p. (1)

In this paper, we will vary the a-parameter over the range 0 to 2 in order to observe
the effect of variability of the distribution. To focus on the effect of changing variance, we
keep the distributional mean fixed (at 3000) and the maximum value fixed (at p = 10'?),
which correspond to typical values taken from [5]. In order to keep the mean constant,
we adjust k slightly as o changes (0 < k& < 1500).

Note that the Bounded Pareto distribution has all its moments finite. Thus, it is not
a heavy-tailed distribution in the sense we have defined above. However, this distribution
will still show very high variability if £ < p. For example, Figure 4 (right) shows the second
moment E {X?} of this distribution as a function of a for p = 10'°, where k is chosen to
keep E {X} constant at 3000, (0 < & < 1500). The figure shows that the second moment
explodes exponentially as « declines. Furthermore, the Bounded Pareto distribution also
still exhibits the heavy-tailed property and (to some extent) the decreasing failure rate
property of the unbounded Pareto distribution. We mention these properties because they
are important in choosing the best task assignment policy.

*While the distribution of job processing requirements at the PSC does not seem to exactly fit a Pareto
distribution, these workloads do have a very strong heavy-tailed property and high variance. Specifically,
our measurements showed that half the load is made up by only the biggest 1.3% of all jobs, and the
squared coefficient of variation is 43.
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4 The TAGS algorithm

This section describes the TAGS algorithm. Let A be the number of hosts in the distributed
server. Think of the hosts as being numbered: 1,2,..., h. The ¢th host has a number s;
associated with it, where s; < s9 < ... < sp.

TAGS works as shown in Figure 5: All incoming jobs are immediately dispatched to
Host 1. There they are serviced in FCFEFS order. If they complete before using up s
amount of CPU, they simply leave the system. However, if a job has used s; amount of
CPU at Host 1 and still has not completed, then it is killed (remember jobs cannot be
preempted). The job is then put at the end of the queue at Host 2, where it must be
restarted from scratch®. Each host services the jobs in its queue in FCFS order. If a job
at host ¢ uses up s; amount of CPU and still has not completed it is killed and put at the
end of the queue for Host ¢+ 1. In this way, the TAGS algorithm “guesses the size” of each
job, hence the name.

The TAGS algorithm may sound counterintuitive for a few reasons: First of all, there’s a
sense that the higher-numbered hosts will be underutilized and the first host overcrowded
since all incoming jobs are sent to Host 1. An even more vital concern is that the TAGS
algorithm wastes a large amount of resources by killing jobs and then restarting them from
scratch.® There’s also the sense that the big jobs are especially penalized since they are
the ones being restarted.

TAGS comes in 3 flavors; these only differ in how the s;’s are chosen. In TAGS-opt-slowdown,
the s;’s are chosen so as to optimize mean slowdown. In TAGS-opt-waitingtime, the s;’s
are chosen so as to optimize mean waiting time. As we’ll see, TAGS-opt-slowdown and

5Note, although the job is restarted, it is still the same job, of course. We must therefore be careful in
our analysis not to assign it a new service requirement.

My dad, Micha Harchol, would add that there’s also the psychological concern of what the angry user
might do when he’s told his job has been killed to help the general good.
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TAGS-opt-waitingtime are not necessarily fair. In TAGS-opt-fairness the s;’s are cho-
sen so as to optimize fairness. Specifically, the jobs whose final destination is Host ¢
experience the same expected slowdown under TAGS-opt-fairness as do the jobs whose
final destination is Host j, for all ¢ and j.

To use TAGS, one needs to compute the appropriate s; cutoffs. The s;’s are a function
of the distribution of job sizes (which in our case is defined by the parameters «, k, and
p) and the average outside arrival rate A. These workload parameters can be determined
by observing the system for a period of time. To determine the s;’s, given these workload
parameters, we use Mathematica™ as described in the Appendix to solve for the optimal
values of the s;’s which minimize the performance formulas for mean slowdown, mean
response time, etc..

TAGS may seem reminiscent of multi-level feedback queueing, but these are not related.
In multi-level feedback queueing there is only a single host with many wvirtual queues. The
host is time-shared and jobs are preemptible. When a job uses some amount of service
time it is transferred (not killed and restarted) to a lower priority queue. Also, in multi-
level feedback queueing, the jobs in that lower priority queue are only allowed to run when
the higher priority queues are empty.

5 Analytic results for the case of 2 hosts

This section contains the results of our analysis of the TAGS task assignment policy and
other policies. In order to clearly explain the effect of the TAGS algorithm, we limit the
discussion in this section to the case of 2 hosts. In this case we refer to the jobs whose
final destination is Host 1 as the short jobs and the jobs whose final destination is Host 2
as the big jobs. Until Section 5.3, we will always assume that the system load is 0.5 and
there are 2 hosts. In Section 5.3, we will consider other system loads, but still stick to the

10



case of 2 hosts. Finally, in Section 6 we will consider distributed servers with > 2 hosts.

We evaluate the Random, Least-Work-Remaining, and TAGS policies via analysis, all
as a function of «, where « is the variance-parameter for the Bounded Pareto job size
distribution, and « ranges between 0 and 2. Recall from Section 3 that the lower « is, the
higher the variance in the job size distribution. Recall also that empirical measurements of
job size distributions often show o & 1. Round-Robin (see Section 1) will not be evaluated
directly because we showed in a previous paper [12] that Random and Round-Robin have
almost identical performance.

Figure 6(a) shows mean slowdown under TAGS-opt-slowdown as compared with the
other policies. The y-axis is shown on a log scale. Observe that for very high «, the per-
formance of all the task assignment policies is comparable and very good, however as «
decreases, the performance of all the policies degrades. The Least-Work-Remaining policy
consistently outperforms Random by about an order of magnitude, however TAGS-opt-slowdown
offers several orders of magnitude further improvement: At ow = 1.5, TAGS-opt-slowdown
outperforms Least-Work-Remaining by 2 orders of magnitude; at & &= 1, TAGS-opt-slowdown
outperforms Least-Work-Remaining by over 4 orders of magnitude; at & = .4, TAGS-opt-slowdown
outperforms Least-Work-Remaining by over 9 orders of magnitude.

Figure 6(b) shows mean slowdown of TAGS-opt-fairness, as compared with the other
policies. Surprisingly, the performance of TAGS-opt-fairness is not far from that of
TAGS-opt-slowdown and yet TAGS-opt-fairness has the additional benefit of fairness.

Figure 7 is identical to Figure 6 except that in this case the performance metric is
mean waiting time, rather than mean slowdown. Again the TAGS algorithm shows several
orders of magnitude improvement over the other task assignment policies.

Why does the TAGS algorithm work so well? Intuitively, it seems that Least-Work-Remaining
should be the best performer, since Least-Work-Remaining sends each job to where it
will individually experience the lowest waiting time. The reason why TAGS works so well
is two-fold: The first reason is variance reduction (Section 5.1) and the second reason is
load unbalancing (Section 5.2).

5.1 Variance Reduction

Variance reduction refers to reducing the variance of job sizes that share the same queue.
Intuitively, variance reduction improves performance because it reduces the chance of a
short job getting stuck behind a long job in the same queue. This is stated more formally
in Theorem 1 below, which is derived from the Pollaczek-Kinchin formula.

Theorem 1 Given an M/G/1 FCFS queue, where the arrival process has rate A, X de-
notes the service time distribution, and p denotes the utilization (p = AE{X}). Let W be
a job’s waiting time in queue, S be its slowdown, and () be the queue length on its arrival.

11



Results: Mean Slowdown
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Figure 6: Mean slowdown for distributed server with 2 hosts and system load .5
under (a) TAGS-opt-slowdown and (b) TAGS-opt-fairness as compared with the
Least-Work-Remaining and Random task assignment policies.
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Results: Mean Waiting Time
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Figure 7: Mean waiting time for distributed server with 2 hosts and system load
.5 under (a) TAGS-opt-slowdown and (b) TAGS-opt-fairness as compared with the
Least-Work-Remaining and Random task assignment policies.
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Then,

E{W} /\2](31{75(;)} (Pollaczek-Kinchin formula [25, 15])
E{s} = E{W/xX}=B{w} E{x"'}
E{Q} = AE{W}

Proof: The slowdown formula follows from the fact that W and X are independent for a
FCFS queue, and the queue size follows from Little’s formula. [

The above formulas apply to just a single FCFS queue, not a distributed server. Ob-
serve that every metric for the simple FCFS queue is dependent on E { X2}, the second
moment of the service time. Recall that if the workload is heavy-tailed, the second mo-
ment of the service time explodes (Figure 4). We now discuss the effect of high variability
in job sizes on a distributed server with h hosts under the various task assignment policies.

Random Task Assignment This policy simply performs Bernoulli splitting on the
input stream, with the result that each host becomes an independent M/B(k,p,a)/1
queue. The load at the ¢th host, p;, is equal to the system load, p. The arrival rate at the
ith host is 1/h-fraction of the total outside arrival rate. Theorem 1 applies directly, and
all performance metrics are proportional to the second moment of B(k, p, a). Performance
is generally poor because the second moment of the B(k, p, o) is high.

Round Robin This policy splits the incoming stream so each host sees an £}, /B(k, p, ) /1
queue, with utilization p; = p, where Fpdenotes an h-stage Erlang distribution. This sys-
tem has performance close to the Random policy since it still sees high variability in service
times, which dominates performance.

Least-Work-Remaining This policy is equivalent to Central-Queue which is simply
an M/G/h queue, for which there exist known approximations, [28],[31]:

E{X?}

E {QM/G/h} =E {QM/M/h} ' Teth

where X denotes the service time distribution, and ¢ denotes queue length. What’s im-
portant to observe here is that the mean queue length, and therefore the mean waiting
time and mean slowdown, are all proportional to the second moment of the service time
distribution, as was the case for the Random and Round-Robin policies. In fact, the perfor-

_ E{x?}

mance metrics are all proportional to the squared coefficient of variation (C? = By )

of the service time distribution.
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TAGS The TAGS policy is the only policy which reduces the variance of job sizes at the
individual hosts. Consider the jobs which queue at Host ¢: First there are those jobs which
are destined for Host 7. Their job size distribution is B(s;_1, s;, &) because the original job
size distribution is a Bounded Pareto. Then there are the jobs which are destined for hosts
numbered greater than ¢. The service time of these jobs at Host ¢ is capped at s;. Thus
the second moment of the job size distribution at Host 7 is lower than the second moment
of the original B(k, p, a) distribution (for all hosts except the highest-numbered host, it
turns out). The full analysis of the TAGS policy is presented in the Appendix. A sketch is
given here: The initial difficulty is figuring out what to condition on, since jobs may visit
multiple hosts. The solution is to partition the jobs based on their final host destination.
Thus the mean response time of the system is a linear combination of the mean response
time of jobs whose final destination is Host ¢, where + = 1,..., h. The mean response
time for a job whose final destination is Host ¢ is the sum of the job’s response times at
Hosts 1 through 7. The mean response time at Host ¢ is computed via the M/G/1 formula.
These computations are relatively straightforward except for one point which we have to
approximate and which we explain now: For analytic convenience, we need to be able to
assume that the jobs arriving at each host form a Poisson Process. This is of course true
for Host 1. However the arrivals at Host ¢ are those departures from Host ¢ — 1 which
exceed size s;_1. They form a less bursty process than a Poisson Process since they are
spaced apart by at least s;_;. Since we make the assumption that the arrival process into
Host 7 is a Poisson Process (which is more bursty than the actual process), our analysis if
anything produces an upper bound on the response time and slowdown of TAGS. Finally,
once the final expression for mean response time is derived, Mathematica™ is used to
derive those cutoffs which minimize the expression.

5.2 Load Unbalancing

The second reason why TAGS performs so well has to do with load unbalancing. Observe
that all the other task assignment policies we described specifically try to balance load
at the hosts. Random and Round-Robin balance the expected load at the hosts, while
Least-Work-Remaining goes even further in trying to balance the instantaneous load at
the hosts. In TAGS we do the opposite.

Figure 8 shows the load at Host 1 and at Host 2 for TAGS-opt-slowdown, TAGS-opt-waitingtime,
and TAGS-opt-fairness as a function of a. Observe that all 3 flavors of TAGS (purposely)
severely underload Host 1 when « is low but for higher « actually overload Host 1 some-
what. In the middle range, o = 1, the load is balanced in the two hosts.

We first explain why load unbalancing is desirable when optimizing overall mean slow-
down of the system. We will later explain what happens when optimizing fairness. To
understand why it is desirable to operate at unbalanced loads, we need to go back to the
heavy-tailed property. The heavy-tailed property says that when a distribution is very
heavy-tailed (very low «), only a miniscule fraction of all jobs — the very longest ones —
are needed to make up more than half the total load. As an example, for the case a = .2,
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Figure 8: Load at Host 1 as compared with Host 2 in a distributed server with 2 hosts
and system load .5 under (a) TAGS-opt-slowdown, (b) TAGS-opt-waitingtime, and (c)
TAGS-opt-fairness. Observe that for very low «, Host 1 is run at load close to zero, and
Host 2 is run at load close to 1, whereas for high o, Host 1 is somewhat overloaded.

it turns out that the longest 107° fraction of jobs alone are needed to make up half the
load. In fact not many more jobs — just the longest 10~% fraction of all jobs — are needed
to make up .99999 fraction of the load. This suggests a load game that can be played: We
choose the cutoff point (s1) such that most jobs ((1 — 10™*) fraction) have Host 1 as their
final destination, and only a very few jobs (the longest 10~* fraction of all jobs) have Host
2 as their final destination. Because of the heavy-tailed property, the load at Host 2 will
be extremely high (.99999) while the load at Host 1 will be very low (.00001). Since most
jobs get to run at such reduced load, the overall mean slowdown is very low.

When the distribution is a little less heavy-tailed, e.g., & = 1, we can’t play this load
unbalancing game as well. Again, we would like to severely underload Host 1 and overload
Host 2. Before, we were able to do this by sending only a very small fraction of all jobs
(< 107* fraction) to Host 2. However now that the distribution is not as heavy-tailed, a
larger fraction of jobs must have Host 2 as its final destination to create high load at Host
2. But this in turn means that jobs with destination Host 2 count more in determining
the overall mean slowdown of the system, which is bad since jobs with destination Host 2
experience larger slowdowns. Thus we can only afford to go so far in overloading Host 2
before it turns against us.

When get to o > 1, it turns out that it actually pays to overload Host 1 a little.
This seems counter-intuitive, since Host 1 counts more in determining the overall mean
slowdown of the system because most jobs have destination Host 1. However, the point is
that now it is impossible to create the wonderful state where almost all jobs are on Host
1 and yet Host 1 is underloaded. The tail is just not heavy enough. No matter how we
choose the cutoff, a significant portion of the jobs will have Host 2 as their destination.
Thus Host 2 will inevitably figure into the overall mean slowdown and so we need to keep
the performance on Host 2 in check. To do this, it turns out we need to slightly underload
Host 2, to make up for the fact that the job size variability is so much greater on Host 2
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than on Host 1.

The above has been an explanation for why load unbalancing is important with respect
to optimizing the system mean slowdown. However it is not at all clear why load unbal-
ancing also optimizes fairness, as shown in Figure 8(c). Under TAGS-opt-fairness, the
mean slowdown experienced by the short jobs is equal to the mean slowdown experienced
by the long jobs. However it seems in fact that we are treating the long jobs unfairly on
3 counts:

1. The short jobs run on Host 1 which has very low load (for low «).
2. The short jobs run on Host 1 which has very low E { X2}.

3. The short jobs don’t have to be restarted from scratch and wait on a second line.

So how can it possibly be fair to help the short jobs so much? The answer is simply
that the short jobs are short. Thus they need low waiting times to keep their slowdown
low. Long jobs on the other hand can afford a lot more waiting time. They are better able
to amortize the punishment over their long lifetimes. It is important to mention, though,
that this would not be the case for all distributions. It is because our job size distribution
for low « is so heavy-tailed that the long jobs are truly elephants (way longer than the
shorts) and thus can afford to suffer more.

5.3 Different Loads

Until now we have studied only the model of a distributed server with two hosts and
system load 0.5. In this section we consider the effect of system load on the perfor-
mance of TAGS. We continue to assume a 2 host model. Figure 9 shows the perfor-
mance of TAGS-opt-slowdown on a distributed server run at system load (a) 0.3, (b)
0.5, and (c) 0.7. In all three figures TAGS-opt-slowdown improves upon the performance
of Least-Work-Remaining and Random under the full range of «, however the improve-
ment of TAGS-opt-slowdown is much better when the system is more lightly loaded. In
fact, all the policies improve as the system load is dropped, however the improvement in
TAGS is the most dramatic. In the case where the system load is 0.3, TAGS-opt-slowdown
improves upon Least-Work-Remaining by over 4 orders of magnitude at o« = 1, by 7
orders of magnitude when « = .6 and by almost 20 orders of magnitude when o« = .2.
When the system load is 0.7 on the other hand, TAGS-opt-slowdown behaves comparably
to Least-Work-Remaining for most o and only improves upon Least-Work-Remaining
in the narrower range of .6 < o < 1.5. Notice however that at o = 1, the improvement of
TAGS-opt-slowdown is still about 4 orders of magnitude.

Why is the performance of TAGS so correlated with load? There are 2 reasons, both of
which are explained by Figure 10 which shows the loads at the 2 hosts under TAGS-opt-slowdown
in the case where the system load is (a) 0.3, (b) 0.5, and (c) 0.7.
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Figure 9: Mean slowdown under TAGS-opt-slowdown in a distributed server with 2
hosts with system load (a) 0.3, (b) 0.5, and (c) 0.7. In each figure the mean slow-
down wunder TAGS-opt-slowdown is compared with the performance of Random and
Least-Work-Remaining. Observe that in all the figures TAGS outperforms the other poli-
cies under all «. However TAGS is most effective at lower system loads.
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Figure 10: Load at Host 1 and Host 2 under TAGS-opt-slowdown shown for a distributed
server with 2 hosts and system load (a) 0.3 (b) 0.5 (¢) 0.7. The dotted line shows the sum
of the loads at the 2 hosts. If there were no excess, the dotted line would be at (a) 0.6 (b)
1.0 and (c) 1.4 in each of the graphs respectively. In figures (a) and (b) we see excess only
at the higher o range. In figure (c) we see excess in both the low o and high o range, but
not around o = 1.

The first reason for the ineffectiveness of TAGS under high loads is that the higher the
load, the less able TAGS is to play the load-unbalancing game described in Section 5.2. For
lower «, TAGS reaps much of its benefit at the lower o by moving all the load onto Host
2. When the system load is only 0.5, TAGS is easily able to pile all the load on Host 2
without exceeding load 1 at Host 2. However when the system load is 0.7, the restriction
that the load at Host 2 must not exceed 1 implies that Host 1 can not be as underloaded
as TAGS would like. This is seen by comparing Figure 10(b) and Figure 10(c) where in (c)
the load on Host 1 is much higher for the lower a than it is in (b).

The second reason for the ineffectiveness of TAGS under high loads is due to what we
call excess. Excess is the extra work created in TAGS by restarting jobs from scratch. In
the 2-host case, the excess is simply equal to A-py-s;, where A is the outside arrival rate, ps
is the fraction of jobs whose final destination is Host 2, and s; is the cutoff differentiating
short jobs from long jobs. An equivalent definition of excess is the difference between the
actual sum of the loads on the hosts and & times the system load, where h is the number
of hosts. The dotted line in Figure 10(a)(b)(c) shows the sum of the loads on the hosts.

Observe that for loads under 0.5, excess is not an issue. The reason is that for low «,
where we need to do the severe load unbalancing, excess is basically non-existent for loads
0.5 and under, since p; is so small (due to the heavy-tailed property) and since s; could
be forced down. For high «, excess is present. However all the task assignment policies
already do well in the high « region because of the low job size variability, so the excess
is not much of a handicap.

When system load exceeds 0.7, however, excess is much more of a problem, as is
evidenced by the dotted line in Figure 10(c). One reason that the excess is worse is simply
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that overall excess increases with load because excess is proportional to A which is in turn
proportional to load. The other reason that the excess is worse at higher loads has to do
with s1. In the low « range, although py is still low (due to the heavy-tailed property), s;
cannot be forced low because the load at Host 2 is capped at 1. Thus the excess for low
« is very high. In the high o range, excess again is high because p; is high.

Fortunately, observe that for higher loads excess is at its lowest point at o = 1. In fact,
it is barely existent in this region. Observe also that the «w = 1 region is the region where
balancing load is the optimal thing to do (with respect to minimizing mean slowdown),
regardless of the system load. This “sweet spot” is fortunate because o & 1 is characteristic
of many empirically measured computer workloads, see Section 3.

6 Analytic results for case of more than 2 hosts

Until now we have only considered distributed servers with 2 hosts. For 2 hosts, we saw
that the performance of TAGS-opt-slowdown was amazingly good if the system load was
0.5 or less, but not nearly as good for system load > 0.5. In this section we consider the
case of more than 2 hosts. 7

One claim that can be made straight off is that an & host system (h > 2) with system
load p can always be configured to produce performance which is at least as good as the
best performance of a 2-host system with system load p. To see why, observe that we can
use the h host system (assuming h is even) to simulate a 2 host system as illustrated in
Figure 11: Rename Hosts 1 and 2 as Subsystem 1. Rename Hosts 3 and 4 as Subsystem
2. Rename Hosts 5 and 6 as Subsystem 3, etc. Now split the traffic entering the h host
system so that 2/h fraction of the jobs go to each of the h/2 subsystems. Now apply
the best known task assignment policy to each subsystem independently — in our case we
choose TAGS. Each subsystem will behave like a 2 host system with load p running TAGS.
Since each subsystem will have identical performance, the performance of the whole & host
system will be equal to the performance of any one subsystem. (Observe that the above
argument works for any task assignment policy).

However, the performance of a distributed server with h > 2 hosts and system load
p is often much superior to that of a distributed server with 2 hosts and system load p.
Figure 12 shows the mean slowdown under TAGS-opt-slowdown for the case of a 4 host
distributed server with system load 0.3. Comparing these results to those for the 2 host
system with system load 0.3 (Figure 9(a)), we see that:

"The phrase “adding more hosts” can be ambiguous because it is not clear whether the arrival rate is
increased as well. For example, given a system with 2 hosts and system load 0.7, we could increase the
number of hosts to 4 hosts without changing the arrival rate, and the system load would drop to 0.35. On
the other hand, we could increase the number of hosts to 4 hosts and increase the arrival rate appropriately
(double it) so as to maintain a system load of 0.7. In our discussions below we will attempt to be clear as
to which view we have in mind.
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Figure 11: Illustration of the claim that an h host system (h > 2) with system load p
can always be configured to produce performance at least as good as a 2 host system with
system load p (although the h host system has much higher arrival rate).

4

1. The performance of Random stayed the same, as it should.

2. The performance of Least-Work-Remaining improved by a couple orders of magni-
tude in the higher « region, but less in the lower « region. The Least-Work-Remaining
policy is helped by increasing the number of hosts, although the system load stayed
the same, because having more hosts increases the chances of one of them being free.

3. The performance of TAGS-opt-slowdown improved a lot. So much so, that the
mean slowdown under TAGS-opt-slowdown is never over 6 and often under 1. At
o == 1, TAGS-opt-slowdown improves upon Least-Work-Remaining by 4-5 orders
of magnitude. At o = .6, the improvement increases to 8 or 9 orders of magnitude.
At o = .2, TAGS-opt-slowdown improves upon Least-Work-Remaining by over 25
orders of magnitude.

The enhanced performance of TAGS on more hosts may come from the fact that more
hosts allow for greater flexibility in choosing the cutoffs. However it is hard to say for sure
because it is difficult to compute results for the case of more than 2 hosts. The cutoffs in
the case of 2 hosts were all optimized by Mathematica™ | while in the case of 4 hosts it
was necessary to perform the optimizations by hand. For the case of system load 0.7 with
4 hosts we ran into the same type of problems as we did for the 2 host case with system

load 0.7.
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Figure 12: Mean slowdown under TAGS-opt-slowdown compared with other policies in
the case of a distributed server with / hosts and system load 0.3. The cutoffs for
TAGS-opt-slowdown were optimized by hand. In many cases it is possible to improve
upon the results shown here by adjusting the cutoffs further, so the slight bend in the graph
may not be meaningful. Observe that the mean slowdown of TAGS almost never exceeds 6.

6.1 The Server Expansion Performance Metric

There is one thing that seems very artificial about our current comparison of task assign-
ment policies. No one would ever run a system with a mean of slowdown 10°. In practice,
if a system was operating with mean slowdown of 10, the number of hosts would be in-
creased, without increasing the arrival rate, thus dropping the system load, until the sys-
tem’s performance improved to a reasonable mean slowdown, say 3. Consider the following
example: Suppose we have a 2-host system running at system load .7 and with variability
parameter o = .6. For this system the mean slowdown under TAGS-opt-slowdown is 107,
and no other policy that we know of does better. Suppose however we desire a system
with mean slowdown under 3. So we double the number of hosts (without increasing the
outside arrival rate). At 4 hosts, with system load 0.35, TAGS-opt-slowdown now has
mean slowdown of around 1, whereas Least-Work-Remaining’s slowdown has improved
to 108. It turns out we would have to increase number of hosts to 13 for the performance
of Least-Work-Remaining to improve to the point of mean slowdown under 3. And for
Random to reach that level it would require an additional 10° hosts.

The above example suggests a new practical performance metric for distributed servers,
which we call the server expansion metric. The server expansion metric asks how many
additional hosts must be added to the existing server (without increasing outside arrival
rate) to bring mean slowdown down to a reasonable level (where we will arbitrarily define
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“reasonable” as slowdown of 3 or less). Figure 13 compares the performance of our policies
according to the server expansion metric, given that we start with a 2 host system with
system load of 0.7. For TAGS-opt-slowdown, the server expansion is only 3 for &« = .2 and
no more than 2 for all the other o. For Least-Work-Remaining, on the other hand, the
server expansion ranges from 1 to 27, as « decreases. Still Least-Work-Remaining is not
so bad because at least its performance improves somewhat quickly as hosts are added
and load is decreased, the reason being that both these effects increase the probability of
a job finding an idle host. By contrast Random, shown in Figure 13(b), is exponentially
worse than the others, requiring as many as 10° additional hosts when « ~ 1. Although
Random does benefit from increasing the number of hosts, the effect isn’t nearly as strong
as it is for TAGS and Least-Work-Remaining.

7 The effect of the range of task sizes

The purpose of this section is to investigate what happens when the range of job sizes is
smaller than we have heretofore assumed, resulting in a smaller coefficient of variation in
the job size distribution.

Until now we have always assumed that the job sizes are distributed according to a
Bounded Pareto distribution with upper bound p = 10'° and fixed mean 3000. This
means, for example, that when o = 1, we need to set the lower bound on job sizes to
k = 167. However this implies that the range of job sizes spans 8 orders of magnitude.

It is not clear that all applications have job sizes ranging 8 orders in magnitude. In
this section we rederive the performance of all the task assignment policies when the upper
bound p is set to p = 107, while still holding the mean of the job size distribution at 3000.
This means, for example, that when a = 1 (as agrees with empirical data), we need to set
the lower bound on job sizes to k = 287, which implies the range of job sizes spans just 5
orders of magnitude. Figure 14 shows the second moment of the Bounded Pareto job size
distribution as a function of @ when p = 107. Comparing this figure to Figure 4, we see
that the job size variability is far lower when p = 107.

Lower variance in the job size distribution suggests that the improvement of TAGS over
the other assignment policies will not be as dramatic as in the higher variability setting
(when p = 10'%). This is in fact the case. What is interesting, however, is that even in this
lower variability setting the improvement of TAGS over the other policies is still impressive,
as shown in Figure 15. Figure 15 shows the mean slowdown of TAGS-opt-slowdown as
compared with Random and Least-Work-Left for the case of two hosts with system load
0.5. Observe that for o &~ 1, TAGS improves upon the other policies by over 2 orders of
magnitude. As a drops, the improvement increases. This figure should be contrasted with
Figure 6(a), which shows the same scenario where p = 10'°.
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Figure 13: Server expansion requirement for each of the task assignment policies,
given that we start with a 2 host system with system load of 0.7.  (a) Shows
just Least-Work-Remaining and TAGS-opt-slowdown on a non-log scale (b) Shows
Least-Work-Remaining, TAGS-opt-slowdown, and Random on a log scale.
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Figure 14: Second moment of B(k, p, ) distribution, where now the upper bound, p, is set
at p =107, rather than 10'°. The mean is held fized at 3000 as « is varied. Observe that
the coefficient of variation now ranges from 2 (when o =2) to 33 (when a = .2).
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Figure 15: Mean slowdown under TAGS-opt-slowdown in a distributed server with 2 hosts
with system load 0.5, as compared with Random and Least-Work-Remaining. In this set
of results the job size distribution is B(k,p,a), where p = 107,

25



8 Conclusion

This paper is interesting not only because it proposes a powerful new task assignment
policy, but more so because it challenges some natural intuitions which we have come to
adopt over time as common knowledge.

Traditionally, the area of task assignment, load balancing and load sharing has con-
sisted of heuristics which seek to balance the load among the multiple hosts. TAGS, on the
other hand, specifically seeks to unbalance the load, and sometimes severely unbalance the
load. Traditionally, the idea of killing a job and restarting it from scratch on a different
machine is viewed with skepticism, but possibly tolerable if the new host is idle. TAGS,
on the other hand, kills jobs and then restarts them from scratch at a target host which
is typically operating at extremely high load, much higher load than the original source
host. Furthermore, TAGS proposes restarting the same job multiple times. Traditionally
optimal performance and fairness are viewed as conflicting goals. In TAGS, fairness and
optimality are surprisingly close.

It is interesting to consider further implications of these results, outside the scope of
task assignment. Consider for example the question of scheduling CPU-bound jobs on
a single CPU, where jobs are not preemptible and no a priori knowledge is given about
the jobs. At first it seems that FCES scheduling is the only option. However in the face
of high job size variability, FCFS may not be wise. This paper suggests that killing and
restarting jobs may be worth investigating as an alternative, if the load on the CPU is
low enough to tolerate the extra work created.

This work may also have implications in the area of network flow routing. A very in-
teresting recent paper by Shaikh, Rexford, and Shin [27] takes a first step in this direction.
The paper discusses routing of 1P flows (which also have heavy-tailed size distributions)
and recommends routing long flows differently from short flows.
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9 Appendix

This section provides the analysis of the TAGS policy. Throughout this discussion it will
be necessary to refer to Table 2 to understand the notation.

We start with some properties of the original distribution of job sizes B(k,p, a):

flx) = el p<a <y

i .
=)= L@ 7]

20} = [t

%-(lnp—lnk) fa=j=1

E{X}

Let p; denote the fraction of jobs whose final destination is Host i and p¥**"* denote
the fraction of jobs which ever visit Host 1.

S ka o o
pi = /Si_1 fle)dx = T=(/p) (52'—1 — 5 )

h
visit .
i = E:P]

=i

Now consider those jobs whose final destination is Host i. Observe that since the
original distribution is Bounded Pareto B(k,p,«), then the distribution of jobs whose
final destination is Host ¢ is also a Bounded Pareto B(s;_1,s;,«@). This makes it easy to
compute E{X{}, the jth moment of the distribution of jobs whose final destination is
Host 2:

G

(a_j) (1—(51‘_1/51.)(1) lf (87 #]

E{XZ]} = /Si xj@dx _ 7;1—;;_1 (ln s; —In si_l) fa=7=1
si—1

Pi

W'(lnsi—lﬂsi—l) ifa=j=2

Now consider all jobs which visit Host 7. These include the p; fraction of all jobs which

have Host i as their final destination. However these also include the p?'** — p; fraction of
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Number of hosts

B(k,p,a) Job size distribution
p Upper bound on job size distribution
k Lower bound on job size distribution
f(z) Probability density function for B(k,p, «).
«@ Heavy-tailed parameter
S0, 51,---,5, | Job size cutoffs
S5 Upper bound on job size seen by Host ¢
A Outside arrival rate into system
P System load
prsit Load at Host 7
i Fraction of jobs whose final destination is Host 1,
i.e., whose size is between s;_; and s;.
prisdt Fraction of jobs which spend time at Host 7
Ayestt Arrival rate into Host ¢
E{X} Mean job size under B(k, p, «) distribution
E{X’} jth moment of job size distribution B(k, p, «)
E{X;} Expected size of jobs whose final destination is Host .
E { Xy Expected size of jobs which spend time at Host i
E{X?} Second moment of size of jobs whose final destination is Host :.
E {XZ]} jth moment of size of jobs whose final destination is Host .
E {Xf(mm)} Second moment of size of jobs which spend time at Host ¢
E {Xf(vlm)} jth moment of size of jobs which spend time at Host 7
E{1/X;} Expected 1/size of jobs whose final destination is Host i
E {Wwysty Expected waiting time at Host ¢
E{W;} Total expected waiting time for jobs with final destination Host ¢
E{S;} Expected slowdown for jobs with final destination Host 2
E{W} Expected waiting time for jobs under TAGS
E{S} Expected slowdown for jobs under TAGS
Faxcess Total excess work being done

Table 2: Notation for analysis of TAGS
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all jobs which have Host j as their final destination, where 5 > ¢. Those jobs which have
Host 7, 7 > ¢, as their final destination will only have a service requirement of s; at Host
. Thus it follows that:

vistt

» pi Pyt — pi
[ [
it
2(visit) o Pi 2 pwsz — P 2
E {XZ } - pyisit -E {XZ } + : vistt "5
[ [
A;}zszt — A . p;/zszt

p;gisit _ /\;Jisit ‘E { X;Jisit}
elyx/} = B{x7/}

There are two equivalent ways of defining excess. We show both below and check them
against each other in our computations.

h
true-sum-of-loads = Z prsit
=1
desired-sum-of-loads = h-p
Fuxcess, = true-sum-of-loads — desired-sum-of-loads
h .
FEzcessy, = Z AV sy
1=2
Fxcess = Faxcess, = Fxcessy

Computing mean waiting time and mean slowdown follows from Theorem 1, except
for one approximation, as explained earlier in the text: we will assume that the arrival
process into each host is a Poisson Process. Observe that in computing mean slowdown,
we have to be careful about which jobs we’re averaging over. The calculation works out
most easily if we condition on the final destination of the job, as shown below.

E {Wivisit} _ /\;Jisit ‘E {X?(visit)} /(2(1 - p;mit))
E{W;} = Z_: E{wyiit]
E{W} = Zh:E{Wz’} i
E{S} = E{Wi}'E{l/Xi}
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h
E{S} = ZE{Si}'pi

All the formulas above assume knowledge of the cutoff points sg, s1,...,sy. To deter-
mine these cutoff points, we feed all of the above formulas into Mathematica™ | leaving
the s;’s as undetermined variables. We then solve for the optimal setting of the s;’s
which minimizes the mean slowdown, mean waiting time, or fairness, as desired, subject
to conditions that the load at each host stays below 1.
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