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Abstract

We present the first near-exact analysis of an MAPileue withm > 2 preemptive-resume priority
classes. Our analysis introduces a new technique, whickfgeto as Recursive Dimensionality Reduc-
tion (RDR). The key idea in RDR is that the-dimensionally infinite Markov chain, representing the
m class state space, is recursively reduceditedanensionally infinite Markov chain, that is easily and
quickly solved. RDR involves no truncation and results ity@mall inaccuracy when compared with
simulation, for a wide range of loads and variability in tbb jsize distribution.

Our analytic methods are then used to derive insights on holti-server systems with prioritization
compare with their single server counterparts with respecesponse time. Multi-server systems are
also compared with single server systems with respect tefthet of different prioritization schemes —
“smart” prioritization (giving priority to the smaller j&f) versus “stupid” prioritization (giving priority
to the larger jobs). We also study the effect of approxingatinclass performance by collapsing the
classes into just two classes.

Keywords: M/GI/k, M/PH/k, multi-server queue, priority queue, matdnalytic methods, busy periods,
multi-class queue, preemptive priority.

1 Introduction

Much of queueing theory is devoted to analyzing priority ugge where jobs (customers) are labeled and
served in accordance with a priority scheme: high-prigatys preempt medium-priority jobs, which in turn
preempt low-priority jobs in the queue. Priority queueirgnes up in many applications: Sometimes the
priority of a job is determined by the job’s owner via a Seevicevel Agreement (SLA), whereby certain
customers have chosen to pay more so as to get high-pri@mégsa to some high-demand resource. Other
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times, the priority of a job is artificially created, so as taximize a company’s profit or increase system
utilization. For example, an online store may choose to bige-priority to the requests of big spenders, so
that those customers are less likely to go elsewhere, sée [18

Analyzing the mean response time (and higher moments obnsgptime) for different classes of jobs
is clearly an important problehWhile this problem has been well understood in the case ofglesserver
M/GI/1 queue since the 1950’s [5], the problem becomes mumie miifficult when considered in the context
of a multi-server M/GIk system, and even for an M/&ystem when jobs have different completion rates.
This is unfortunate since such multi-server systems anafaet in many applications where prioritization
is used, e.g., web server farms and super-computing centers

The reason that priority queueing is difficult to analyze imalti-server setting is that jobs of different
priorities may be in service (at different servers) at thraesdéime, thus the Markov chain representation of
the multi-class, multi-server queue appears to requickitng the number of jobs of each class. Hence one
needs a Markov chain which is infinite in dimensions, where: is the number of priority classes. While
the analysis of a 1-dimensionally infinite Markov chain isydhe analysis of am-dimensionally infinite
Markov chain {n > 1) is largely intractable.

Prior work

The number of papers analyzing multi-server priority queeisevast, however almost all are restricted to
only two priority classes Of those restricted to two priority classes, all assiaxgonential service times
The only papersiot restricted to two priority classes are coarse approximatlmlased on assuming that the
multi-server behavior is related to that of a single serystesm [2] or approximations based on aggregating
the many priority classes into two classes [20, 23].

Two priority classes

We start by describing the papers restrictedvwo priority classesand exponentially distributed service
demands Techniques for analyzing the M/K/dual priority system can be organized into four types on
which we elaborate below: (i) approximations via aggregatr truncation; (i) matrix analytic methods;
(iii) generating function methods; (iv) special cases weltbe priority classes have the same mean. Unless
otherwise mentioned, preemptive-resume priorities shbalassumed.

Nearly all analysis of dual priority M/M{ systems involves the use of Markov chains, which with two
priority classes grows infinitely in two dimensions (one dimsion for each priority class). In order to
overcome this, researchers have simplified the chain inwanrvays. Kao and Narayanan truncate the chain
by either limiting the number of high priority jobs [13], dnd number of low priority jobs [11]. Nishida

Iwe will use the termresponse timéhroughout the paper to denote the time from when a job artiveil it is completed. We
will also occasionally talk about thdelay(wasted time), which we define as the job’s response time siitaservice requirement.



aggregates states, yielding an often rough approximafi@h [Kapadia, Kazmi and Mitchell explicitly
model a finite queue system [14]. Unfortunately, aggregatiotruncation is unable, in general, to capture
the system performance as the traffic intensity grows large.

Although, in theory, the matrix analytic method can be useditectly analyze a 2D-infinite Markov
chain (see for example [3]), the matrix analytic method iscimaimpler and more computationally effi-
cient when it is applied to a 1D-infinite Markov chain. Themef, most papers that use the matrix analytic
method to analyze systems involving 2D-infinite Markov disdiirst reduce the 2D-infinite chain to a 1D-
infinite chain by, for example, truncating the state spacelbging an upper bound on the number of jobs
[13, 11, 17, 22]. Miller [19] and Ngo and Lee [22] partitionetlstate space into blocks and then “super-
blocks,” according to the number of high priority customiergueue. However, [19] experiences numerical
instability issues whep > 0.8.

A third stream of research capitalizes on the exponentiakjpes by explicitly writing out the balance
equations and then finding roots via generating functiomgieheral these yield complicated mathematical
expressions susceptible to numerical instabilities dtdridoads. See King and Mitrani [20]; Gail, Hantler,
and Taylor [8, 9]; Feng, Kowada, and Adachi [7]; and Kao ands@vi [12].

Finally there are papers that consider the special caseevthermultiple priority classes all have the
same mean. These include Davis [6], Kella and Yechiali [id]fon-preemptive priorities), and Buzen and
Bondi [4].

The only work dealing with non-exponential service timesdtained in a pair of papers, not yet
published, by Sleptchenko et. al. [27, 28]. Both papersidens two-priority, multi-server system where
within each priority there may be a number of different atsss®ach with its own different exponential job
size distribution. This is equivalent to assumingyger-exponential job size distributidor each of the
two priority classes The problem is solved via a combination of generating fionst and matrix analytic
methods. In theory, their technique may be generalizabRHdistributions, though they evaluate only
hyper-exponential distributions due to the increased dexity necessary when using more general PH
distributions.

More than two priority classes

For the case afore than two priority classethere are only coarse approximations. The Bondi-Buzer) (BB
approximation [2] is beautiful in its simplicity and usahyjl It is based on an intuitive observation that the
“improvement” of priority scheduling over FCFS schedulimgderk servers is similar to that for the case

of one server with equal total capacity:

E [DM/Gllk/prio] E [DM/Gllllprio]
E[DMIGIKIFCFS ~ E[DMIGI/FCFS

= scaling factor Q)



Here E[DMCVKP0] is the overall mean delay under priority scheduling witeervers of speed/k, and
E[DMCVKFCFS s defined similarly for FCFS, while M/GI/1 refers to a singlerver queue with speed 1.
This relation is exact when job sizes are exponential wighstime rate for all classes; however what happens
when this is not the case has never been established.

The other approximation (which we denote by MK-N) which a#ofor more than two priority classes
andexponentiajob sizes is due to Mitrani and King [20], and also used by Miah23] to extend the latter
author’s analysis of two priority classes+#o > 2 priority classes. The MK-N approximation analyzes the
mean delay of the lowest priority class in an MAtjueue withm > 2 priority classes baggregating all the
higher priority classesThus, instead of aggregating all jobs into one class, as &B8,dVK-N aggregates
into two classes. The job size distribution of the aggregjatass is then approximated with an exponential
distribution by matching the first moment of the distribuatio

Contributions of this paper

In Section 2, we introduce a new analytical approach thatiges the first near-exact analysis of the M/RH/
gueue withm > 2 preemptive-resume priority classes. Our approach, whietrefer to as Recursive
Dimensionality Reduction (RDR), is very different from thior approaches described above. RDR allows
us to recursively reduce the-dimensionally infinite state space, created by trackimgttpriority classes,

to a 1-dimensionally infinite state space, which is analyticatlyctable. The dimensionality reduction is
done without any truncation; rather, we reduce dimensitynaly introducing “busy period transitions”
within our Markov chain, for various types of busy periodeated by different job classes. The only
approximation in the RDR method stems from the fact that wedrte approximate these busy periods
using Markovian (phase-type) PH distributions. We find thatching three moments of these busy periods
is usually possible using a 2-phase Coxian distributiom provides sufficient accuracy, within a couple
percent of simulation, for all our experiments. Our experits span load ranging from= 0.05top = 0.95

and job size variability ranging fron0? = 1 to C? = 128, whereC? = var(X)/(E[X])?, where X
represents the job size (service requirement). The acgcofabe RDR method can be increased arbitrarily
by better approximating the busy periods. Having reducedptibblem to al-dimensionally infinite state
space, we describe how to derive mean response time and mgineents of response time.

In theory RDR can handle systems with any number of servaysnamber of priority classes, and PH
service times. In addition, RDR is quite efficient; for akktbicenarios explored in this paper, the computation
time under RDR is less than a few seconds. However, the caityptd the RDR method does increase with
both the number of serveisand the number of classes. Because RDR becomes less practical under
high m and k, we develop a much simpler, but only slightly less accurapmroximation RDR-A (see
Section 2.5). RDR-A simplifies calculations by approximgtianm priority system with a two priority
system, which is then solved using RDR.

In Section 3 we present results from both RDR and RDR-A forghess mean response time for an
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M/PH/k queue with multiple priority classes. In Section 4, we usséhresults to obtain many interesting
insightsabout priority queueing. First, in Section 4.1 we compagegarformance of priority queueing in
a multi-server system with servers each of speddk versus a single server of speedWe find that the
effect of priorities in a single server system can be verfed#int than in a multi-server system of equal
capacity. (A non-surprising consequence of this resuliasthe BB approximation, which relies on relating
a multi-server system to a single server system, can exhigie errors.) Next, in Section 4.2, we study the
effect of priority policies that favor short jobs (“smarfqmitization”) versus priority policies that favor long
jobs (“stupid prioritization”) under systems with diffetenumbers of servers. Understanding the effect of
“smart” prioritization is important because many commohestuling policies are designed to give priority
to short jobs. Lastly, in Section 4.3, we ask how effectivaesslaggregation (aggregating > 2 priority
classes into just priority classes) is as an approximation for dealing withtegns having more than two
priority classes. We evaluate two types of class aggregatiat used in the MK-N approximation and that
used in RDR-A, to show when class aggregation serves as@nadae approximation.

2 RDR analysisof M/PH/k with m priority classes

In this section we describe the RDR technique, dividing opptanation into three parts. As an introduction,
in Section 2.1, we deal only with the simplest caserof= 2 priority classes and exponential job sizes,
which we solve using the techniques in [26, 30]. We then movthé¢ difficult case ofn > 2 priority
classes, but still with exponential service times, in Secf.2. Here the techniques from [26, 30] do not
apply, so we introduce Recursive Dimensionality Reduc(®BPR). The RDR approach uses the analysis
of them — 1 priority classes to analyze the-th priority class. This is a non-trivial procedure for > 2
since it involves evaluating many complex passage timesy(pariods) in the chain representing the- 1
priority classes, as these passage times now form tramsitvithin the chain representing priority classes.
Finally in Section 2.3, we show how RDR can be applied to thetrgeneral case of PH service times with
m > 2 priority classes.

All the analysis up to through Section 2.3 deals with how tdvdemean per-class response times. In
Section 2.4 we illustrate how the RDR method can be extermlettainvariance of response tinfer each
class. Finally, in Section 2.5, we introduce RDR-A, whiclamsapproximation of RDR, allowing very fast
(< 1 second) evaluation of high numbers of priority classes amgess, with small£ 5%) error.

2.1 Simplest case: Two priority classes, exponential job sizes

Consider the simplest case of two servers and two priorétgsas, high (H) and low (L), with exponentially
distributed sizes with ratesy and ., respectively. Figure 1(a) illustrates a Markov chain ofteystem,
whose states track the number of high priority and low prigjdbs; hence this chain grows infinitely in
two dimensions. Observe that high priority jobs simply sed/&M/2 queue, and thus their mean response
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Figure 1: (a) Markov chain for an M/M/2 queue with two priority classeBhis Markov chain is infinite
in two dimensions. Via the Dimensionality Reduction tegivj we arrive at the chain in (b), which uses
busy period transitions, and is only infinite in one dimensidn (b), the busy period is represented by
a single transition. In (c), the busy period is representgdalbtwo phase PH distribution (with Coxian
representation), yielding a 1D-infinite Markov chain.

time is well-known. Low priority jobs, however, have accasgither an M/M/2, M/M/1, or no server at all,
depending on the number of high priority jobs. Thus their megponse time is more complicated, and this
is where we focus our efforts.

Figure 1(b) illustrates the reduction of the 2D-infinite Maw chain to a 1D-infinite chain. The 1D-
infinite chain tracks the number of low priority jobs exacthor the high priority jobs, the 1D-infinite chain
only differentiates between zero, one, and two-or-moré pigprity jobs. As soon as there are two-or-more
high priority jobs, ahigh priority busy periods started. During the high priority busy period, the system
only services high priority jobs, until the number of highiguity jobs drops to oné. The length of time
spent in this high priority busy period is exactly an M/M/1sgiperiod where the service rate2ig. We
denote the duration of this busy period by the transitioeleth3.,, , .

2Throughout the paper a “higher priority busy period” is defiras the time from when the system Halsigher priority jobs
until there are onlyt — 1 higher priority jobs.



The busy periodB,,,,, is not exponentially-distributed. Hence it is not clear how it slibfit into
a Markov model. We use a PH distribution (specifically a Coxistribution) to match the first three
moments of the distribution aBy,,,,. Parameters of the PH distribution, whose first three mosneitch
those ofBs,,,,, are calculated via the closed form solutions provided §j.[2

Figure 1(c) illustrates the same 1D-infinite chain as in FegL(b), except that the busy period transition
is now replaced by a two phase PH distribution with paramsetert;o andt,. The limiting probabilities
in this 1D-infinite chain can be analyzed using matrix analgtethods [16]. These in turn yield the mean
number of low-priority jobs, which via Little’s law yieldshe mean response time for low-priority jobs.
The only inaccuracy in the above approach is that only thrememts of the high-priority busy period are
matched. We will see later that this suffices to obtain veghtdccuracy across a wide range of load and
job size distributions.

More formally, the 1D-infinite Markov chain is modeled as arthomogeneous) QBD process, where
level/ of the process denotes theh column, namely all states of the forit(/L) for each?. The generator
matrix, Q, of this process can be expressed as a block diagonal matrix:

L0  F(0)
BL LM FO)
Q= B® LO FO

where submatri¥ () encodes (forward) transitions from level (colundr level¢ + 1 for £ > 0, submatrix
B encodes (backward) transitions from levéb level?¢ — 1 for ¢ > 1, and submatrid© encodes (local)
transitions within levef for ¢ > 0. Specifically, for the Markov Chain depicted in Figure 1(@§ order the
4 states in level as: (0H,¢L), (1H,¢L), (2t H,(L), (xH,(L). The pair of state§(2* H, /L), (xH, (L)}
are the states used to represent the busy period, whereated2st H, /L) denotes the start of the busy
period and(xH, (L) denotes the intermediate “bubble” state in the busy periGden this ordering of
states, we have:

—01  AH
LO — HH —02 | AH
1 | —o3  ti2
to ‘ —0y

whereo; = Y, Q. The delineations of the matrik(“) are intended to highlight the busy period.
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Figure 2:This chain illustrates the case of two priority classes dmdé¢ servers. The busy period transitions
are replaced by a Coxian phase-type distribution matchimge moments of the busy period duration, as
shown in Figure 1.

F© = X1, for ¢ > 0, wherel is a4 x 4 identity matrix, and

min(2,¢)

B =y

for ¢ > 1.

The stationary probabilities of being in levél 7, are then given recursively by, = #_; - R,
where, andR(® are calculated as follows: Defirfeto be the level that the QBD process starts repeating
(in Figure 1(c)/ = 1), then for¢ = 1, ..., ¢, we have thaR(® is given recursively by:

FD L RO .LO L RO .RED . BED = 0,

where0 is a zero matrix of appropriate dimensiohx 4). For¢ > 7 + 1, R(Y) = R, whereR is given by
the minimal solution to the following matrix quadratic etjoa:

FO+R.-LO +R?2.BO = 0.

Vector 7 is given by a positive solution of, (L(O) + RO -B(l)) = 0, normalized by the equation
P 0]‘[ R(l = 1, where( and I are column vectors with an appropriate number of elements
of 0 and 1, respectlvely. The mean response time can now bputethusing the stationary distributions,
'S, given above, via Little’s law.

Figure 2 shows the generalization to a three server systasivply add one row to the chain shown in
Figure 1, and now differentiate between 0, 1, 2, or 3-or-niigh priority jobs. This can be easily extended
to the case ok > 3 servers.



2.2 Harder case: m priority classes, exponential job sizes

We now turn to the more difficult case of > 2 priority classes. We illustrate this for the case of two
servers and three priority classes: high-priority (H), medpriority (M), and low-priority (L). The mean
response time for class H jobs and that for class M jobs aneteasompute. Class H jobs simply see an
M/M/2 queue. Class M jobs see the same system that the lawitgrjobs see in an M/M/2 queue having
two priority classes. Replacing the L's by M’s in the chairFigure 1 yields the mean response time for the
M class jobs.

The analysis of the class L jobs is the difficult part. The olhgiapproach would be to aggregate the H
and M jobs into a single class, so that we have a 2-class sytdvhversus L jobs). Then we could apply
the technique of the previous section, tracking exactlyrtheber of low-priority jobs and maintaining
limited state information on the H-M class. This is the agmtothat we follow in Section 2.5 in deriving
our RDR-A approximation. However, this approach is impeddecause the duration of the busy periods
in the H-M class depends on whether the busy period was @thyt@H jobs, 1H and 1M job, or 2M jobs
in service. By ignoring the priorities among H’s and M’s, we #&noring the fact that some types of busy
periods are more likely than others. Even given the infoimmabn who starts the busy period, this still does
not suffice to determine its duration, because the duratiaisio affected by the prioritization within the
aggregated H-M class.

Thus, a precise response time analysis of class L requir@#aimng more information. As before,
we want to exactly track the number of class L jobs. Given thete are two servers, we need to further
differentiate between whether there are zero H and M jobs,tbor M job, or two or more H and M jobs.
Whenever there are two or more H and M jobs, we are in an H-M pesipd. For an M/M/2 with three
priority classes, there amx types of busy periogmssible, depending on the state at the start of the busy
period —(2H,0M ), (1H,1M), or (0H,2M) — and the state in which the busy period ends #, 0)/) or
(0H,1M). We derive the busy period duration by conditioning on wlaststand ends the busy period.

Figure 3 (left) shows the level of the 1D-infinite chain in wiithe number of class L jobs is In
state (vH,vM,uL), v class M jobs andv class H jobs are in the systemiif+ w < 2; otherwise, the state
(wH,vM,uL) denotes that we are in a H-M busy period that was started tiass M jobs andv class H
jobs. Observe that there are six types of busy periods aghitabeledB,, Bo, ..., Bg; the busy period is
determined by the state in which it was started and the statdich it ends. Notice, for example, that both
states in the fourth and fifth row are labeled (OH,2M), meaning that the busy period is started by two
class M jobs; but these two states differ in the class of thdljat is left at the end of the H-M busy period.
In state (OH,2MyL) of the fourth row, the busy period ends leaving a class H yohereas in state of the
fifth row, the busy period ends leaving a class M job. (Redcwdt the class of job left at the end of a busy
period is probabilistically determined at theginningof the busy period and the duration of the busy period
is conditioned on the class of the job left at the end.) Herg m, for example, denotes the probability
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Figure 3:(Left) Portion of the 1D-infinite chain used to compute messponse time for low-priority jobs
in the case of three priority classes and two servers, anéxbnential service times. (Right) Chain used
to compute moments of the durations of the six busy periogitians.

that the busy period started by two class M jobs ends leaviggctass H job, whereagy s, s denotes the
probability that the busy period started by one class H ardateiss M job, ends leaving one class M job.
The remaining probabilities are defined similarly.

It remains to derive the moments of the duration of busy pisti®;, Bs, ..., Bg, and probabilities
P2M, M P2M,H, PHM,M, PHM,H, P2H,M, @andpag g in Figure 3(left). The trick to deducing these quantities
is to observe that the six busy periods correspond to passage between two “diagonal” (shaded) levels
in the chain shown in Figure 3(right), which is the 1D-infithain that we used to analyze the class M
performance. We refer to the right shaded diagonal levebad { and the left shaded diagonal level as
level ¢ — 1 (where/ = 3). Note that the 3 states in levélcorrespond to the three possible “start” states
for busy periods, and the two states in le¢el 1 correspond to the two possible “end” states for the busy
periods. Thus, for example, busy periBd in Figure 3(left) corresponds to the first passage time frates
(0H,2M) to state(0H, 1M ) in the chain in Figure 3(right), given thé&dH, 1M ) is the first state reached
in level ¢ — 1, when starting in stat€0H, 2)/) of level £. Likewise, probabilityp2ss, 3, corresponds to the
probability that, in Figure 3(right), state (OH,1M) is thesfistate of the two possible “end” states that is
reached in level — 1, given that the “start” state i® H, 20 ). These conditional inter-level passage times
and ending probabilities within the chain in Figure 3(rigtdn be calculated using techniques developed by
Neuts in [21]. We provide a precise description of this in Apgix A. Observe that these computations are
greatly facilitated by the fact that our chains are infinitenly one dimension.
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More formally, the 1D-infinite Markov chain shown in Figur@edt) is modeled as a (honhomogeneous)
QBD process, as in Section 2.1. Here, lef/ef the QBD process denotes thé¢h column, namely all states
of the form ¢H,jM, /L) for each?. The submatrices of the QBD proceds?), F(¥), andB®), have size
15 x 15. Specifically, the forward transitions afé?) = A, I, for ¢ > 0, wherel is a15 x 15 identity matrix.

The backward transitions are
min(2,¢)
B =y 1
0

for ¢ > 1, whereO is a zero matrix of sizé3 x 13. We again order the 15 states in le¥els: (0H,0M, (L),
(0H,1M,¢L), (1H,0M, (L), followed by the two states associated by busy peBpdfori = 1,2,... 6,
where, as before, the two states associated with each buigyl @&e ordered by start state, intermediate
state. The local transitions are then given by:

—01 AM  AH
Ly —02 /\Mﬁ(ZM,M) )\Mﬁ(QM,H) /\Mﬁ(MH,M) )\Mﬁ(MH,H)
e — 03 )\Hﬁ(MH,M) /\Hﬁ(MH,H) )\Hﬁ(zH,M) )\Hﬁ(QH,H)
ney T
LY — nej) T(2)
{3 T®)
e T
715) T(5)
716) T(6)
for ¢ > 0, where the lines delineate the six busy periods orderd#,ass, . .., Bg, and where
i i
i) — ( tii ) , T = ( ~oniiz 1) ) , ando; =) Qj
(2) 0 —02i+3 i
V) = (px.y,0) whereX e {2H, HM,2M},Y e {H, M},

for 1 < i < 6, corresponding to busy periods;, Bs, ..., Bs. Heret\” +\) +{) are the rates of the PH
distribution used to represent busy periBd

Now, the stationary probability of this QBD process can bewated via matrix analytic methods, as
in Section 2.1. The mean response time in the priority systemthen be computed using the stationary
distributions via Little’s law.

The extension of RDR t; > 3 classes is straightforward but increases in complexity.eikample, for
the case ofn = 4 classes, we proceed as in Figure 3, where we first create @ tttaitracks exactly the
number of jobs in class 4, and creates busy periods for theegatijon of the three higher priority classes.
Then, to derive the busy periods for the three higher pyiariasses, we make use of the existing chain
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for three classes shown in Figure 3(left), and compute tipeogpiate passage times for that chain. For an
M/M/ k with m priority classes, there al(élJr,f‘Q) (m,jfl‘ %) possible busy periods, where the first term in the
product represents the number of possible start statesofabinations of up ten — 1 priority classes over
k servers) and the second term represents the number of jgossibstates (all combinations of uprto— 1
priority classes ovek — 1 servers). That is, the number of different types of busyqaisris polynomial in
k if m is constant®(k™)), and it is polynomial inm if k is constant @ (m*)); however, it is exponential
in k& andm if neither k nor m is constang Help with implementing the procedure described in this pape
provided at [24].

Practically speaking, the RDR approach is fast for a smathlmer of servers and a small number of
priority classes. In examples we ran with an M/M/2 and 10nisicclasses, the RDR algorithm yielded
mean response times within tens of seconds.

2.3 General case: Analysisof M/PH/k with m priority classes

In this section, we explicitly describe how RDR can be agptianalyze the case of PH job size distribu-
tions. We describe RDR for the case of two servérs=(2) and two priority classesi{ = 2), high (H) and
low (L) , where the class H jobs have a particular 2-phase BHipe distribution with Coxian representa-
tion, shown in Figure 4(&).Generalization to highet’s and highenn’s is straightforward by applying the
recursive algorithm introduced in Section 2.2.

Analyzing the performance of class H is trivial, since hjgiierity jobs simply see the mean response
time in an M/PH/2 queue, which can be analyzed via standatdixranalytic methods. To analyze the
class L jobs, as before, we create a 1D-infinite Markov chaicking the class L jobs, and use busy period
transitions to represent needed information regardingldes H jobs.

Observe that under the 2-phase Coxian job sizes distriputve will needfour different types of busy
periods for high priority jobs, depending on the phases etwo jobs starting the busy period (1 & 1, or 1
& 2) and the phase of the job left at the end of the busy periaut @). To derive the durations of these busy
periods, we observe that the busy periods correspond tagasisnes from shaded levgto shaded leve?
in the Markov chain shown in Figure 4(b). Figure 4(b) dessithe behavior of class H jobs, where states
track the number of high priority jobs in the system and thasgls of the jobs being processed. Namely,

3Remark We note that in practice the number of busy periods can heestifurther, so that an M/M/with m priority classes

has (7’Lljf1’3)2 busy periods of class 1 to class — 1 jobs. An advantage of this reduction is that the number of Ipgsiods of
class 1 to class: — 1 jobs becomes independent of the type of PH distributiontsishesed to approximate the busy period of class
1 to classn — 2 jobs. The trick to reducing the number of busy periods isthated by considering the example of the M/M/2 with
three classes, shown in Figure 3. Here, by taking the mixititee six busy periodsii, Bs, ..., Bs, we can approximate the H-M
busy period byfour PH distributions. These four distributions of the H-M bugyipd are differentiated by the state from which we
enterthe H-M busy period (either (1H,0M) or (OH,1M)) and by thetstae return to after the H-M busy period (either (1H,0M) or
(OH,1M)). More details are provided in [24].

4Under the Coxian job size distribution, a job starts in pharsewhere it is processed for a time exponentially distébutith

rateug), and then either completes (with probability = 1 — px) or moves to phase two (with probabilipyr).
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Figure 4:(a) A 2-phase PH distribution with Coxian representatidm) arkov chain which will be used to
compute the high-priority job busy periods, in the case whegh-priority job size have a PH distribution
with Coxian representation shown in (a). (c) Chain for a egstwith two servers and two priority classes
where high priority jobs have Coxian service times.

at state (OH) there are no high priority jobs in the systenstatie (1H;), there is one high priority job in
phasei; at state ¢H,i, j) there aren high priority jobs in the system and the two jobs are beinggssed
are in phase andj, respectively (jobs in the queue are all in phase 1). Thegdassage times in Figure 4
are computed again using techniques in Appendix A.

Figure 4(c) shows a level of the chain that tracks the numbkmopriority jobs, where the number of
low priority jobs isu. The low priority job sizes are assumed to be exponentiadiyriduted, but this can be
generalized to PH distributions. In state (@H), no high priority jobs are in the system. An arrival of almig
priority job in state (OHyL) triggers a transition to state (1Hqd,). In state (1Hj,uL), one high priority job
in phasej is in service forj = 1,2. An arrival of a high priority job in state (1H,ulL) triggers a transition
to state 27 H,1, j,uL) for j = 1,2. In state 27H,1, j,uL), at least two high priority jobs are in the system,
and the two jobs that started the busy period were in phaselj, respectively, forj = 1, 2. The four types
of busy periods are labeled &5, B», Bs, andB,4, and the duration of these busy periods is approximated
by PH distributions by matching the first three moments oftthgy period distribution (note that the busy
period cannot start with two jobs in phase two). Finally, ;) ; denotes the probability that a busy period
started by two jobs in phasésandj, ends with a single job in phasefor j = 1,2, andi = 1, 2.
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2.4 Computing variance of response time and higher moments

Throughout our discussion of RDR thus far, we have been ecoadewith computing the mean per-class
response time. It turns out that computing higher momentseofclass response time is not much more
difficult. Before we present our approach, we make two resafdrst, observe that it is trivial to derive
all moments of the steady-state per-classnber of jobsn the system, directly from the steady-state prob-
abilities for the Markov chain, which we have already coneplutUnfortunately, however, we cannot apply
the beautiful generalization of Little’s Law to higher monmt® (see [29, 1]) to immediately get the per-class
higher moments of response time for free, since jobs do nogssarily leave our system in the order in
which they arrive.

Below we sketch our approach for computing per-class veeian response time for the case of two
servers, two priority classes (H and L), and exponentialisertimes. We will refer to Figure 1(c) during
our discussion. For class H jobs, it is easy to compute thianves of their response time, since they are
oblivious to class L jobs, and the variance of response timamni M/M/2/FCFS queue is well known (see
page 529 in [10]). Thus we will concentrate on class L jobs.

Consider the 1D-infinite Markov Chain shown in Figure 1(@tttracks the number of class L jobs. We
use the limiting probabilities to condition on what a clasartival sees. Specifically, by PASTA (Poisson
Arrivals See Time Averages) a class L arrival with prob@piti; ;7 .1, Will see statdiH, £L) when it arrives,
and will cause the system state to chang@d, (¢ + 1)L) at that moment.

To calculate the variance in response time seen by this édigérlassl) arrival, we remove all the
A, arcs from the Markov chain in Figure 1(c), so that there arenooe class arrivals. This enables us
to view the response time for the tagged arrival as the firssgge time of this modified chain from state
(iH, (¢ 4+ 1)L) to the state where the tagged arrival departs. The only adtylis in figuring out exactly
in which state the tagged arrival departs.

The tagged arrival may depart the modified Markov chain tte fime it hits(0H, 1L) or (1H,1L),
depending on the sample path the chain follows. We will camthe passage time to go from st&t#, (¢+
1)L) to one of these statgs(0H, 1L) or (1H,1L) }. Itis important to observe that the first time we hit a
state with 1L, cannot be statg™ H, 1L), by virtue of the fact that the Markov chain does not have elgsing
arcs in its bottom rows.

If (1H,1L) is the first state that we hit with 1L, then we know that we muestehgotten there from
(1H,2L), which means that the single L job remaining is in fact thegeabarrival. (We're assuming
preemption is done “youngest first to be preempted”). Thuseex to now add on the passage time to go
from (1H,1L) to (x,0L) to get the full response time for the tagged arrival.

If (0H,1L) is the first state that we hit with 1L, then we know that we getéhfrom staté0H, 2L). In
this case, the remaining 1L is equally likely to be the tagaeival or not. With probability half, the tagged
arrival is already gone, in which case we add nothing to thpamse time. With probability half, the tagged
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arrival remains, in which case we now add on the passage éme from(0H, 1L) to (*,0L) to get the full
response time for the tagged arrival.

Observe that computing the moments of the above passageifirsieaightforward, since all the, arcs
have been removed.

25 Introducing RDR-A

We have seen that the RDR method can become computationgdhsive as the number of priority classes
grows. This motivates us to introduce an approximation éhaseRDR called RDR-A. RDR-A applies to
m > 2 priority classes and PH job size distributions.

The key idea behind RDR-A is that the RDR computation is fiaapder when there are only two priority
classes: H and L. In RDR-A, undet priority classes, we simply aggregate these classes irttiority
classes, where the — 1 higher priority classes become the new aggregate H clasthand” priority class
becomes the L class. We define the H class to have a PH job sizibulion that matches the first three
moments of the aggregation of the— 1 higher priority classes.

The RDR-A method is similar to the MK-N approximation. Théfelience is that in MK-N, both the H
and L classes are exponentially distributed. Thus underMJkie H class only matches tfiest moment of
the aggregate: — 1 classes, whereas under RDRbseemoments are matched. The reason that we are able
to match the first three moments, rather than just the firthaswe have the RDR technique, which allows
the analysis of multi-server priority queues witlil job size distributions, as described in Section 2.3.

3 Resultsand Validation

In this section we present numerical results for per-clasammesponse times in M/lMand M/PHEL queues
with m = 4 priority classes, derived using RDR and RDR-A, respectivéle will validate our results
against simulation and show that their relative error islsrRarthermore, the time required to generate our
results is short, typically less than a second for each ditd.p

Figure 5 (top row) shows our results for per-class mean resptimes in an M/M/2 queue (left plot)
and an M/PH/2 queue (right plot), both as a function of Ipad’he PH distribution used is a 2-phase PH
distribution with squared coefficient of variatio? = 8. All job classes have the same distribution, and
the load is distributed evenly between the four classes.l@fhplot is derived using RDR and the right plot
using RDR-A. Observe that the M/PH/2 queue (right plot) itasim higher mean response time than the
M/M/2 queue (left plot), as expected. In both cases the mesponse time of the lower-priority classes
dwarfs that of the higher-priority classes.

Figure 5 (bottom row) shows the relative per-class errootorresults, when compared with simulation.
Throughout the paper we always show errod@lay (queueing time) rather than response time (sojourn
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Figure 5:Top row shows per-class mean response time for M/M/2 (Ieth\a/PH/2 (right) with four priority
classes. Left graph is derived using RDR and right graph isvdd using RDR-A. Bottom row shows the
error in our analytically-derived mean delay relative torailation results, for the corresponding graphs in
the top row.

time), since the error in delay is proportionally greatee défine relative error as

(mean delay by RDR or RDR-AY} (mean delay by simulation)

error= 100 - -
% (mean delay by simulation)

(%).

We only show the error for classes 2, 3, and 4, since our asalysirtually exact for class 1 (solved via
matrix-analytic methods). We see that the relative errashéamean delay of RDR and RDR-A compared
to simulation is within 2% for all classes and typically witHL %, for all p's (the jaggedness of the figure
is due to the fact that error is only evaluated at discretddpaThis error increases only slightly when we
move to the case of priority classes with different means.

Figure 6 (left) again uses RDR-A to calculate per-class nteaponse time in the M/PH/2 queue with
four classes, but this time as a function(®t, the squared coefficient of variation of the job size disitiin.
(Again, all classes have the same job size distribution). w&ssee from the figure, the per-class mean
response time increases nearly linearly with. Figure 6 (right) shows the relative error in mean delay
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Figure 6: (Left) Per-class mean response times for M/PH/2 with foumniy classes, derived via RDR-A
analysis. (Right) Relative error in analysis of mean delagnpared with simulation.

when the results of the RDR-A analysis in the left plot are pared with simulation. Again the error
is under 2%. Again, this error increases only slightly whemmove to the case of priority classes with
different means.

Finally, we note that in the above computations RDR is muchencomputationally efficient than sim-
ulation. Simulation requires tens of minutes to generatd éigure, since the simulation is run 30 times,
and in each run 1,000,000 events are generated. By companiscanalysis takes only a few seconds for
each figure. Further, if we try to reduce the number of evanthé simulation to 100,000 events, in order
to speed it up, we see five times as much variation in the stioolaround our analytical values.

4 Comparisons and Insights

In this section, we apply RDR and RDR-A to answer fundamegtedstions on prioritization in multi-
server systems. In Section 4.1 we study the behavior of feettier versus single server systems under
prioritization. In this context, we also evaluate the BB rpmation, which approximates the effect of
prioritization in a multi-server system by that in a singkr&r system. In Section 4.2, we evaluate the
effect of prioritization schemes which favor short jobs inltaserver systems. Finally, in Section 4.3 we
study the effect of aggregating multiple priority class@® jjust two classes, so as to significantly speed up
the analysis. In this context we also evaluate the MK-N axipration.

4.1 Comparing multi-server versussingle server performance under prioritization

In this section, we compare systems with different numbgsgiwvers. It is important to note that throughout
these comparisonsgje hold the total system capacity fix@dhat is, we compare a single server of unit speed
with a 2-server system, where each server has speed hdif awitserver system, where each server has
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Figure 7:Contrasting per-class mean response time under one sdefer;, f(wo servers (middle) and four
servers (right) for an M/PH{ with two priority classes. Total system capacity is fixeddighout, and
p = 0.8. Results are obtained using RDR.

speed one-fourth, etc.

Figure 7 considers an M/PKA&ystem with two priority classes whekas one (left), two (middle), four
(right), but the total system capacity is held fixed, and Imafixed atp = 0.8. The low-priority jobs are
exponentially distributed. The high-priority jobs folloavPH distribution where the squared coefficient of
variation for high priority jobs(C%, is varied. The means of the two classes are the same andatthéslo
split evenly between the two classes. The plots show pescteean response time as a functiogf. All
results are computed using RDR.

The first thing to observe is that the response times in the absne server appear very different from
the response times in the case of two servers, or four servVaeseffect of prioritization in a single server
system offers little (quantitative) insight into the effef prioritization in a multi-server system, aside from
the fact that in all cases the response times appear to belg liegar function ofC%.

Figure 7 also illustrates some other interesting points sé¢éethat as we increase the number of servers,
underhigh C%, the performance of both high-priority and low-priorityoimproves. By contrast, under
low C%, the performance can get worse as we increase the numbenvefséhis fact is more visible in
Figure 7 for the high-priority jobs). To understand this pbimenon, observe that whéif; is high, short
jobs can get stuck behind long jobs, and increasing the nuoflszrvers can allow the short jobs a chance
to be served. By contrast whéi, is low, all jobs are similar in size, so we do not get the bemnéfidlowing
short jobs to jump ahead of long jobs when there are moreiseewever we do get the negative effect of
increasing the number of servers, namely the underutizaif system resources when there are few jobs
in the system, since each of tikeservers only has speddk. The behavior under low’?,, where more
servers lead to worse performance, is more prominent underlloadp.

Figure 7 already implies that the effect of prioritizatiom mean response time in a multi-server system
may be quite different from that in a single server systentitjure 8 we investigate this phenomena more
closely, by evaluating the accuracy of the BB approximaf@k which is based on this assumption of
similar behavior in single and multi-server priority queugooking at Figure 8, we see that the error in the
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Figure 8: Error in predicting mean delay using the BB approximationripared with simulation) for an
M/PH/2 with four classes whei@? = 8 (left) or C? = 25 (right) andp = 0.8.

BB approximation appears to increase for high&r(right graph) and for more classes. With four classes
and two servers, the error is already 10% wii&n= 8 and higher for highe€?. By contrast, for the same
4-class case as shown in Figure 8, the error in RDR is alwag$; independent o2 and the number of
servers (we have omitted this graph). In the above grapltaasibes were statistically identical. In the case
where the classes have different means, the error in BB camuoé higher, whereas RDR-A is much less
insensitive to this.

4.2 The effect of biasing toward short jobsin multi-server versus single server systems

Until now, we have assumed that all job classes have the samaasnin this section and the next section,
we remove this assumption. In this section we consider fleetasf priority schemes which favor short jobs
in multi-server systems. Biasing towards short jobs is ammommethod for improving mean response time.
We use RDR to understand how the benefit of favoring shortijphssingle server system compares to that
for a multi-server system.

Figure 9 considers a job size distribution comprised of groaential of mean, representing jobs which
are “short” in expectation, and an exponential of mé@arrepresenting jobs which are “long” in expectation
(where job sizes are measured in a single-server systene) pitibability of each type of job is chosen to
split load evenly between the short and long jobs (e.qg., with 2 classes% of the jobs are short anﬁ
of the jobs are long). The SMART scheduling policy assiguh riority to the short jobs, and the STUPID
scheduling policy assigns high priority to the long jobsggibly due to economic reasons). Figure 9 shows
the results for a (a) one server, (b) two server, and (c) ferues system.

Looking at Figure 9, the SMART and STUPID policies are the savhen load is low. At low load,
the response time for both policies converges to simply teanmob size, which in these figures%@s for
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Figure 9:Mean response time under SMART versus STUPID prioritizdtica 2-class system, where the
classes are exponentially distributed with means one anddspectively, for the case of one server, two
servers, and four servers.
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Figure 10:Effect of aggregation. Graphs show error in mean delay ofdtie(lowest priority) class in the
MK-N and RDR-A approximations for an M/PH/2 with SMART ptipation, as compared with simulation.
On the left as a function @f? wherep = 0.8, and on the right as a function pfwhereC? = 8. The classes
all have a 2-phase PH distribution with the same squaredfioberfit of variationC? and different means:
1,2, 4, and 8.

the single server systeré% for the 2-server system, ar%é for the 4-server system (recall that in a system
with & servers, each server runslgkth the speed).

The most interesting observation is that more servers leéess differentiation between SMART and
STUPID schemes. For example, at lgaé 0.6, there is a factor of five differentiation between SMART and
STUPID with one server and only a 25% difference between SMARJI STUPID with four servers. The
effect appears more prominent under lighter load. This eaexplained by recalling our earlier observation
that multi-server systems allow short jobs a chance to jungad of long jobs, hence the negative effects of
the STUPID scheme are mitigated.
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4.3 How effectiveisclass aggregation: RDR-A

In the early 80’s Mitrani and King (later followed by Nishidathe early 90's) proposed analyzing priori-
tization in a multi-server system via aggregation as foip@o obtain the mean response time of thé&
class, simply aggregate classes 1 through- 1 into a single high-priority class, and let classrepresent
the low-priority class — then analyze the remaining twoslsgstem. The above MK-N approximation re-
quired further approximating the single aggregate clasari®xponentiajob size distribution, since it was
not known how to analyze even a two class multi-server systgmnon-exponential job size distributions.

Since RDR enables the analysis of multi-server priorityussewith general PH job size distributions,
we can reapply the MK-N aggregation idea, but where now weahle to capture the higher moments of
the aggregated class. We call this approximation RDR-Asesincombines the use of RDR together with
aggregation.

To understand the effect of aggregation, we consider a tweseystem with four priority classes. All
the classes have a two phase PH distribution, with varyingusgl coefficient of variation((?). The classes
differ however in their mean, having means 1, 2, 4, and 8,easly, and are prioritized according to
the SMART scheme; classes with lower means have higheritgri¢8 TUPID prioritization yields similar
insights.) Figure 10 examines the error in the mean delage#ith class under RDR-A and under MK-N
as a function of>? (left) and as a function o (right).

We see that the error in RDR-A is never more than 5% regardie€g or p. By contrast, the error in
MK-N is almost never less than 50%, and gets worse under highd andC?. We find experimentally that
when the classes are identical, RDR-A incurrs only slightlyre error than RDR. This makes sense since
aggregating identical classes does not incur additiorglvitity. However when the classes are different,
as in the case of SMART scheduling in Figure 10, the error narease to 5% under RDR-A asandC?
are varied, while it remains below 3% for RDR over the fullgarof p andC? depicted in Figure 10.

The bottom line is that “aggregation into two classes” is adymethod for approximating prioritization
in multi-server systems where the number of classes is 2. However, the aggregation needs to be done
carefully — the distribution of the aggregate class must bdated more closely than can be captured by an
exponential distribution. Thus another benefit of RDR iseded; by allowing for PH job size distributions
it enables more accurate approximations of multi-clasgeays via aggregation.

5 Conclusion

This paper introduces the RDR technique, providing the fliestr-exact analysis of an M/PH¢ueue with

m > 2 priority classes. The RDR algorithm is efficient (requirimigly a second or two for each data point
in the paper) and accurate (resulting<irz% error for all cases that we studied). Furthermore, RDR agpea
to maintain its accuracy across a wide range of loads andjebvariability (in this paper we studied load
p, ranging from0.05 to 0.95 and studied squared coefficient of variatiG¥¥, ranging froml to 128).
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Although the RDR algorithm is efficient when the number obpty classes is small, it becomes less
practical when the number of priority classes grows (egy.ah M/M/2 with 10 priority classes, the running
time can get as high as tens of seconds). Hence we also ingdde RDR-A approximation, which works
by aggregating the: > 2 priority classes into only two priority classes. The disition of each aggregate
class is then captured by a PH distribution, and the reguRiglass system (with PH job sizes) is solved
using RDR. The RDR-A algorithm is extremely efficiert (I second for a data point, regardless of the
number of classes), since its running time is that of the R@Brahm for only two classes. Furthermore,
for the examples in this paper, the RDR-A algorithm has higueacy & 5% error) across a wide range of
loads andC? values.

We use our analysis to obtain insights about priority quegén multi-server systems. We start by
comparing multi-server systems with single server systefrequal capacity. We find that the effect of
prioritization in multi-server systems cannot be predidig considering a comparable single server system.
The reason is that adding servers creates complex effegisasent in a single server. For example, multiple
servers provide a strong benefit in dealing with highly Jaggob sizes, but they also hinder performance
under lighter load. We also compare multi-server with srggrver systems, by evaluating the error in the
Bondi-Buzen (BB) approximation which is based on relatingjtirserver performance under prioritization
to single-server performance. We find that the error in BBlmezome large, whe@? grows or the number
of classes grows.

We next consider the effect of “smart” prioritization, whelasses of jobs with smaller means are given
priority over those with larger means. We find that “smartibgtization has a much stronger effect in a
single-server system, than in a multi-server system of lezpacity. This can be explained in part by the
observation that multiple servers inherently aid shorsjbp allowing them to jump ahead of long jobs.

Lastly, we contrast different methods of class aggregatiren used to approximately analyze a high
number of classes. We find that aggregation when done clgrefldy capturing three moments of the
aggregated class — works surprisingly well, resulting iryvew error. However, when the aggregate class
is approximated only with respect to its first moment (by mstexponential distribution), aggregation can
be very poor, resulting in error of well over 50%. The facttR®R allows the first analysis of classes with
PH job size distributions enables this good aggregatiomceqopation.

In this paper we have focused on the problem of multi-serueugs withm > 2 priorities. What makes
this problem difficult is the fact that its Markov chain repeatation grows infinitely imn dimensions, and
there are dependencies between those dimensions (thé/jalss depend on the class H jobs, and the class
L jobs depend on both the class M and class H jobs). The RDRitdgogreatly simplifies this problem
by reducing the dimensionality of the Markov chain to juseoihere are many other problems that also
exhibit high dimensionality in their Markov chain repret#ion, and the RDR method introduced here may
be applicable to those problems as well.
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A Neuts algorithm for computing moments of Inter-level passage timesin
QBD processes

Neuts’ algorithm [21] is an efficient algorithm that caldgla the moments of various types of passage times
in very general processes, i.e. M/G/1 type semi-Markov ggses. Because of its generality, however, the
description of the algorithm in [21] is sophisticated, ahds non-trivial to understand or implement. Since
Neuts’ algorithm can be applied to the performance anabfsisany computer and communication systems,
it is a shame that it has not been used more frequently intdrature.

The purpose of this section is to make Neuts’ algorithm mooessible by re-describing his algorithm
restricted to the first three moments of inter-level passieges in QBD processes. In [21], the analysis is
limited to homogeneous (level independent) processes.eMemit is trivially extended to nonhomogeneous
(level dependent) QBD process which we need in this papesreftre, we describe Neuts’ algorithm for
nonhomogeneous QBD processes that repeat afterdeVié omit all proofs, which are provided in detail
in [21], and we instead focus on intuition and interpretatid/e include everything needed to apply Neuts’
algorithm within our solution framework, so that readersow¥ish to apply our methodology can do so.

In our paper, we consider a QBD process with state spaee {(i,¢)|1 < i < ny,¢ > 0}, which has
generator matrixQ:

LO)  FO)
BL L pO
Q= B® LO FO

whereL® is an, x n, matrix. We assume that our QBD process has a repeatingseudhere exists
{ < oo such that?¢ > 7, we haveB®) = BO 1) = L FO) = D).

We define level of the QBD as denoting the set of states of the f¢ind) for i = 1, ..., n,. Our goal
can be roughly stated as deriving the passage time requiget from statgi, /) to level¢ — 1 conditioned
on the particular state first reached in ledel 1. More preciselywe seek the first three moments of the
distribution of the time required to get from state/) to state(j,¢ — 1), given that staté;, ¢ — 1) is the
first state reached in levél— 1 forany/ > 1, andl <i <nyandl < j < ny_;.

A.1 Outline

Our goal will be to derive the, x ny_; matrix, Zg), where(ZSg))ij is ther*” moment of the distribution
of time required to go from statg, ¢) to state(j, ¢ — 1), given that stat¢j, ¢ — 1) is the first state reached
in level ¢ — 1 when starting in(i, ¢). Let

Eff) = Event that stat¢j, ¢ — 1) is the first state reached in lewel 1 when starting ir(z, ¢).
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Let
Ti(f) = Time to go from statéi, /) to state(j, ¢ — 1).

Define then, x ny_; probability matrixG®), where

(GW);; =Pr (EJ).

The matrixG ¥ is a standard quantity in matrix analytic methods.
Now,

(Z0),; = N moment oﬂ;(].z),given evenTEi(f).

_ [T 0 _ ©
= /0 x Pr(Tij —w]Eij)dw
= / 2" Pr (T =2 AND B / Pr (E(})) da
0
_ 1 < r 0 _ )
_ m/o 2" Pr (1) = 2 AND E) da
l
(G5
(GO),

where we have defined:

oy % r 0 _ @\ g (704 (®) ©
(GO, = /0 2" Pr (1] _:UANDEij)d:U_/O x%Pr(TM < AND E[})) da.

Note that(Gg)),-j is not a propert” moment in that its density functions doesn't integrate tout rather
to (G(¥)),;. The rest of the appendix is devoted to the questions of haletermine the two matrice€ ")
andG0,

A.2 Prediminaries

This section presents a few preliminary derivations thatwiieneed along the way. First, we will require a
simple lemma regarding exponential random variables, lwfiows from their memoryless property.

Lemmal Let X; and X» be independent exponential random variables. Wet min(X;, X3). Then

Pr(W < 2 AND X < X,) = Pr(W < z) - Pr(X; < Xa).
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We define the transition probability matri®,(z), such that itg(s,t) element,P(x), represents the
probability that (i) the sojourn time at statas < x AND (ii) the first transition out of state is to statet.
By Lemma 1,P(z) is also the product of the probabilities of events (i) ang (i

Matrix P(x) has the same structural shape&@slthough its entries are clearly different, and thus it can
be represented in terms of submatrices, analogous to tha@eindicating backward transitions between
consecutive levels, local transitions within a level, aodvard transitions between consecutive levels, as

follows:
£.0) (z) FO) (z)

BY () W) FO(
- | B £ #0)

Observe tha\¥)(z) is ann, x n, submatrix for¢ > 0.
Next, we define the-th moment of submatrice8() (z), £ (x), F©)(z), as follows:

B = [ 7 LBO @) £ = / L0 FO = / L F O (5)da
0 0 dx 0 dx

forr =1,2,3, and¢ > 0, where an integral of a matri¥I is a matrix of the integrals of the elements\d.
We now define the limits ag — oo of B (z), £©) (), FO(x), as follows:

BY = lim BY(z);  £9 = lim £9);  FO = lim FO();

r—00 Tr—00 r— 00

for ¢ > 0.
If 7 denotes the level where the QBD starts to repeat, then weedefin

B=BO £=c® F=F0

and
B, =B £,=c® F =Fb

T

Example

Consider the QBD process shown in Figure 11.
Lety; = A+ p1 + aandvy = XA+ uo + 6. Then, the corresponding transition probability matriaed
their moments look as follows:

1—e M= 0 A0
(£) _ 71
e ( 0 1—6‘”296)(0 —)

27



£O@) = bme 0 0 5
0 1—e M7 % 0
_ oz yy
B(Z)(Q:) ( 1 e 7 O ) ( ,\{11 O )
0 1 — e 0 L
and
Ry o 5y
f'(é):(“n ?\) E(Z):(g 71) B(f):<vi 0)
0o 2 2 0 0
and
r! A
PO B S N 2)
0 75 0 =5
r! a
co _ [0 0 &
' 0 LA
o Y2
rt it
go — [ o 0)
" ol b2
0 V3 0 Y2
for ¢ > 1.

A.3 Wherewe're going

We will use the matrices introduced above to de@ andG.” for r = 1,2, 3. In Section A.4, we derive
the repeating part, wherfe> ¢ for these matrices. Specifically we define

G=G" and G,=G0

and proceed to deriv@ andG,.. In Section A.5 we derive the nonrepeating paH? andG'" for ¢ < 7. In
deriving the non-repeating parts, we will make use of theaéipg parts(z andG,., derived in Section A.4.
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A.4 Moments of passagetimein therepeating part

The quantityG = GO is a standard guantity in matrix analytic methods, and tfereace [16] provides
many methods by which this matrix can be computed. Below veerilze the most straighforward (but
slow) algorithm for generatin@. The idea is to simply iterate the following equation urttitdnverges:

G =B+ LG+ FGG )

The intuition behind Equation (2) should be clear: Recadt the (i, j)™* entry of G represents the
probability that statéj, ¢ — 1) is the first state reached in lewe}- 1, given that we start in staig, /). Now
the right hand side of Equation (2) represents this sameapility by conditioning on whether the first move
is a backwards transition, a local transition, or a forwdreasition. More specificaIIyBEf) represents the
probability that the first move leaving state () is to state(j, ¢ — 1). The quantity,C) G represents the
probability that the first transition out of state ¢) is to state(v, ¢) for somev multiplied by the probability
that the the first state reached in level 1 is (j,¢ — 1) when we start in statév, /), summed over all
possiblev = 1...n,. Finally, the quantity, ) G+ G represents the product of three terms: (i) the
probability that the first transition frorti, ¢) is to some statév;, ¢ + 1) in level ¢ + 1, (ii) the probability
that from stat€ vy, ¢ + 1) the first state reached in levéls some(vs, ¢), and (iii) the probability that from
state(vq, £) the first state reached in levél- 1 is state(j, ¢ — 1), where the product is summed over all
possiblev; = 1...n441, v2 = 1...ny. Since we are in the repeating region, all the superscrigtegual
to 7, and can be dropped by our notation.

MatricesG,. for » = 1, 2, 3 are derived in a similar manner, by usi@which we have already derived.
Matrix G is obtained by iterating:

G =B1+ LG+ LG + F1GG + FG,1G + FGG;. 3)
Similarly, matrix G is obtained by iterating:

Gy = By +LyG+2L:G1+ LGy
+.’F'2GG+2.7:1(G1G—|—GG1) ‘|‘.7:(G2G—|—2G1G1 —|—GG2) (4)

and matrixGs is obtained by iterating:

Gy = B3+ L3G+3L:G; +3L,Go+ LG3
+F3GG + 3?2(G1G + GGl) + 3.7:1(G2G +2G1G1 + GGQ)
+.’F(G3G 4+ 3GoG1 + 3G 1 Gy + GGg) (5)

We now give intuition behind expressions (3)-(5). The righhd side of (3) can be divided into three
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parts:Part 0: By, Part 1. £,G + LG, andPart 22 F1GG +F GG+ FGG;. Forh =0,1,2, the(i, j)
element ofPart h gives “the first moment of the distribution @ff) given that the first transition out of state
(i,¢) isto level¢ + i — 1 and E{;” multiplied by “the probability that the first transition oaf state(i, ¢) is
tolevel/+h—1 andEZ-(f) " Part 1consists of two terms. The first terid; G, is the contribution of the time
to the first transition, and the second terfs4, is the contribution of the time it takes to reagh? — 1)
after the first transition. Similarlyyart 2 consists of three terms. The first terff; GG, is the contribution
of the time to the first transition, the second tetfi(z; G, is the contribution of the time it takes to come
back from level¢ + 1 to level ¢ after the first transition, and the third terdv,GG1, is the contribution of
the time it takes to go from levélto level/ — 1.

The right hand sides of (4) and (5) can similarly be dividew ithree parts:Part O consists of terms
containingB or B,.; Part 1 consists of terms containing or £,.; Part 2 consists of terms containing or
F .. The three parts of (4) and (5) can be interpreted exactlginee way as the three parts of (3) except
that “the first moment” in (3) must be replaced by “the secominmant” and “the third moment” in (4) and
(5), respectively. The three termsRart 1 of (4) can be interpreted as follows. L&t be the time to the
first transition and let” be the time it takes from levelto level ¢ — 1. Then, the second moment of the
distribution of these two times is

E[(X +Y)*] = E[(X)*] + 2B[X]E[Y] + E[(Y)?],

sinceX andY are independent. Roughly speakimyG corresponds td[(X)?], 2£, G corresponds to
2E[X|E[Y], andLG, corresponds td[(Y)?]. The other terms can be interpreted in the same way.

A.5 Extension to nonrepeating part

For? < ¢, G is calculated recursively as follows:

g = BO L OGO L FOGE GO
_ (1 _ 0 _ f@)(;(w))‘l BO

The intuition for the above formulation is the same as in ttevipus section.
For¢ < 7, G\Y is calculated recursively:
Ggff) _ Bgﬁ) + [:gf)G(f) + L:(Z)Ggg) + _7_-§5>G(€+1)G(€) + _7:(€)G§5+1>G(f) +]:M)(;(13+1)Ggf)

_ (I _r®_ ]:(Z)G(£+1))_1 (Bgz) n L:ge)G(e) _|_]:§£)G(£+1)G(£) +.7-'(‘)G§“1)G“))
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Gy = BY + a1 2xal? + oGy
+FIGENGO 4 2F 0 (G GO 4+ g gl
+FO@GIGE 126tV al" + ey
_ (1 o ;(@G(ul))‘l
(BY + £a +2c{’G{"
+ FOGEDGO oD (cHg® 4 g + FOGITa® + 2G§é+1)G§Z)))

Gy = BY +£Yc0 136 +3c06Y + WG + 7Y grH g
+3.7-'§£)(G§“1)G(£) + G““)ng)) + 3]-'?)((}&”1)(;(5) 4 2G§”1)G§Z) n G(“l)Gg))
+FOGTI GO 1 3ey Vel 1366y + cthay)).

= (1-£0- fw)(;(ul))‘l
(BY + £76" 3G + 3G + FGhG®
+3FY a0 4 Vel + 3FY (e e 12 al + g hay))
+FOGE GO 366 +36IMVGL))

A.6 Generalization allowed

Finally, we mention some generalizations that Neuts’ allyor allows. (1) We restricted ourselves to the
first three moments, but this approach can be generalizet/thigher moments. (2) We restricted ourselves
to the first passage time from lev&to level? — 1, but this can be generalized to the passage time from level
£ to level ¢ — i. (3) We restricted ourselves to QBD processes, but this eageberalized to M/G/1 type
semi-Markov processes. (4) We restricted ourselves to tments of the distribution of the duration of
busy periods, but this can be generalized to the momentsgbiht distribution of the duration of a busy
period and the number of transitions during the busy period.
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