
Improving Preemptive Prioritization via Statistical Characterization

of OLTP Locking

David T. McWherter Bianca Schroeder Anastassia Ailamaki∗ Mor Harchol-Balter†

Abstract

OLTP and transactional workloads are increas-
ingly common in computer systems, ranging from e-
commerce to warehousing to inventory management.
It is valuable to provide priority scheduling in these
systems, to reduce the response time for the most im-
portant clients, e.g. the “big spenders”. Two-phase
locking, commonly used in DBMS, makes prioritiza-
tion difficult, as transactions wait for locks held by oth-
ers regardless of priority. Common lock scheduling so-
lutions, including non-preemptive priority inheritance
and preemptive abort, have performance drawbacks for
TPC-C type workloads.

The contributions of this paper are two-fold: (i) We
provide a detailed statistical analysis of locking in TPC-
C workloads with priorities under several common pre-
emptive and non-preemptive lock prioritization policies.
We determine why non-preemptive policies fail to suf-
ficiently help high-priority transactions, and why pre-
emptive policies excessively hurt low-priority transac-
tions. (ii) We propose and implement a policy, POW,
that provides all the benefits of preemptive prioritiza-
tion without its penalties.

1 Introduction

Long delays and the accompanying unpredictably
large response times 1 are a source of frustration in on-
line transaction processing (OLTP) database systems.
In many applications, consistently low response times
are essential for users. Consider, for example, an online
stock market with significant price volatility. A trader
issues trade orders based on constantly varying market

∗Supported by NSF grants CCR-0113660, IIS-0133686, CCR-
0205544, and BES-0329549

†Supported by NSF grants CCR-0133077, CCR-0311383,
0313148, and by IBM via 2003 Pittsburgh Digital Greenhouse
Grant.

1Response time is defined as the time from when a transaction
is submitted until it completes, including restarts.

prices, and any delay creates potential for huge profit
loss.

Minimizing delay and its unpredictability is much
more valuable for some users than for others. A trader
making thousands of large-volume trades a day may be
willing to pay more for reduced delays on trades. On
the other hand, a trader making only one trade a month
may accept much more variable response times. Thus,
we divide transactions into two classes: high- and low-
priority, based on whether the transaction is issued by
a high- or low-paying customer. Our primary goal is to
prioritize high-priority transactions to execute as if in
isolation of low-priority transactions, and ensure low-
priority transactions do not delay high-priority trans-
actions. Second, low-priority transactions must not be
excessively penalized.

Transaction prioritization can be important in
countless contexts. In commercial OLTP, for instance,
customers who experience many excessive delays may
become frustrated, and take their business elsewhere.
Giving high-priority service to customers who rou-
tinely buy expensive merchandise will maximize the
company’s profits. As a testament to the impor-
tance of transaction prioritization, it is provided in
most major commercial DBMS: DB2 offers db2gov and
QueryPatroller[13, 4] and Oracle offers DRM [15]. We
have previously shown that CPU scheduling is ineffec-
tive for prioritization in OLTP applications (such as
TPC-C), while lock scheduling is highly effective [14].
Unfortunately, all the above commercial systems focus
on CPU, not lock prioritization. Additionally, there is
little research on lock scheduling in fully implemented
general-purpose DBMS, as most are analytical or sim-
ulation studies, or focus on RTDBMS.

Many open questions remain for lock scheduling in
general-purpose DBMS. Of these, we focus on whether
the DBMS should use a preemptive or a non-preemptive
scheduling policy. Each type of policy has advantages
and disadvantages, and there is no consensus as to
which is best. While preemptive policies allow high-
priority transactions to reduce lock waiting time by

1

killing other lock holders, rollbacks and re-executions
may be too costly. Non-preemptive policies avoid these
preemptive overheads, but high-priority transactions
may wait for low-priority transactions to complete be-
fore making progress.

The first contribution of our paper is a perfor-
mance evaluation and in-depth statistical analysis of
lock activity in TPC-C, for common scheduling poli-
cies. For non-preemptive policies, such as queue re-
ordering (NPrio) and priority inheritance (NPrioin-
her), high-priority transactions are poorly isolated
from low-priority transactions, resulting in variable and
high response times. By contrast, preemptive policies
(PAbort) yield good high-priority performance, but ex-
cessively penalize low-priority transactions.

To determine why non-preemptive policies fail to
isolate high-priority transactions, we address four ques-
tions: (i) How many lock requests do transactions wait
for? (ii) How long are lock waits? (iii) How long do
transactions wait for current lock holders versus for
other waiting transactions? (iv) How do lock waits af-
fect response time? We show that the common policies
primarily fail to eliminate wait excess: the time spent
waiting for current lock holders to release locks. To de-
termine why preemptive policies devastate low-priority
transactions, we investigate potential reasons: (i) roll-
back costs (ii) preemption frequency, and (iii) wasted
work per preemption. Surprisingly, we find that most
of these issues are largely irrelevant, and wasted work
per preemption dominates exclusively.

The second contribution of our paper is a demonstra-
tion that a little-known and unevaluated lock schedul-
ing policy from the field of distributed databases,
Preempt-On-Wait [16] (POW), excels over all the above
policies. It combines the excellent high-priority perfor-
mance of preemptive policies with the small penalty to
low-priority transactions typical with non-preemptive
policies.

The intuition behind POW is that if a high-priority
transaction H needs a lock held by a low-priority trans-
action L, H should only preempt L if L will hold the
lock a long time. We find that whether or not L waits
in another lock queue is a highly accurate indicator of
L’s remaining holding time. Thus, POW only preempts
low-priority transactions that both wait for a lock and
block a high-priority transaction.

Our evaluation focuses on the TPC-C OLTP work-
load with Shore [3] (a modern prototype with transac-
tion management, 2PL, and Aries-style recovery), and
concentrates on improving high-priority transaction re-
sponse times. Basic theory dictates that in all closed
systems, like TPC-C, throughput is directly related to
response-time.

This paper presents the first major statistical analy-
sis of locking with priority-scheduling in a fully imple-
mented general-purpose DBMS, and thus incorporates
complex system interactions, such as I/O. While Shore
is noncommercial, it is important to note that (i) this
evaluation could not be conducted using a commercial
DBMS due to the lack of source code, and (ii) resource
utilizations for Shore have been repeatedly shown to
be remarkably similar to that of IBM DB2 [14, 2].

For prioritization to be most effective, the fraction of
high-priority transactions should be low. Throughout
the paper, we randomly assign high-priority to 10%
of the transactions, and low-priority to the remaining
90%. This is a pessimistically-realistic scenario, and
results are similar when the ratio is varied.

The paper is organized as follows: In Section 2 we
describe the prior work on priority scheduling. In Sec-
tion 3 we review existing results showing that lock
queues are the appropriate resource to schedule given
general-purpose DBMS with lock-based concurrency
control. In Section 4, we describe our evaluation of
the common lock scheduling policies. In Section 5, we
present the bulk of this work, a statistical profile of
locking in Shore TPC-C with priorities. In Section 6,
we present the POW algorithm and its performance
analysis. Finally, we conclude in Section 7.

2 Prior Work

DBMS lock scheduling has been studied for decades,
covering countless policies and systems. Most
work concerning preemptive and non-preemptive lock
scheduling focus on RTDBMS, and are primarily simu-
lation or analytical studies. This is in stark contrast to
our focus on general purpose DBMS, OLTP workloads,
and full prototype evaluation.

NPrio [1], a non-preemptive policy that reorders
lock queues according to priority, is one of the earli-
est policies considered. Without preemption, however,
improvement to high-priority transactions is limited,
since they must sometimes wait for low-priority trans-
actions. This problem is known as priority inversion,
and most other policies’ goals are to address it.

NPrioinher, uses priority-inheritance [18, 17, 9] to
reduce the cost of priority inversions. Low-priority
transactions that block high-priority transactions be-
come high-priority themselves. The idea is to reduce
high-priority transaction wait times by speeding up the
transactions they wait for. If those transactions do not
wait on locks, or if too many transactions’ priorities in-
crease, the effectiveness becomes unclear. In simulation
and prototypes, some research finds that NPrioinher is
not as effective as PAbort in RTDBMS [11, 10]. In con-

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(a) Shore

5WH 10WH 20WH 30WH
0

20

40

60

80

100

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

IO
Lock
CPU

(b) IBM DB2

Figure 1. TPC-C Shore and DB2 average I/O, Lock, and CPU resou rce utilization, relative to total
average transaction response time.

trast, other simulation studies find that NPrioinher is,
in fact, effective in RTDBMS as long as transaction
arrivals are non-bursty [1].

PAbort (Preemptive Abort, or Wound-Wait) [9, 11,
16], preempts low-priority transactions that block a
high-priority transaction. Since preempted transac-
tions must be restarted, there may be significant extra
work into the system, slowing transactions down. In
simulation and RTDBMS testbeds, many researchers
[11, 10, 9, 21] find that NPinherit is not as effective as
PAbort. As indicated above, this contradicts the con-
clusions of others [1]. None of these studies consider
general-purpose DBMS and workloads.

Much work has been done to improve preemptive
policies by reducing the number of preemptions and
extra work. In distributed databases, Rosenkrantz et.
al. [16] mention POW (see Section 6) as a possible
variation of PAbort, in which running transactions are
not preempted, but do not implement the algorithm,
nor analyze its performance. Conditional Restart (CR)
and Conditional Priority Inheritance (CPI) [11, 10]
in RTDBMS estimate the time until low-priority lock
holders complete, and preempt if it take too long. We
find common estimates, such as the number of locks
held, do not work well for TPC-C type workloads.

Wait-depth-limited (WDL) [19, 20, 7, 6, 8] policies
preempt transactions to keep chains of waiting trans-
actions shorter than a given depth. Running Priority
(RP) [6, 20] is a common WDL policy in which trans-
actions wait only for transactions that are currently
running. Though RP does not consider priorities, and
POW is not WDL, the preemption conditions are sim-
ilar (see Section 6).

Our work addresses three limitations in the litera-

ture:

• Neither preemptive nor non-preemptive policies
are strictly superior, and it is difficult to predict
which is best for OLTP workloads.

• Most work focuses on RTDBMS, rather than
OLTP workloads and general-purpose DBMS. RT-
DBMS rely on specialized operating systems and
workloads that result in different performance
tradeoffs than in general DBMS.

• Only a few RTDBMS studies [10] examine locking
in fully implemented systems, where complicated
interactions can greatly affect performance.

Our prior work [14] is primarily a bottleneck analy-
sis of TPC-C (summarized in Section 3), although we
also observe the limitations of common non-preemptive
and preemptive lock scheduling policies. This paper
supercedes that work, focusing on DBMS using 2PL,
with an in-depth analysis identifying the reasons for
these limitations. Further, we introduce the POW pol-
icy which does not suffer these limitations.

3 Bottleneck: Locks

Here, we review prior work [14], demonstrating that
for TPC-C OLTP workloads on DBMS using 2PL,
locks are almost always the bottleneck resource. Specif-
ically, from the perspective of an individual transac-
tion, its response time is dominated by time waiting
to acquire locks. As a consequence, I/O and CPU
scheduling will be ineffective for prioritization, so we
focus exclusively on lock scheduling. It is important to

note that overall system CPU and I/O utilization are
high, as some transactions are always making progress.

We consider TPC-C type workloads on both com-
mercial and non-commercial DBMS, namely IBM
DB2 [5], PostgreSQL [12], and Shore [3]. Each of these
systems is profiled, counting time transactions spend
waiting for locks and I/O and both consuming and
waiting for CPU. (Lock time only accumulates when
waiting for locks. After a lock is acquired, the time
is spent in CPU, I/O, or waiting for other locks). For
both IBM DB2 and Shore, which use traditional 2PL,
our results show that, on average, transactions spend
more than 80% of their lifetime waiting for locks. We
find that this trend is present over a wide range of con-
figurations. Only in the most unrealistic configurations
are other resources be relevant.

Figure 1 shows the average resource breakdown for
both Shore and IBM DB2 as a function of database
size, measured in TPC-C warehouses. Each warehouse
adds 100MB, and the bufferpool is 800MB. The number
of concurrent clients is 10 times the number of ware-
houses, as specified by TPC-C. On average, waiting
for locks accounts for most of the response times, and
dominates even as the number of clients (load) or the
size of the database are varied. While IBM DB2 I/O
time increases as the database grows, it is not realistic
to run more than 30 warehouses on our limited testbed
hardware. In real applications, growing I/O cost is
hidden by additional memory and disks.

4 Evaluating Lock Scheduling Policies

As seen in Section 2, the effectiveness of preemp-
tive and non-preemptive lock scheduling policies can-
not be easily predicted. In this section, we experimen-
tally evaluate the behavior of the common policies, and
seek to understand their performance trade-offs.

4.1 Experimental Setup and Methodology

We focus on the following lock scheduling policies,
which are commonly used and referenced in the litera-
ture:

Standard: This is the baseline for comparison: trans-
actions are not prioritized.

NPrio: Non-preemptive lock queue reordering. When
locks are released, waiting compatible transactions
are granted the lock in priority-order (from high-
to low-priority).

NPrioinher: Non-preemptive lock queue reordering
with priority inheritance. Locks are granted as

in NPrio. Additionally, low-priority transactions
that block high-priority transactions become high-
priority (for the remainder of their lifetime) to re-
lease locks more quickly.

PAbort: Preemptive Abort. A low-priority trans-
action that blocks a high-priority transaction is
always immediately preempted (aborted, rolled
back, and restarted).

We implement the above lock scheduling policies in
Shore and measure their effects on average high- and
low-priority transaction response times in a TPC-C
workload. The tests are run on a 2.2GHz Pentium
4 with two disks (one for data, one for log), 1GB of
RAM and an 800MB bufferpool. Transactions run in
serializable isolation level, given the critical nature of
many OLTP applications (while weaker isolation levels
will result in less locking, this issue is orthogonal to
this work).

Implementation of these policies in Shore involves
sorting lock queues and minor modifications to lock
acquire and wakeup functions. The biggest difficulty
is forcing the deadlock detector to handle dynamically
reordering lock queues. This is an artifact of the origi-
nal Shore deadlock detection algorithm and should be
less of an issue with an independent deadlock detection
process, such as in DB2.

10% of the TPC-C transactions are independently
and randomly assigned high-priority and the remain-
ing 90% low-priority. The TPC-C code tells Shore the
transaction priority, and retries deadlocked and pre-
empted transactions. The database size is 10 Ware-
houses (1GB on disk), and is appropriate for our hard-
ware limitations (the database size does not greatly
affect the lock bottleneck [14]).

To vary concurrency (load), we change the arrival
process to have 300 clients (rather than the TPC-C-
specified 100 clients) and consider a range of client
“think times” between submitting transactions. We
vary the think time from 10 seconds (“low load”) to 1
second (“high load”). This range of think time results
in an average number of active clients in the database
from about 25 to 250, allowing us to investigate concur-
rency levels both well below and above the 100 clients
specified by TPC-C.

4.2 Performance Evaluation

Figure 2 depicts transaction response times under
the common lock scheduling policies. Figure 2(a) shows
mean response time for high-priority transactions and
Figure 2(b) shows mean response time for low-priority

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrio - HP

NPrioinher - HP
PAbort - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrio - LP

NPrioinher - LP
PAbort - LP

(b) Low-Priority

1 2 3 4 5 7.5 10
0

1

2

3

4

5

6

Think Time (sec)

A
vg

 R
es

po
ns

e
T

im
e

(R
el

at
iv

e
to

 S
td

)

NPrio
NPrioinher
PAbort

(c) Overhead

Figure 2. Average TPC-C Shore response times for high- and lo w-priority transactions as a function
of load for NPrio, NPrioinher, PAbort, and Standard policies (2(a) and 2(b)). Aggregate high- and
low-priority response time relative to Standard (2(c)).

transactions. Throughout the paper, lower think time
(left end) indicates higher load.

NPrio improves response times of high-priority
transactions relative to Standard by a factor of 4 at
high load. By comparison, NPrioinher improves re-
sponse times of high-priority transactions by a factor
of 5.3 at high load, and PAbort improves high-priority
response times over Standard by a factor of 9. This
significant improvement in high-priority response times
further confirms that locks are the bottleneck resource.
Under low loads, lock waiting time becomes less signif-
icant, and all the policies perform similarly.

The story is very different for low-priority transac-
tions. NPrio and NPrioinher only slightly harm low-
priority transactions as compared to Standard, increas-
ing response time by a factor of 1.2 at high load. By
comparison, PAbort drastically hurts low-priority per-
formance, increasing response time by a factor of 1.8 at
high load when compared with Standard and by much
more at low load.

It is interesting to note that in Figure 2(a), the high-
priority transaction response times increase as a func-
tion of load when no priorities are used (Standard), but
remain relatively stable when using priority scheduling.
This artifact is due to the TPC-C arrival process, which
uses a fixed number of clients that submit transactions
separated by exponential think times (i.e., a “closed
system” in queueing theory). As each transaction has
probability p of being high-priority, each client is ex-
pected to create one high-priority transaction for each
b1/pc − 1 low-priority transactions. Since low-priority

transactions are an order of magnitude slower than
high-priority transactions, the fraction of high-priority
clients in the system is in fact much smaller than p.
As a result, in Figure 2, the time-average fraction of
high-priority transactions in the system ranges between
1.1% and 7.7% for NPrio (with absolute values ranging
from 3 to 2.3 on the average), with similar numbers for
the remaining priority policies. As the load increases,
there are more and more low-priority transactions, but
only a few high-priority transactions, resulting in rela-
tively stable high-priority response times and degrad-
ing low-priority performance.

While PAbort appears to offer significant benefits
to high-priority transactions (factor of 9 improvement)
its penalty to low-priority transactions is too high,
making it inappropriate for real DBMS. At the same
time, while NPrioinher does well for both high- and
low-priority transactions, its inability to do as well as
PAbort for high priorities is discouraging. The primary
disadvantage of preemptive scheduling in PAbort is the
fact that it introduces extra work into the system (roll-
backs and re-execution of preempted transactions). It
is important to understand exactly how much extra
work is created.

One might think that prioritizing transactions does
not affect the overall average response time (aggregated
over high- and low-priority transactions), but simply
provides better response time for high-priority trans-
actions in exchange for worse response time for low-
priority transactions. This is not necessarily true how-
ever for policies like PAbort which introduce significant

overhead. Figure 2(c) studies the overhead incurred
by all the common prioritization policies. Here the re-
sponse times of the policies are shown normalized by
the response time for Standard (that is they have been
divided by Standard’s response time). An overhead of
1 (on the y-axis) indicates that the policy’s average
transaction response time (aggregate over high- and
low-priority transactions) is the same as Standard, and
the policy has not slowed the overall system down. The
non-preemptive policies NPrio and NPrioinher have
low overhead. However PAbort has overall average re-
sponse times 1.5 to 6 times greater than Standard, indi-
cating a huge overhead introduced due to preemption.
The reason that preemption performs worse under low
loads is due to the fact that transactions complete and
release locks faster under lower loads, while rollback
costs remain about constant (discussed in Section 5.2).

5 Statistical Profile of TPC-C Locking

In this section, we examine several hypotheses to ex-
plain the behavior of PAbort and NPrioinher, and test
these hypotheses using empirical statistical measure-
ments of the system. We will determine first why non-
preemptive high-priority performance is not as good as
in PAbort, and second why low-priority performance
under PAbort deteriorates.

5.1 High-Priority Performance under Non-
Preemptive Policies

There are four questions that must be answered to
understand why preemptive policies are superior to
non-preemptive policies in improving high-priority re-
sponse times. (i) How many lock requests do high-
priority transactions wait for? (ii) How long are the
lock waits, and how do they contribute to high-priority
response times? (iii) How much lock waiting is at-
tributed to current lock holders? (iv) How much do
lock waits contribute to response times?

(i) How many lock requests do high-priority
transactions wait for? Shore TPC-C transactions
make between 3 and 550 lock requests, depending on
the type of the transaction (e.g.: New Order, Payment,
etc). Understanding the fraction of these lock requests
that are forced to wait will determine the flexibility
available to lock scheduling policies.

Figure 3 shows the probability distribution on the
number of times transactions wait for locks under each
of the common scheduling policies. While the distri-
bution is shown for high-priority transactions, the dis-
tributions for low-priority transactions is similar. Over

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Lock Waits

F
ra

ct
io

n
of

 T
xn

s

Standard
NPrio
NPrioinher
PAbort

Figure 3. Distribution on the number of times
that high-priority transactions wait for a lock
under common lock scheduling policies (Sim-
ilar for low-priority transactions).

99% of the transactions wait for fewer than 3 lock re-
quests, while fewer than 1% wait for 3 or more lock
requests (Figure 3 truncated at 4 for clarity).

Interestingly, the number of lock waits for non-
preemptive policies does not change significantly as a
function of the policy. Preemptive scheduling changes
the distribution slightly, as preempting transactions
reduces the expected number of locks held in the
database, reducing contention. None of the policies
try to directly reduce the number of times high-priority
transactions wait on locks, which may involve knowl-
edge of future lock requests. While reducing the num-
ber of lock waits may be an effective strategy to im-
prove high-priority transactions, we only focus on re-
ducing lock wait times once they occur.

(ii) How long are lock waits? The fact that
high-priority transactions wait only for a few locks sug-
gests an answer to our second question: individual lock
waits are very long. For confirmation, we examine the
average time that a transaction waits when it waits for
a single lock request. We refer to this time as Queue-
Time, measured from when the transaction initiates
the lock request until it is granted. Note that for pre-
emptive policies, QueueTime includes preemptions, in
which case it is made up of the time needed to preempt
the transaction(s) holding the lock, until the preempted
transaction(s) release the lock.

Figure 4 depicts the QueueTime experienced by
high-priority transactions for NPrio, NPrioinher, and
PAbort. On average, high-priority QueueTime makes
up 40 – 50 % of the the high-priority response time for
all policies. Since 25% of transactions wait once and
40-60% wait twice, transactions are expected to include
one or two QueueTimes, slowing the transactions con-
siderably. Part of the reason that PAbort outperforms

1 2 3 4 5 7.5 10
0

0.5

1

1.5

Think Time (secs)

Q
ue

ue
T

im
e

(s
ec

)

NPrio QueueTime
NPrioinher QueueTime
PAbort QueueTime

Figure 4. Average high-priority QueueTime for
NPrio, NPrioinher, and PAbort as a function of
load (think time).

NPrioinher is that its QueueTime is only half as long.

(iii) How much lock waiting is attributed to
current lock holders? It is important to under-
stand QueueTime in more detail, because, as we have
seen, long QueueTimes prevent non-preemptive poli-
cies from sufficiently improving high-priority response
times. Under non-preemptive policies, a transaction’s
QueueTime is comprised of two components: (i) Wai-
tExcess, the time from when the lock request is made
until the first transaction waiting for the lock is wo-
ken and acquires the lock, and (ii) WaitRemainder, the
time from when the first waiter acquires the lock until
the lock request is finally granted. Intuitively, Wai-
tExcess is the time that a transaction waits for cur-
rent holders to release the lock, and WaitRemainder is
the time the transaction waits for other transactions in
the queue with it. The question we want to address
is which of WaitExcess or WaitRemainder is most re-
sponsible for high-priority QueueTimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

P
r[

 T
im

e
<

 x
]

Time (sec)

NPrioinher HP QueueTime
NPrioinher HP WaitExcess

NPrio HP QueueTime
NPrio HP WaitExcess

NPrio Aggregate WaitExcess

Figure 5. CDF of high-priority QueueTime and
WaitExcess for NPrio and NPrioinher for high
load along with aggregate high- and low-
priority WaitExcess for NPrio.

Figure 5 compares the probability distributions for
high-priority QueueTime and WaitExcess for NPrio
and NPrioinher under high load. The two leftmost
(upper) overlapping lines are NPrioinher high-priority
QueueTime and high-priority WaitExcess. The three
rightmost (lower) overlapping lines are NPrio high-
priority QueueTime, high-priority WaitExcess, and
overall average NPrio WaitExcess.

The fact that the high-priority QueueTime distri-
bution is exactly the same as high-priority WaitExcess
proves that high-priority transactions never wait be-
hind other transactions in the queue, and only wait
for the current lock holder. Figure 5 also demonstrates
that priority inheritance (NPrioinher) reduces WaitEx-
cess by boosting the priority of the current lock holders.
Additionally, high-priority NPrio WaitExcess is identi-
cal to overall average NPrio WaitExcess, reflecting the
fact that NPrio does not improve the response time of
current lock holders.

Since high-priority WaitRemainder is effectively
zero for the non-preemptive policies, the only remain-
ing issue affecting high-priority performance is Wai-
tExcess. While priority inheritance can help reduce
WaitExcess by speeding up lock holders, there are lim-
its to its effectiveness, and no clear way to extend the
policy to improve its QueueTimes further.

<= 0 <= 1 <= 2 <= 3 <= 4
0

1

2

3

4

5

6

7

8

9

Lock Waits

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Figure 6. Average transaction response time
as a function of the number of times a trans-
action waits under high load, when using the
Standard policy.

(iv) How much do lock waits contribute to
response times? Thus far we’ve seen that long
response times can be attributed to waiting on a few
locks with large WaitExcess times. We now ask how
exactly the response time is correlated to the number
of locks that a transaction waits on. Figure 6 depicts
the average response time of a transaction as a func-
tion of the number of times the transaction waits for

a lock request, for the Standard policy and high load
(1 second think time). The average response time of
transactions that never wait for locks is a factor of 18
smaller than the overall average response time. In addi-
tion, these transactions complete faster than the mean
high-priority response time under both NPrioinher and
PAbort (a factor of 3.7 and 2.2 improvement respec-
tively). This statistic shows that an accurate predictor
for the length of a transaction’s remaining execution
time is whether the transaction is about to wait for
locks or not. A desirable feature of this predictor is
that it has low overhead, as it requires no history or
bookkeeping in order to provide an estimation.

In conclusion, in this section we show that for TPC-
C workloads, while high-priority transactions acquire
numerous locks during their lifetime, they are forced to
wait on very few (almost always less than 3 waits). This
suggests, and we confirm, that the time spent waiting
for these blocking lock requests comprises a large por-
tion of high-priority transaction response times. We
also show that high-priority transactions almost never
wait for other transactions in the queue with them, and
just wait for the current holders of the lock to release
them. Finally, we show that those transactions which
wait for one or fewer locks (40% of all transactions)
have extremely short response times.

5.2 Low-Priority Performance under Preemptive
Policies

While high-priority response times under PAbort are
very promising, the effect of PAbort on low-priority
transactions is disastrous. Our goal is to examine the
statistical evidence to determine exactly the cause and
significance of this problem.

In this section, we examine the well-known penal-
ties for preemption that lead to poor performance: (i)
the cost of rolling back transactions, (ii) the number
of times transactions are preempted, and (iii) the work
lost executing transactions that are subsequently pre-
empted. We show that (iii) is almost the exclusive
reason for poor low-priority performance.

Individual rollback costs in PAbort have two primary
consequences. First, rollbacks delay both the preempt-
ing high-priority transaction and the preempted low-
priority transaction(s). To ensure ACID properties, a
high-priority transaction cannot immediately acquire
the lock of a transaction it preempts, but must wait for
the preempted transaction to rollback and release the
needed lock. The high-priority transaction need not
wait for the entire rollback, but only until the needed
lock is released. Typically, low-priority transactions
are not resubmitted until the rollback is complete. Sec-

ond, rollbacks require DBMS CPU and I/O resources
to clean up the preempted transaction which could oth-
erwise be used for other transactions, potentially slow-
ing down transactions overall.

We find that transaction rollback costs average
about .5 seconds over all loads. This cost is nontriv-
ial relative to the cost of a high-priority transaction.
By contrast it is insignificant for low-priority transac-
tions, which take between 5 to 16 seconds on average.
It should be noted that in optimized commercial sys-
tems, rollbacks should be even less significant.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Preemptions

F
ra

ct
io

n
of

 T
xn

s
Figure 7. Probability distribution on the num-
ber of times a transaction is preempted by
PAbort under high load (1 second think time).

The next question is whether there are simply too
many rollbacks, in which case the total cost of several
small rollbacks may be significant. We find, however,
that this is not the case. Figure 7 shows the proba-
bility distribution on the number of times a transac-
tion is preempted by PAbort under high load (1 second
think time). About 80% of transactions are never pre-
empted. For those that are preempted, the trend is
approximately geometric with about 12% being pre-
empted once, 5% twice, 2.5% three times, etc. On av-
erage, the number of preemptions (and rollbacks) per
transaction is less than 0.4, and the expected cost of
rollbacks overall is not large relative to the average low-
priority response time. Something else must hurt the
low-priority response times.

Finally, we examine the amount of work wasted in
processing transactions that are eventually preempted.
For all loads, the age of a transaction when it is pre-
empted is between 75% and 90% of the length of an
average transaction. Thus, a preempted transaction
essentially doubles its expected execution cost (assum-
ing independences). The conclusion is that the work
lost due to preemption is the most significant flaw of
PAbort.

6 Preempt-On-Wait Scheduling

In Section 4 we conclude that high-priority trans-
action performance is hindered under NPrioinher be-
cause transactions wait too long for current lock hold-
ers. Similarly, low-priority transactions are hurt un-
der PAbort because too many transactions (20%) are
preempted after completing a significant amount of
work. In this section, we describe and evaluate
the Preempt-On-Wait (POW) lock scheduling policy,
which combines the best of both worlds: PAbort’s good
high-priority performance and NPrioinher’s good low-
priority performance.

Section 6.1 describes the POW algorithm and its im-
plementation in Shore. Section 6.2 demonstrates that
POW achieves the best of PAbort and NPrioinher. Sec-
tion 6.3 compares POW to several state-of-the-art pre-
emptive policies. Finally, Section 6.4 provides a sta-
tistical analysis explaining why POW meets its perfor-
mance goals.

6.1 The POW Algorithm

POW is motivated by the following logic: consider
a low-priority transaction L that blocks a high-priority
transaction H . We have seen that if L is preempted,
much work is lost, penalizing low-priority response
times. If L is not preempted, its remaining time de-
pends on whether it waits for a lock (in which case its
remaining time is long) or doesn’t wait for a lock (in
which case its remaining time is very short).

In POW, when a high-priority transaction H waits
for a lock X1 held by a low-priority transaction L, L is
preempted if and only if L currently, or in the future,
waits for some other lock X2. Additionally, lock queues
are reordered as in NPrio to ensure that high-priority
transactions are first to get the lock when it is released.

The implementation of POW for Shore builds on
the implementations of NPrio and PAbort as described
in Section 4.1. The only additional state needed is a
boolean flag fpow for each transaction, which requires
almost no computational overhead. If H must wait for
L, and L is currently waiting for another lock, fpow is
set. On all blocking lock acquisitions, if fpow is set,
the transaction is aborted.

For example, consider that low-priority transactions
L1, L2, and L3 all hold a lock X in shared mode. L1 is
currently waiting to acquire another lock, L2 will need
to wait on another lock in the future before it com-
pletes, and L3 will not wait for any more locks before
it completes (though it may acquire several more). If
high-priority transaction H requests an exclusive lock
on X , it will immediately preempt L1, and set the flag

NPrioinher PAbort POW
HP improvement 3.41x 5.45x 5.60x
LP penalty 1.36x 2.27x 1.16x

Table 1. High- and Low-priority response time
speedup relative to Standard policy.

on L2 and L3. When L2 makes its first lock request
and is forced to wait, POW sees that L2’s flag is set,
thus L2 is aborted. Since L3 does not block on any
more locks, it completes. In this case, H acquires the
lock X as soon as all of L1, L2, and L3 have either
completed or aborted.

6.2 POW Performance Evaluation

Figure 8 compares the performance of POW with
that of the common lock-scheduling policies, as a func-
tion of load. POW high-priority response times are
nearly identical to those for PAbort for all loads. Si-
multaneously, POW low-priority response times are
nearly identical to those for NPrioinher. Therefore,
POW outperforms both PAbort and NPrioinher (and
also NPrio). As the probability of a transaction being
high-priority varies from 1% to 10%, the same trend
holds.

Table 1 shows the high-priority improvement and
low-priority penalty under POW and the common poli-
cies, averaged over the range of think times. POW’s
improvement to high-priority transactions (a factor of
5.6 improvement over Standard) exceeds even that of
PAbort. POW’s penalty to low-priority transactions (a
factor of 1.16 above Standard) is even lower than that
of NPrioinher.

As explained in Section 4.2, response times of high-
priority transactions remain relatively constant as the
load increases, and the number of high-priority trans-
actions in the system at any time is relatively constant
(between 1.1% and 5.2%).

Figure 8(c) depicts the overhead (overall average
transaction response time relative to Standard) for
POW. The overhead of POW is always comparable
with NPrioinher and (to a lesser extent) NPrio. By
comparison, the overhead of PAbort is disastrous (See
Figure 2(c)).

6.3 POW vs Other Preemptive Polices

In this section, we compare POW to other types
of state of the art preemptive lock scheduling policies
from the literature: WDL (wait-depth-limited) [7] and

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrioinher - HP

PAbort - HP
POW - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
NPrioinher - LP

PAbort - LP
POW - LP

(b) Low-Priority

1 2 3 4 5 7.5 10
0

1

2

3

4

5

6

Think Time (sec)

A
vg

 R
es

po
ns

e
T

im
e

(R
el

at
iv

e
to

 S
td

)

NPrio
NPrioinher
PAbort
POW

(c) Overhead

Figure 8. Average response time for high- and low-priority t ransactions for POW, PAbort, and NPri-
oinher as a function of load (8(a) and 8(b)). Aggregate high- and low -priority average response time
relative to Standard (8(c)).

CR (conditional restart). Since POW allows long lock
chains to form, it is not itself a WDL policy. Addition-
ally, its preemption conditions differ from those em-
ployed in typical CR policies.

First, we consider WDL1, a simple wait-depth-
limited policy without prioritization. This policy sim-
ply preempts transactions to ensure that a lock chain
contains no more than 2 transactions. When three
transactions wait in a chain T1 → T2 → T3, T2 is pre-
empted. We find that WDL1 performs poorly on our
workload, particularly under high loads, since it has
hot-spots and and high contention. Transactions are
preempted too frequently (more than 50 times each)
and make no forward progress. Our attempts to extend
WDL1 to respect priorities fail to resolve this problem.

We also consider a variation of the CR policy,
CR300. CR300 is identical to PAbort, except that
transactions are given a reprieve time (300ms) to com-
plete before being preempted. By contrast, CR pre-
empts transactions immediately, but must make diffi-
cult predictions about transactions’ remaining times.
CR300 safely avoids this issue, relying on the fact that
high-priority transactions wait only for WaitExcess,
and those WaitExcesses are very short (we find 30%
are less than 300ms and 50% are less than 500ms).
Varying the reprieve time from 100ms to 1000ms does
not change performance significantly.

Figure 9 illustrates high- and low-priority transac-
tion response times for each of the policies Standard,
CR300, and POW. Invariably, the best policy for both
high- and low-priority transactions is POW. CR300
performs similarly to NPrioinher for both high- and
low-priority transactions. POW manages to outper-

form CR300 by preempting more transactions that
greatly slow down high-priority transactions (POW
preempts 4 times as many under high loads). It turns
out that whether a transaction waits for a lock is a
better predictor of its remaining time than whether it
completes within its reprieve time.

6.4 Explaining POW Performance

In order to understand why POW improves high-
priority transaction response times as much as PAbort
without hurting low-priority response times, we con-
duct a statistical evaluation of TPC-C under POW.

Low-Priority Penalty. As determined in Sec-
tion 4.2, the primary reason low-priority transactions
suffer with PAbort is work lost to transactions later pre-
empted. Two factors affect the amount of this wasted
work: (i) the number of preempted transactions and
(ii) the age of a transaction when preempted.

We find that POW preempts less than 1% of trans-
actions (∼ 265 preemptions), while PAbort preempts
20% of the transactions (∼ 5000 preemptions). These
figures are fairly constant over all loads. Thus, POW
allows almost all low-priority transactions that block
high-priority transactions to complete during their “re-
prieve.” Thus, only a handful (1%) of transactions are
penalized more with POW than with NPrioinher. The
result is that low-priority response times and overhead
for POW are similar to that of NPrioinher.

High-Priority Improvement. POW improves
high-priority transaction response times because it sig-
nificantly reduces high-priority QueueTime. We con-
sider QueueTime in two cases: in the case where

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
CR300 - HP

POW - HP

(a) High-Priority

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

A
vg

 R
es

po
ns

e
T

im
e

(s
ec

)

Avg Think Time (sec)

Standard
CR300 - LP

POW - LP

(b) Low-Priority

Figure 9. Average response time for high-
and low-priority transactions with preemptive
policies CR300 and POW.

the lock holder completes (QueueTime|Wait) and
in the case where the lock holder is preempted
(QueueTime|Preempt).

Figure 10 compares the average high-priority
QueueTime for POW and PAbort. While
POW’s (QueueTime|Preempt) can be large,
(QueueTime|Wait) is similar to PAbort’s Queue-
Time. Since POW preempts so few transactions, the
overall average POW QueueTime is similar to the
average PAbort QueueTime. The variability in POW’s
(QueueTime|Preempt) in Figure 10 is a result of so
few preemptions.

POW is as good for high-priority transactions as
PAbort because whenever a high-priority transaction
waits for a lock, it waits no longer than it would have
if it preempted the current holder(s). In the few cases
where POW preempts the lock holder(s), the waiting
time will be extraordinarily large. Furthermore, the
time lost waiting to determine whether to preempt the
holders is not very long (2-3 times an average lock
wait).

1 2 3 4 5 7.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Think Time (secs)

Q
ue

ue
T

im
e

(s
ec

)

POW QTime|Preempt
POW QTime|Wait
POW QTime Avg
PAbort QTime

Figure 10. Average time for high-priority
QueueTime, QTime|Preempt, and QTime|Wait
as a function of load.

7 Conclusion

The goal of this work is to provide user priority
classes for OLTP applications, such as TPC-C, using
priority scheduling in the DBMS. As Shore (and sim-
ilarly, IBM DB2) exhibits lock bottlenecks for these
workloads, we consequently focus exclusively on lock
scheduling. Experimental evaluation of common pre-
emptive and non-preemptive lock scheduling policies in
this environment reveals that no policy is clearly supe-
rior. The common policies have limited ability to im-
prove high-priority response times without significantly
hurting those for low-priority transactions.

Consequently, we formulate a novel and detailed sta-
tistical analysis of locking in TPC-C on Shore with the
common lock scheduling policies. We draw two pri-
mary consequences from this analysis. First, with non-
preemptive lock scheduling, WaitExcess dominates the
delays experienced by high-priority transactions, and
WaitExcess is not greatly reduced by techniques such
as priority inheritance (Figures 4 and 5). Furthermore,
if a transaction waits for a WaitExcess, its response
time is 5-18 times longer than if it does not (Fig-
ure 6). As a result, while non-preemptive scheduling
policies such as NPrioinher barely penalize low-priority
transactions, they insufficiently improve high-priority
transactions. Second, for preemptive lock scheduling,
though preemption can introduce many overheads, the
only relevant penalty is work wasted on transactions
later preempted.

The above analysis suggests prioritization policies
must exploit the tradeoff between wasted work and
WaitExcess. To that end, we propose and implement
the POW lock scheduling policy for TPC-C workloads
on lock-based DBMS. POW exploits the statistical pro-
file of locking in the workload, combining the excellent

high-priority performance of PAbort with the good low-
priority performance of NPrioinher. This is the first
application and evaluation of POW for OLTP DBMS
and workloads. Experimental results show that POW
improves high-priority transaction response times by a
factor of 5.6 on the average, while hurting low-priority
transactions by only 16%. Thus, preemption can be
effective with a low penalty in traditional DBMS and
OLTP applications.

This work has several high-level impacts: First,
POW-like policies can be used in online and commer-
cial OLTP environments to increase profits, both by
enabling service-level agreements and by ensuring good
performance and satisfaction for high-profit customers.
Second, analytical DBMS performance models may use
our statistical profile of TPC-C locking to develop more
accurate and tractable models for OLTP workloads.
The dominating factors of WaitExcess and work lost
in preempted transactions allow modelers to ignore ir-
relevant aspects of the system. Last, our analysis forms
a basis for studying other workloads and building a tax-
onomy of workloads’ statistical profiles, invaluable for
DBMS algorithm development and tuning.

References

[1] Robert K. Abbott and Hector Garcia-Molina. Schedul-
ing real-time transactions: A performance evaluation.
In VLDB, pages 1–12, 1988.

[2] A. Ailamaki, D.J. DeWitt, and M.D. Hill. Data page
layouts for relational databases on deep memory hier-
archies. VLDB, 11(3), 2002.

[3] M. Carey, D. J. DeWitt, M. Franklin, N. Hall,
M. McAuliffe, J. Naughton, D. Schuh, M. Solomon,
C. Tan, O. Tsatalos, S. White, and M. Zwilling.
Shoring up persistent applications. In Proc. of SIG-

MOD, May 1994.

[4] IBM Corporation. IBM DB2 query patroller adminis-
tration guide version 7.0, 2000.

[5] DB2 Product Family.
http://www.ibm.com/software/data/db2.

[6] Peter A. Franaszek and John T. Robinson. Limitations
of concurrency in transaction processing. ACM TODS,
10(1):1–28, March 1985.

[7] Peter A. Franaszek, John T. Robinson, and Alexander
Thomasian. Wait depth limited concurrency control.
In Proc. of ICDE, pages 92–101. IEEE, April 1991.

[8] Peter A. Franaszek, John T. Robinson, and Alexander
Thomasian. Concurrency control for high contention
environments. ACM TODS, 17:304–345, June 1992.

[9] Jayant R. Haritsa, Michael J. Carey, and Miron Livny.
Data access scheduling in firm real-time database sys-
tems. JRTS, 4(3):203–241, September 1992.

[10] Jiandong Huang, John A. Stankovic, Krithi Ramam-
ritham, and Donald F. Towsley. On using priority in-
heritance in real-time databases. In Proc. Real-Time

Systems Symposium, pages 210–221, 1991.

[11] Jiandong Huang, John A. Stankovic, Krithi Ramam-
ritham, Donald F. Towsley, and Bhaskar Purimetla.
Priority inheritance in soft real-time databases. JRTS,
4(3):243–268, 1992.

[12] Sailesh Krishnamurthy, Spiros Papadimitriou, Bianca
Schroeder, and Anastassia Ailamaki. PostgreSQL,
chapter in Database System Concepts, by H. Korth,
A. Sibershatz, and S. Sudarshan, McGraw Hill, 5th
Edition.

[13] IBM Toronto Lab. IBM DB2 universal database ad-
ministration guide version 5. Document Number S10J-
8157-00, 1997.

[14] David T. McWherter, Bianca Schroeder, Anastassia
Ailamaki, and Mor Harchol-Balter. Priority mecha-
nisms for OLTP and transactional web applications.
In Proc. of ICDE. IEEE, 2003.

[15] Ann Rhee, Sumanta Chatterjee, and Tirthankar
Lahiri. The Oracle database resource manager:
Scheduling CPU resources at the application. HPTS,
2001.

[16] Daniel J. Rosenkrantz, Richard Edwin Stearns, and
Philip M. Lewis, II. System level concurrency control
for distributed database systems. volume 3, pages 178–
198. ACM Press, 1978.

[17] Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. Technical Report CMU-
CS-98-181, Carnegie Mellon University, 1987.

[18] Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on

Computers, 39(9), September 1990.

[19] Alexander Thomasian. Performance analysis of locking
policies with limited wait depth. Performance Evalu-

ation Review, 20(1), June 1992.

[20] Alexander Thomasian. A performance comparison of
locking methods with limited wait depth. IEEE Trans-

actions on Knowledge and Data Engineering, 9(3):421–
434, 1997.

[21] Özgür Ulusoy and Geneva G. Belford. Concurrency
control in real-time database systems. In Proc. ACM

Annual Conference on Communications, pages 181–
188, 1992.

