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Abstract
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1 Introduction

It is well-known that choosing the right scheduling algorithm can have a big impact

on performance, both in theory and in practice. For example, changing the schedul-

ing algorithm in a CPU from Processor-Sharing (PS) to a policy which biases to-

wards small jobs, such as Shortest-Remaining-Processing-Time-First (SRPT), or to

a policy which biases towards young jobs, such as Least-Attained-Service (LAS),

can improve mean response time (a.k.a. sojourn time) dramatically.

However, less well understood is the performance impact of different scheduling

policies on large jobs. For example, how does a policy which biases towards small

jobs, such asSRPT, compare against a policy which biases towards large jobs,

such as Longest-Remaining-Processing-Time-First (LRPT), when the performance

metric is the response time of the large jobs?

In this paper we limit our discussion to an M/GI/1 queue. For the M/GI/1/PS queue

with load�, all jobs (large or small) are slowed down by the same factor,11�� , in

expectation. Because the slowdown (response time divided by job size) is the same

for all job sizes, thePS policy is often referred to as thefair policy.

We will show that allwork conservingscheduling policies have the same perfor-

mance asPS with respect to large jobs. In particular, we show that the slowdown

as job size tends to infinity under any work conserving policy is at most11�� al-

most surely; even for policies which clearly bias against large jobs. We also con-

sider the expected slowdown for jobs that are not the very largest. We show that

all “sufficiently-large” jobs have slowdown arbitrarily close to that ofPS, where

“sufficiently-large” depends on� and includes most jobs provided� is not too high.

2 Previous work

Ever since the discovery thatSRPT has the lowest mean response time of any

scheduling policy (for any sequence of arrival times and job sizes) [20,24,21], the
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evaluation of various scheduling policies has intrigued system designers and queue-

ing theorists. There exist over a hundred survey papers to date on the analysis of

scheduling policies, as well as many wonderful books such as [6,12,17,5].

TheSRPT policy in particular has received much attention. Schrage and Miller first

derived the expressions for the response times in an M/GI/1/SRPT queue [21]. This

was further generalized by Pechinkinet al.to disciplines where the remaining times

are divided into intervals [15]. The steady-state appearance of the M/GI/1/SRPT

queue was obtained by Schassberger [19]. Rajaraman et al. showed further that the

mean slowdown underSRPT is at most twice the optimal mean slowdown for any

sequence of job arrivals [9].

Though analytical formulas for the M/GI/1 queue with various scheduling poli-

cies have been known for a long time, they are difficult to evaluate numerically,

due to their complex form (many nested integrals). Hence, there was little work

on the relative comparison of different scheduling policies, until more recently.

The following papers have compared themean response timesof various schedul-

ing policies under specific job size distributions and specific loads, by plotting the

known formulas: [16,22,13,18,21]. A 7-year long study at University of Aachen

under Schreiber [16,22] involved extensive evaluation ofSRPT for various job size

distributions and loads, and showed thatSRPT has significant mean response time

improvements compared to policies likeFCFS,LFCS andPS. The survey paper by

Schreiber [22] summarizes the results.

The above mentioned results were based on plots forspecificjob size distributions

and loads. Hence it is not clear whether the conclusions hold for more general

job size distributions and loads. Furthermore the above studies examinedmean

response time and did not raise the problem of possibleunfairnessto long jobs.

It has often been cited that the superior performance of scheduling policies which

bias towards small jobs may come at the cost of starving large jobs [3,25,26,23].

Usually, examples of adversarial arrival sequences where a particular job starves

are given to justify this. However, such worst case examples do not reflect the be-

havior of these policies in the average case. The term “starvation” is alsoused by

3



people to indicateunfairness. It is often argued that policies which favor small jobs

should result in higher expected response time for long jobs than policies which

are ”fair,” like PS. This argument is valid for scheduling policies that do not make

use of size; see the famous Kleinrock Conservation Law for non-preemptive, work

conserving policies [12, Page 114] and for preemptive, work conserving policies

with exponential service time distributions [11, Page 82].

Very recently, several papers have appeared which try to evaluate the problem of

unfairnessanalytically, and thus consider the behavior of scheduling policies as a

function of the job size. Bender et al. consider the metricmax slowdownof a job as

an indication of unfairness [3]. They show, with an example, thatSRPT can have

an arbitrarily largemax slowdown. However,max slowdownis not an appropriate

metric to measure unfairness. A large job may have an exceptionally long response

time in some cases, but it might do well most of the time.

Bansal and Harchol-Balter [2] compare theSRPT policy and thePS policy analyt-

ically for an M/GI/1 queue on a per-job-size basis. They prove that if the load�
is less than12 , then every job, including the very largest job, has a lower expected

response time underSRPT than underPS, for every job size distribution. They also

prove that for arbitrary load�, the expected response time of a job of sizex under

SRPT is no more thanc times that underPS, wherec is a function of 11�� . This

result nicely complements the result in this paper (Theorem 5) which states that

for all �, for every job size distribution, all sufficiently large jobs have expected

response time (and slowdown) underSRPT which isarbitrary closeto that ofPS.

There has also been work in the area of proposing newSRPT-like policies [4,14]

which try to reduce the problem of unfairness, while still favoring the short jobs.

These usually prioritize based onboth the time a job has waited so far, and its

remaining size. These policies are usually analytically intractable andhave been

evaluated by simulation only. However simulations show that they are promising.

Other related research involves tail asymptotics for steady-state delay; see for ex-

ample [8], in which the emphasis is on heavy-tailed distributions such as subexpo-

nential distributions.
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3 The slowdown metric, the fairness metric, and some initial notation

We will throughout be considering a stable M/GI/1 queue. The average arrival rate

will be �. A job’s size(service requirement) will be denoted by the random variableX and will be chosen i.i.d. from a continuous distribution withfinite meanandfinite

variance. The probability density function (pdf) of the job size distribution isf(x),
and the cumulative distribution function (cdf) isF (x) = P (X � x); x � 0. We

will denote the tail,1 � F (x), byF (x). We assume thatf(x) > 0; x > 0; service

times can be arbitrarily large. Throughout we distinguish between the “size of a

job” and the “remaining size of a job.” The former denotes the service requirement

upon time of arrival (original size chosen fromF ). The latter denotes the leftover

(remaining) service time at the time in question. The load (utilization),�, of the

server is� def= �E[X] = � R10 xf(x)dx: We always will assume that� < 1; the

queue is stable. The load made up by the jobs of size less than or equal tox, �(x),
is �(x) def= � R x0 tf(t)dt:
We will useT to denote the steady-state response time (a.k.a. sojourn time) andT (x) to denote the steady-state response time for a job of sizex; a customer arriving

in steady-state bringing a service time of lengthx has a response timeT (x). By

definition,T has the same distribution asT (X), andE[T ] = R10 E[T (x)]f(x)dx
whereX is chosen independent ofT throughout this paper. Note thatfT (x) : x �0g is a stochastic process. Formally, at timet = 0 we initially start the system in

steady-state, and then for eachx, we construct eachT (x) using the same initial

state and future service and interarrival times (along each sample path).

Definition 3.1 For any given policy, the slowdown,S, is defined as response time

divided by job size, namely,S = T (X)X : The slowdown for a job of sizex, S(x), is

thus given byS(x) = T (x)x : The expected slowdown for a job of sizex, E[S(x)],
is given byE[S(x)] = E[T (x)]x : The overall mean slowdown is given byE[S] =R10 E[S(x)]f(x)dx:
Ourprimary metric of interest in this paper isslowdown. Mean slowdown is of-

ten used as a measure of system performance as opposed to the more traditional
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mean response time for two reasons [7,1,10]. First, it is desirable that a job’s re-

sponse time be correlated with its size (processing requirement). In many cases

we’d like small jobs to have small response times and big jobs to have big response

times. Second, mean slowdown is more representative of the performance of alarge

fraction of jobs. Mean response time is dominated by the contribution from just a

few large jobs, whereas under mean slowdown the dominating effect of the large

jobs is removed by normalizing the response times using the job sizes.

It is well known that for an M/GI/1/PS queue,E[S(x)]PS = 11�� : This says that

for any given load� < 1, underPS scheduling, all jobs have the same expected

slowdown; hencePS is “fair” . In this paper we will consider policies that signifi-

cantly improve uponPS with respect to mean slowdown by giving priority to short

jobs, or to young jobs. We will ask whether the large jobs suffer as a consequence.

Specifically, we will be interested in the slowdown for large jobs.

Definition 3.2 For any given scheduling policy, the slowdown for large jobs is de-

fined (when it exists) bylimx!1 S(x) whereby the convergence is almost sure (a.s.)

convergence, by which we mean with probability1. The expected slowdown for

large jobs is defined (when it exists) bylimx!1 E[S(x)]:
4 Brief review of common scheduling policies

In this section we define several common scheduling policies and summarize known

results for these policies under an M/GI/1 queue, with respect to the mean response

time for a job of sizex.

PS: Processor-Sharing

Under thePS policy the processor is shared fairly among all jobs currently in the

system [27]:E[T (x)]PS = x1� �
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SRPT: Shortest-Remaining-Processing-Time-First

Under theSRPT policy, at every moment of time, the server is processing that job

with the shortest remaining processing time. TheSRPT policy is well-known to be

optimal for minimizing mean response time [21]. The mean response time for a job

of sizex, E[T (x)]SRPT , can be decomposed into a sum:E[T (x)]SRPT = E[W (x)]SRPT + E[R(x)]SRPT
whereE[W (x)]SRPT is the expected waiting time for the job (the expected time

for a job of sizex from when it first arrives to when it receives service for the first

time) andE[R(x)]SRPT is the expected residence time (the time it takes for a job

of sizex to complete service once it begins execution) [21].E[W (x)]SRPT = �2 R x0 t2f(t)dt+ �2x2F (x)(1� �(x))2 ; (1)E[R(x)]SRPT = Z x0 dt1 � �(t): (2)

P-LCFS: Preemptive-Last-Come-First-Served

UnderP-LCFS, whenever a new arrival enters the system, it preempts the job in

service. Only when that arrival completes does the preempted job resume service.

A new arrival can be thought of as starting its own busy period, where the new

arrival can’t leave until this busy period completes. LettingB(x) denote the length

of a busy period started by a job of lengthx, we have [12]:E[T (x)]P�LCFS =E[B(x)] = x1� � (3)

LAS: Least-Attained-Service

UnderLAS, the job with the least attained service gets the processor to itself. If

several jobs all have the least attained service, they time-share the processor via

PS. This is a very practical policy, since a job’sage(attained service) is always
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known, although it’s size may not be known. This policy is conjectured to improve

uponPSwith respect to mean response time and mean slowdown when the job size

distribution has decreasing failure rate.

Both E[T (x)]LAS and the Laplace transform ofT (x)LAS underLAS are known

[12]. We need some preliminary notation: Forx � 0, letXx = minfx;Xg: ThenE[Xx] = Z x0 yf(y)dy + xF (x)E[X2x] = Z x0 y2f(y)dy + x2F (x)
Observe thatXx is similar to the R.V.X, except that all job sizes have been capped

at a maximum ofx. Given the above definitions and letting�x = �E[Xx], we have:E[T (x)]LAS = x(1� �x) + �2E[X2x](1� �x)2 (4)

LRPT: Longest-Remaining-Processing-Time

Under theLRPT policy, at every moment of time, the server is processing the job

with the longest remaining processing time. If multiple jobs in the system have

the same remaining processing time, they time-share the processor viaPS. Since

theLRPT policy biases towards thelongestjobs, it is of little practical value. We

couldn’t locate an analysis of this policy for the M/GI/1 queue anywhere, although

analyzingLRPT isn’t difficult, and we do so later in the paper.

SJF: Shortest-Job-First

SJF is the non-preemptive variant ofSRPT. UnderSJF, when the server is free it

chooses to run the shortest job [6]:E[T (x)]SJF = x+ �E[X2]2E[X] � 1(1 � �(x))2
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Other policies not mentioned above

There are many other scheduling policies that we haven’t mentioned. All non-

preemptive policies that don’t make use of a job’s size, for example,FCFS (First-

Come-First-Served),LCFS (non-preemptive Last Come First Served), orRANDOM

will have the same mean response time,E[T ], and thus for all such policies,E[T (x)] = E[T ]� E[X] + x = �E[X2]2(1� �) + x
Since these have the same performance with respect toE[T (x)], we will discuss

them as a group.

5 Convergence of scheduling policies in expectation

In this section, we evaluate theexpected slowdownfor the largest jobs under dif-

ferent scheduling policies. In Section 5.1 we consider five particular scheduling

policies and show that they have the same expected slowdown asPS for the largest

job. In Section 5.2 and Section 5.3 we generalize these results to all workconserv-

ing scheduling policies. Finally, in Section 5.4 we consider the broader problem of

expected slowdown as a function of job size, for all job sizes. We find that forany

work conserving policy, for sufficiently large jobs, the expected slowdown can be

shown to be arbitrarily close to that ofPS, where our definition of sufficiently large

will typically include most jobs.

5.1 Convergence of five scheduling policies in expectation

This section will prove the following theorem:

Theorem 1 Asx!1, expected slowdown for SRPT, P-LCFS, LAS, and LRPT is

the same as for PS:limx!1E[S(x)]SRPT = limx!1E[S(x)]P�LCFS = limx!1E[S(x)]LAS = limx!1E[S(x)]LRPT = 11 � �
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That is, the expected slowdown for the largest job is the same under policies that

bias towards short jobs, policies that bias towards long jobs, and policies that treat

all jobs fairly.

Proof for SRPT

We start by looking at the waiting time component ofSRPT:E[W (x)]SRPT = �2 R x0 t2f(t)dt+ �2x2F (x)(1 � �(x))2 = � R x0 t F (t)dt(1� �(x))2limx!1E[W (x)]SRPT = � R10 t F (t)dt(1� �)2 <1
where finiteness follows since the service time distributionF is assumed to have

finite second moment.

Thus we havelimx!1 E[W (x)]SRPTx = 0
We now complete the proof by considering the residence time component ofSRPT.limx!1 E[R(x)]SRPTx = limx!1 1x Z x0 dt1 � �(t) = limx!1 11� �(x) (by L’Hopital)= 11� �
Proof for LAS

The limiting slowdown of large jobs is the same underLAS andSRPT as shown

below: �x =� Z x0 yf(y)dy + �xF (x) = � Z x0 F (y)dylimx!1 �x =� Z 10 F (y)dy = �E[X] = �
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E[T (x)]LAS = x1 � �x + �2 �R x0 y2f(y)dy + x2F (x)�(1 � �x)2= x1 � �x + � R x0 F (y)dy(1 � �x)2limx!1E[S(x)]LAS = limx!1 x1 � �x � 1x + limx!1 � R x0 F (y)ydy(1 � �x)2 � 1x= 11 � � + � R10 F (y)ydy(1� �)2 limx!1 1x
Again, by the finiteness of the second moment ofF , limx!1 E[S(x)]LAS = 11�� .

Proof for LRPT

We will use the following notation in this section and throughout the rest of the

paper:B will denote the length of a regular busy period.B(x) will denote the

length of a busy period started by a job of sizex (an exceptional first service busy

period).B(x)j�0 will denote the length of a busy period started by a job of sizex
where the arrival rate is�0.
If the job enters a busy system, then we can again take advantage of the above

property to see thatT (x) = B(x + V ), in distribution, whereV is the amount of

work in the system (in steady-state) seen by an arbitrary arrival.

SinceLRPT is work conserving, and arrivals are Poisson, we know via PASTA that:E[V ] = E[W (x)]FCFS = �E[X2]2(1 � �) ;
whereW (x)FCFS is the steady-state delay in queue (not including service) in a

FCFS queue. Note thatE[V ] does not depend onx.

It is well known thatE[B(Y )] = E[Y ]1�� for any exceptional first service timeY . This

holds forY = x andY = x+ V . Using this we obtain, asx!1:E[S(x)]LRPT = E[B(x+ V )]x = x+ E(V )(1� �)x = 11 � � + E(V )(1� �)x ! 11 � �(5)
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Proof for P-LCFS

For theP-LCFS policy it trivially follows from (3) that:limx!1 E[T (x)]P�LCFSx = 11� �
5.2 Convergence of all work conserving scheduling policies in expectation

This section extends the analysis of the previous section. The goal is to to bound

convergence in expectation of slowdown underany work conserving policy.

Theorem 2 For any work conserving scheduling policylimx!1E[S(x)] � 11 � �:
If the policy is also non-preemptive, thenE[S(x)]! 1 asx!1.

Proof : The proof of the 11�� bound stems from the observation thatLRPT provides

an upper bound onT (x)P for any work conserving policyP . That is, underLRPT,

every job finishes the moment the busy period the job arrived into ends, which is

the last possible completion moment for any work conserving policy. So, the result

follows from Equation (5). For any work conserving policyP :limx!1E[S(x)]P � limx!1E[S(x)]LRPT = 11 � �:
This proves the first half of the theorem.

Now we limit our discussion to non-preemptive work conserving policies. In this

caseT (x) = W (x) + x, andW (x) is smaller than the length of a busy period

started by a job of size equal toV . SoW (x) � B(V ) andE[W (x)] � E[V ]1�� , andE[S(x)] � E[V ]x(1� �) + 1 ! 1; asx!1:
12



5.3 Followup remarks on convergence in expectation

A few followup observations are in order regarding Theorem 2.

Remark 3 Theorem 2 does not extend to policies that are not work conserving.

In fact, for everyz 2 [1;1) there is a non work conserving policy such thatlimx!1 E[S(x)] = z.

To see this, consider the policy that makes each job wait(z � 1)x time before it is

allowed to enter the queue of a non-preemptive, work conserving system.

Remark 4 The 11�� bound in Theorem 2 is tight. In fact, For everyz 2 [1; 11�� ]
there is a work conserving policy such thatE[S(x)]! z; asx!1.

Proof : Consider a linear combination of theFCFS andP-LCFS policies. More

specifically, consider the following scheduling policy,P : with probabilityq an ar-

riving job preempts the job being serviced, and with probability1 � q an arriving

job is placed at the back of aFCFS queue to await service.

We can quickly analyze this policy to findE[S(x)]P . Consider an arrival that gets

placed at the front of the queue. This arrival can only be bothered by other jobs

that are allowed to preempt. Thus, for this jobT (x) = B(x)j�0, where�0 = q� forq 2 [0; 1]. That is,T (x) is the length of a busy period started by a job of sizex
where the arrival rate is�0.
Now consider a job that gets placed in the back of the queue. If the system is idle

when the job arrives, we again see thatT (x) = B(x)j�0. However, if the system

is busy at the time of the arrivalT (x) = B(x + V ))j�0, whereV is the amount of

work in system seen by an arbitrary arrival. Let�0 = �0� . Then, putting these two

pieces together, we see that asx!1:E[S(x)]P = qE[B(x)]j�0x + (1� q)E[B(x+ V )]j�0x= q 11� �0 + (1� q)1 + 1x �E[X2]2(1��)1� �0 ! 11� �0
13



Non work conserving:

     E[S(x)] −−> [1, infinity)

Work conserving

Preemptive:

     E[S(x)] −−> [1, 1/(1 − ρ)]

Work conserving

Non−preemptive:

    E[S(x)] −−> 1

Fig. 1.Taxonomy of scheduling policies defined by the metriclimx!1E[S(x)].
Notice that since�0 is an arbitrary number in[0; �], we can make 11��0 any number

in [1; 11�� ].
The above remarks show that the metriclimx!1 E[S(x)] defines a taxonomy on

all scheduling policies, as shown in Figure 1. Non work conserving policies have a

value in[1;1) under this metric. Preemptive work conserving policies have a value

in [1; 11�� ] under this metric. Non-preemptive work conserving policies all have a

value of1 under this metric. Each class is complete in that for each value in the

range, there exists a policy with that value.

5.4 Bounding all work conserving policies for sufficiently-large job sizes

Until now we have concentrated on the limiting behavior as the job sizex ! 1.

We now show that we can easily prove an upper bound of(1 + ") 11�� for the ex-

pected slowdown of all “sufficiently large” jobs under all work conserving schedul-

ing policies for any" > 0.

Let V be the amount of work in the system when a job arrives. Recall thatE[V ]
is the same under all work conserving policies and for jobs of any size. In fact,E[V ] = E[W (x)]FCFS.
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Theorem 5 Fix " > 0. Then under any work conserving scheduling policyP , ifx � 1"E[V ], thenE[S(x)]P � (1 + ")E[S(x)]PS = (1 + ") 11� �:
If the policy is also non-preemptive andx � 1"(1��)E[V ], thenE[S(x)]P � 1 + ":
Before we begin the proof, observe that provided� is not too high, the above the-

orem says that in fact many jobs are sufficiently large, sinceE[W (x)]FCFS will be

low. As an example of using the theorem, if we considerE[S(x)] under an M/M/1

with � = 1 and� = :5 we find that for a jobx in the largest one percent of the

service distributionE[S(x)] � 2:4, as compared with a limiting slowdown of 2.

Proof :

Recall thatLRPT provides an upper bound onS(x)P for any work conserving

policy P . That is, every job finishes at the last possible moment underLRPT, and

so the slowdown of any other policy must be bounded by that ofLRPT . Thus, we

need simply show that for sufficiently largex, E[S(x)]LRPT � 1+"1�� .

Observing thatT (x)LRPT has the same distribution (hence mean) asB(x+V ), we

haveE[S(x)]LRPT = 1xE[T (x)]LRPT = 1x � x+ E(V )(1� �) = E[V ]x(1� �) + 11� �
Lettingx � 1"E[V ] gives usE[S(x)]P � E[S(x)]LRPT � 1+"1�� :
Further, we can obtain a similar bound on convergence for non-preemptive, work

conserving policies. Recall from the proof of Theorem 2 that for any non-preemptive,

work conserving policyP , we haveE[S(x)]P � E[V ]1�� 1x + 1:
Thus, lettingx � 1"(1��)E[V ] gives usE[S(x)]P � 1 + ":
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6 Almost sure convergence of scheduling policies

In this section, we extend the analysis of Theorem 2 in order to show that under

any work conserving policy the performance of the largest jobs will be at most that

of PS almost surely. Recall that:

Definition 6.1 The sequence of random variablesfYn; n = 1; 2; : : : g is said to

converge almost surely to a random variableY , written Yn a:s:! Y asn ! 1,

if P (limn!1 Yn = Y ) = 1: We equivalently say thatYn converges toY with

probability1 (w.p.1.).

Theorem 6 Under Processor-Sharing it holds a.s. thatlimx!1 S(x)PS = 11�� .

Proof :

We begin by introducing an alternative model that serves as an upper bound forPS,

and an appropriate coupling. UnderPS denote the number of jobs in system at timet byX(t), and the remaining service times of the jobs byY1(t); : : : ; YX(t)(t).
Consider an alternative M/GI/1/PS model denoted byPS1 in which whenever there

aren � 1 jobs in the system, the server instead of giving capacity1=n to each of then jobs, gives the smaller amount1=(n + 1). This amounts to adding a fictitious job

– called anobserver– with service timex = 1 to the PS system at timet = 0. The

observer remains in the system forever using service capacity but is not counted as

a real job. Denote the number of jobs in thePS1 system at timet byX1(t), and the

remaning service times of the jobs byY 11 (t); : : : ; YX1(t)(t). Assume that job service

times are brought by each arrival (instead of being handed out by the server). By

using the same arrival sequence input (arrival times, service times) forboth models

it follows that ifX(0) = X1(0) = 0, thenX(t)�X1(t); t � 0; (6)Yi(t)�Y 1i (t); for any jobi that is inbothsystems at timet; (7)

becausePS1 always serves each job at a slower rate (hence each job departs later

from PS1 than from PS). Thus lettingt ! 1, we obtain time-stationary and er-
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godic versions of both models, while retaining the relations (6) and (7). We assume

from now on that this has been done so that at timet = 0 both are stationary (e.g.,

have their stationary distributions).

For the PS model, it is well known that the time-stationary distribution is given byP (X(0) = 0) = 1 � �,P (X(0) = n; Y1(0) � x1; : : : ; Yn(0) � xn) = (1��)�nFe(x1) � � �Fe(xn); n � 1;
whereGe(x) denotes the equilibrium distribution function ofF with densityfe(x) =�F (x).PS1 still operates under a “symmetric” service discipline (e.g., Theorem 26, Page

339 in Wolff [27]), and hence the steady-state distribution ofX1(t) ast!1 is in-

sensitive to the service time distribution except through its mean1=�. LetP 1n denote

the limiting probability that there aren jobs in thePS1 system. Using exponential

service times yields a Birth and Death model with balance equations�P 1n =�n+ 1n+ 2��P 1n+1; n � 0;
and solutionP 1n =(n+ 1)�n(1 � �)2; n � 0: (8)

(Note that the stability condition remains� < 1 sincen+1n+2 ! 1; n!1.)

For general service time distributionF then,PS1 has time-stationary distribution

given byP (X1(0) = 0) = P 10 andP (X1(0) = n; Y 11 � x1; : : : ; Y 1n � xn)=P 1nFe(x1) � � �Fe(xn); n � 1:
A job of sizex arriving to PS (at timet = 0 for simplicity via PASTA) will causeX(0) to jump toX(0)+1, and then cause (during its sojourn timeT (x) = T (x)PS)

all current and future jobs in the PS system to be treated as if in aPS1 system; thex-job has the effect of an observer. LetX1(t); t � 0 denote the number of jobs in a

17



PS1 system started off with the stationary distribution ofPS, i.e.,X1(0) = X(0)
and theX(0) remaining service times areY1(0); : : : YX(0)(0). It follows that the

service capacity given to thex-job at timet in the PS system is given by(1 +X1(t))�1; thus sojourn time for thex-job in the PS system can be expressed asT (x)=minft > 0 : Z t0 11 +X1(u)du = xg = B�1(x);
whereB(t)= Z t0 11 +X1(u)du
is the amount of service that thex-job receives during the firstt time units.

By constructionX(t) � X1(t) � X1(t); t � 0, yielding the boundsC�1(x)�T (x) � A�1(x);
whereA(t)= Z t0 11 +X1(u)duC(t)= Z t0 11 +X(u)du:
Whereas bothfX(t)g andfX1(t)g are stationary,fX1(t)g is not because of its

initial condition but will become so ast!1. In fact, for the random time� =minft � 0 : X1(t) = 0g; (9)X1(� ) = 0 (sinceX1(t) � X1(t)), andX1(� + t) = X1(� + t); t � 0, a.s., the

two processes are identical a.s. from time� onwards.

We now analyze slowdown under PS for job-x asx!1:

Observe thatfA(t)g is strictly increasing and has stationary ergodic increments due

to the stationary ergodicity offX1(t)g. Thus by Birkhoff’s ergodic theorem,
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limt!1 A(t)t =E[A(1)]; a.s.: (10)

By stationarity, non-negativity and (8),E[A(1)]=E "Z 10 11 +X1(u)du# = Z 10 E " 11 +X1(u)#= Z 10 E " 11 +X1(0)#=E " 1X1(0) + 1# (11)= 1Xn=0 1n+ 1(n + 1)�n(1� �)2=(1 � �) 1Xn=0 �n(1 � �) = 1 � �
The inverse processA�1(x)=minft > 0 : Z t0 1X1(u) + 1du = xg
is strictly increasing to1 and by definitionA(A�1(x)) = x; thus from (10) and

(11) limx!1 xA�1(x) = limx!1 A(A�1(x))A�1(x) = limt!1 A(t)t = 1� �; a.s.

and we conclude thatlimx!1 A�1(x)x =(1 � �)�1; a.s. (12)

From (9),A(t)�A(� ) = B(t)�B(� ); t � � yieldinglimt!1 B(t)t = limt!1 A(t)t ; a.s.

and thus
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limx!1 B�1(x)x = limx!1 A�1(x)x ; a.s.:
SinceT (x) = B�1(x), (12) yieldsT (x)=x! (1� �)�1; a.s..

Theorem 7 Under all work conserving scheduling policies it holds a.s. (assuming

the limit exists) thatlimx!1S(x) � 11 � �:
If the policy is also non-preemptive, then the limit does exists andS(x) a:s:! 1 asx!1.

Proof : The proof fornon-preemptive, work conserving policies is quick: Start with

the observation thatP (S(x)P � 1) = 1 8x;8 policies P

This follows simply by definition of slowdown. By taking limits, a.s. it holds thatlim infx!1 S(x)P � 1;8 policies P

Now, recall that we have a.s.S(x)P � 1 + B(V )x 8x;8work conserving, non-preemptive policies P

Taking limits we have a.s. that:lim supx!1 S(x)P � 1;8work conserving, non-preemptive policies P

Thus for all work conserving, non-preemptive policies P the limit does exists andS(x) a:s:! 1 asx!1:
The remainder of the proof will concentrate on work conserving policies that may

allow for preemption.
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We know that a.s.T (x) � B(x+ V );
whereB(y) is used to denote the length of a busy period started by a job of sizey.

Thuslimx!1S(x)= limx!1 T (x)=x � limx!1 B(x+ V )x= limx!1 B(x)x + limx!1 B(V )x
We now make two observations. First observe that sinceV is finite w.p.1.limx!1 B(V )x = 0
Second, observe further that if we letfB(i) : i � 1g denote an i.i.d. sequence of

regular busy periods (non-exceptional), thenB(x) can be expressed asB(x) = x+ N(x)Xi=1 B(i)
wherefN(x) : x � 1g is a Poisson process of rate� independent offB(i) : i � 1g.
We conclude that this version offB(x) : x � 0g is a compound Poisson process

with a linearx term added on, so it has stationary and independent increments.

Thus, almost surely,limx!1S(x)= limx!1 B(x)x + 0 = limx!1 1x xXi=1B(1)(i) = E[B(1)] (by S.L.L.N)= 11 � �
Notice that we assumed thatx is integer valued, however the proof is valid even if

this is not the case; the fractional remainder ofx does not affect the limit.
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7 Conclusion

In this paper we consider the performance metric “slowdown for the largest job”

and we show that under this metric the performance of all work conserving schedul-

ing policies is bounded by11�� almost surely.

This metric is also interesting for another reason; it allows us to categorize all

scheduling policies into 3 classes. We find that fornon work conserving policies,

the expected slowdown of the largest job can range from 1 to infinity (and in fact

every value in between is achieved by some non work conserving policy). Forpre-

emptive work conserving policies, the expected slowdown of the largest job can

range from 1 to 11�� (and again each value in between is achieved by some preemp-

tive work conserving policy). Lastly, for non-preemptive work conserving policies,

the expected slowdown of the largest job is always 1.

This paper also raises the question of how scheduling policies compare with re-

spect to slowdown on job sizes other than the very largest. We find that for all

“sufficiently large” jobs, the expected slowdown of these jobs under any work con-

serving policy can be made arbitrarily close to11�� , where the definition of “suffi-

ciently large” depends on the degree of closeness and on the system load. When the

system load is not too high, “sufficiently large” ends up including most jobs. The

behavior of scheduling policies on jobs other than the largest job is an interesting

question which will surely generate further research.

The proofs in this paper are varied, but all surprisingly simple, which should help

others in extending this work. The proofs rely on a few key observations about sub-

dividing busy periods and on some alternative formulations of scheduling formulas.

Perhaps the most useful observation is that the Longest-Remaining-Processing-

Time policy can be used to bound all other work conserving policies, and that it

suffices to therefore to concentrate on this one policy.
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