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1 Introduction

It is well-known that choosing the right scheduling algorithm can have a big impact
on performance, both in theory and in practice. For example, changing the schedul-
ing algorithm in a CPU from Processor-Shariip] to a policy which biases to-
wards small jobs, such as Shortest-Remaining-Processing-TimeSRFT), or to

a policy which biases towards young jobs, such as Least-Attained-SebA&, (

can improve mean response time (a.k.a. sojourn time) dramatically.

However, less well understood is the performance impact of different schgduli
policies on large jobs. For example, how does a policy which biases towards small
jobs, such asSRPT, compare against a policy which biases towards large jobs,
such as Longest-Remaining-Processing-Time-HifRRP{), when the performance
metric is the response time of the large jobs?

In this paper we limit our discussion to an M/GI/1 queue. For the M/GI/1/PS queue
with load p, all jobs (large or small) are slowed down by the same fané_epr,, in
expectation. Because the slowdown (response time divided by job size) istbe sa
for all job sizes, thd>S policy is often referred to as tHair policy.

We will show that allwork conservingscheduling policies have the same perfor-
mance a$S with respect to large jobs. In particular, we show that the slowdown
as job size tends to infinity under any work conserving policy is at mbpstal-

most surely; even for policies which clearly bias against large jobs. Videcals-

sider the expected slowdown for jobs that are not the very largest. We show that
all “sufficiently-large” jobs have slowdown arbitrarily close to thatR8, where
“sufficiently-large” depends omand includes most jobs provideds not too high.

2 Previous work

Ever since the discovery th&RPT has the lowest mean response time of any
scheduling policy (for any sequence of arrival times and job sizes) [20,24,21], the



evaluation of various scheduling policies has intrigued system designers and queue-
ing theorists. There exist over a hundred survey papers to date on the analysis of
scheduling policies, as well as many wonderful books such as [6,12,17,5].

TheSRPT policy in particular has received much attention. Schrage and Miller first
derived the expressions for the response times in an M/&RAT queue [21]. This
was further generalized by Pechinlanal.to disciplines where the remaining times
are divided into intervals [15]. The steady-state appearance of the MBBRT/
gueue was obtained by Schassberger [19]. Rajaraman et al. showed furthiee that t
mean slowdown unde3RPT is at most twice the optimal mean slowdown for any

sequence of job arrivals [9].

Though analytical formulas for the M/GI/1 queue with various scheduling poli-
cies have been known for a long time, they are difficult to evaluate numigrical
due to their complex form (many nested integrals). Hence, there waswitik

on the relative comparison of different scheduling policies, until more rgcentl
The following papers have compared thean response timed various schedul-
ing policies under specific job size distributions and specific loads, by plotting the
known formulas: [16,22,13,18,21]. A 7-year long study at University of Aachen
under Schreiber [16,22] involved extensive evaluatioB8RIPT for various job size
distributions and loads, and showed tB&PT has significant mean response time
improvements compared to policies lIKEFS, LFCS andPS. The survey paper by
Schreiber [22] summarizes the results.

The above mentioned results were based on plotsdecificjob size distributions

and loads. Hence it is not clear whether the conclusions hold for more general
job size distributions and loads. Furthermore the above studies examiead
response time and did not raise the problem of possillairnesgo long jobs.

It has often been cited that the superior performance of scheduling policies which
bias towards small jobs may come at the cost of starving large jobs [3,25,26,23].
Usually, examples of adversarial arrival sequences where a partioblatgrves
are given to justify this. However, such worst case examples do nottreéfeebe-
havior of these policies in the average case. The term “starvation” isiasib by



people to indicateinfairnesslt is often argued that policies which favor small jobs
should result in higher expected response time for long jobs than policies which
are "fair,” like PS. This argument is valid for scheduling policies that do not make
use of size; see the famous Kleinrock Conservation Law for non-preemptive, work
conserving policies [12, Page 114] and for preemptive, work conserving policies
with exponential service time distributions [11, Page 82].

Very recently, several papers have appeared which try to evaluateablepr of
unfairnessanalytically, and thus consider the behavior of scheduling policies as a
function of the job size. Bender et al. consider the metrax slowdowrf a job as

an indication of unfairness [3]. They show, with an example, 8RRT can have

an arbitrarily largemax slowdownHowever,max slowdowns not an appropriate
metric to measure unfairness. A large job may have an exceptionally lognonss
time in some cases, but it might do well most of the time.

Bansal and Harchol-Balter [2] compare tBRPT policy and thePS policy analyt-
ically for an M/GI/1 queue on a per-job-size basis. They prove that if the joad
is less than;—, then every job, including the very largest job, has a lower expected
response time und&RPT than undePS, for every job size distribution. They also
prove that for arbitrary loagd, the expected response time of a job of staender
SRPT is no more tharr times that undePS, wherec is a function ofﬁ. This
result nicely complements the result in this paper (Theorem 5) which staes t
for all p, for every job size distribution, all sufficiently large jobs have expected
response time (and slowdown) un@®PT which isarbitrary closeto that of PS.

There has also been work in the area of proposing 8BRT-like policies [4,14]
which try to reduce the problem of unfairness, while still favoring the short jobs.
These usually prioritize based dioth the time a job has waited so far, and its
remaining size. These policies are usually analytically intractablehamd been
evaluated by simulation only. However simulations show that they are pramis

Other related research involves tail asymptotics for steady-stég; dee for ex-
ample [8], in which the emphasis is on heavy-tailed distributions such as subexpo-

nential distributions.



3 The slowdown metric, the fairness metric, and some initial notation

We will throughout be considering a stable M/GI/1 queue. The average arrival rate
will be A. A job’s size(service requirement) will be denoted by the random variable
X and will be chosen i.i.d. from a continuous distribution wWithte mearandfinite
variance The probability density function (pdf) of the job size distributiorfis ),

and the cumulative distribution function (cdf) i§z) = P(X < z), 2 > 0. We

will denote the tail,l — F(z), by F'(x). We assume that(z) > 0, = > 0; service
times can be arbitrarily large. Throughout we distinguish between the “size of a
job” and the “remaining size of a job.” The former denotes the service requirement
upon time of arrival (original size chosen frof). The latter denotes the leftover
(remaining) service time at the time in question. The load (utilizatipnf the
server isp & AE[X] = X [5° xf(x)de. We always will assume that < 1; the
queue is stable. The load made up by the jobs of size less than or equal i0,

is p(z) & X [T tf()dt.

We will use 7" to denote the steady-state response time (a.k.a. sojourn time) and
T'(x) to denote the steady-state response time for a job of:s&eustomer arriving

in steady-state bringing a service time of lengthas a response timg(x). By
definition, 7" has the same distribution @8.X), andE[T] = [;° E[T(2)]f(x)dx
whereX is chosen independent @fthroughout this paper. Note thét'(x) : « >

0} is a stochastic process. Formally, at time: 0 we initially start the system in
steady-state, and then for eachwe construct eacli’'(z) using the same initial
state and future service and interarrival times (along each sample path)

Definition 3.1 For any given policy, the slowdows, is defined as response time
divided by job size, namely, = % The slowdown for a job of size S(x), is
thus given byS(z) = @ The expected slowdown for a job of sizeF[S(x)],

is given byE[S(z)] = %ﬂﬂ The overall mean slowdown is given bS] =
Jo© ELS(2)]f (z)dw.

Our primary metric of interest in this paper islowdown Mean slowdown is of-

ten used as a measure of system performance as opposed to the more traditional



mean response time for two reasons [7,1,10]. First, it is desirable thatsargb’
sponse time be correlated with its size (processing requirement). Iy ozeses
we’d like small jobs to have small response times and big jobs to have big respons
times. Second, mean slowdown is more representative of the performareegd a
fraction of jobs. Mean response time is dominated by the contribution from just a
few large jobs, whereas under mean slowdown the dominating effect of the large
jobs is removed by normalizing the response times using the job sizes.

It is well known that for an M/GI/1/PS queug&[S(x)]™ = 1. This says that

for any given load» < 1, underPS scheduling, all jobs have the same expected
slowdown; hencé®S is “fair” . In this paper we will consider policies that signifi-
cantly improve uporS with respect to mean slowdown by giving priority to short
jobs, or to young jobs. We will ask whether the large jobs suffer as a consequence.
Specifically, we will be interested in the slowdown for large jobs.

Definition 3.2 For any given scheduling policy, the slowdown for large jobs is de-
fined (when it exists) bym,._,.. S(x) whereby the convergence is almost sure (a.s.)
convergence, by which we mean with probabilityThe expected slowdown for
large jobs is defined (when it exists) by, .. £[S(z)].

4 Brief review of common scheduling policies

In this section we define several common scheduling policies and summarize know
results for these policies under an M/GI/1 queue, with respect to the meaomise
time for a job of sizer.

PS: Processor-Sharing

Under thePS policy the processor is shared fairly among all jobs currently in the
system [27]:




SRPT: Shortest-Remaining-Processing-Time-First

Under theSRPT policy, at every moment of time, the server is processing that job
with the shortest remaining processing time. BRPT policy is well-known to be
optimal for minimizing mean response time [21]. The mean response time for a job

of sizex, E[T(z)]°#FT, can be decomposed into a sum:

E[T(@)]** = E[W ()] + BIR(«)]"T

where E[W (2)]°*'T is the expected waiting time for the job (the expected time
for a job of sizex from when it first arrives to when it receives service for the first
time) andE[R(2)]°#'T is the expected residence time (the time it takes for a job
of sizex to complete service once it begins execution) [21].

E[W(J})]SRPT: Ef(ft {ftzd;(—;)i)f F(l‘)7

ElR@)T = [ _d; o

(1)

(2)

P-LCFS: Preemptive-Last-Come-First-Served

UnderP- LCFS, whenever a new arrival enters the system, it preempts the job in
service. Only when that arrival completes does the preempted job reswiteser

A new arrival can be thought of as starting its own busy period, where the new
arrival can’t leave until this busy period completes. Lett#ig:) denote the length

of a busy period started by a job of lengthwe have [12]:

E[T(2)]" " = E[B(x)] = ©)

LAS: Least-Attained-Service

UnderLAS, the job with the least attained service gets the processor to itself. If
several jobs all have the least attained service, they time-sharedbespor via
PS. This is a very practical policy, since a jolege (attained service) is always



known, although it’s size may not be known. This policy is conjectured to improve
uponPS with respect to mean response time and mean slowdown when the job size
distribution has decreasing failure rate.

Both E[T(2)]*4* and the Laplace transform @f(x )4 underLAS are known

[12]. We need some preliminary notation: Rop 0, let X, = min{z, X'}. Then

B = [ ufw)dy + «F(a)

X2 = [y f(y)dy + +*F(a)

Observe thak,. is similar to the R.V.X, except that all job sizes have been capped
at a maximum of:. Given the above definitions and lettipg = A F[ X, ], we have:

(1= po) + S E[X7]
(1—px)

BT ()" = (4)

LRPT: Longest-Remaining-Processing-Time

Under theLRPT policy, at every moment of time, the server is processing the job
with the longest remaining processing time. If multiple jobs in the system have
the same remaining processing time, they time-share the procesdge.v&ince

the LRPT policy biases towards thengestjobs, it is of little practical value. We
couldn’t locate an analysis of this policy for the M/GI/1 queue anywhere, although
analyzingLRPT isn't difficult, and we do so later in the paper.

SJF: Shortest-Job-First

SJF is the non-preemptive variant 8RPT. UnderSJF, when the server is free it
chooses to run the shortest job [6]:

SIF _ . pE[X?] ) 1
BE@P =4 558 T (o)




Other policies not mentioned above

There are many other scheduling policies that we haven't mentioned. All non-
preemptive policies that don’t make use of a job’s size, for exaniilES (First-
Come-First-Served),CFS (non-preemptive Last Come First Served) RANDOM

will have the same mean response tirh€]'], and thus for all such policies,

AE[X?]
2(1—-p)
Since these have the same performance with respe€if¢x)], we will discuss

E[T(x)] = E[T] - E[X) 4« = o

them as a group.

5 Convergence of scheduling policies in expectation

In this section, we evaluate tlexpected slowdowfor the largest jobs under dif-
ferent scheduling policies. In Section 5.1 we consider five particular scheduli
policies and show that they have the same expected slowdolR® fas the largest

job. In Section 5.2 and Section 5.3 we generalize these results to allbanserv-

ing scheduling policies. Finally, in Section 5.4 we consider the broader problem of
expected slowdown as a function of job size, for all job sizes. We find thatrfpr
work conserving policy, for sufficiently large jobs, the expected slowdown can be
shown to be arbitrarily close to that BS, where our definition of sufficiently large

will typically include most jobs.

5.1 Convergence of five scheduling policies in expectation

This section will prove the following theorem:

Theorem 1 Asx — oo, expected slowdown for SRPT, P-LCFS, LAS, and LRPT is
the same as for PS:

lim E[S(@)]¥FT = lim E[S(2)]" ™2 = lim E[S(2)]"4° = lim E[S(a)]"F"T =



That is, the expected slowdown for the largest job is the same under policies tha
bias towards short jobs, policies that bias towards long jobs, and policiesdatt tr
all jobs fairly.

Proof for SRPT

We start by looking at the waiting time componentSRPT:

SRPT _ 2o 2 f(@)dt + 327F (x) A EF@)d
E[W(l’)] - (1 _ ,0(1‘))2 - (1 _ ,0(1‘))2

im T SRPT:)‘foooilf(t)diL
i, BV ()} = S0

where finiteness follows since the service time distributfois assumed to have
finite second moment.

Thus we have

T—r 00 x

We now complete the proof by considering the residence time componSREPat

. B[R()PHT 1 e dt , 1 :
—— = —/ ———— = lim ——— (by L'Hopital
s 0T T~ a4 T gy (P HHopita)
1
Ry

Proof for LAS

The limiting slowdown of large jobs is the same und&S and SRPT as shown
below:

xr

po=A [ uf(w)dy + AT (@) = & [ Fly)dy

lim p, :)\/Oo Fy)dy = AE[X] =p
0

T—r 00

10



_ 3 U5 v/ (y)dy + «*F(x))
L= pz - (1 - /01’)2
o AR Ty
L= pz (1 - 101’)2 B
LAS _ 7 r l 1 lim Ao Fy)ydy ) 1
A TR T
> F(y)yd 1
L A Fydy

1y (L=p) ooox

Again, by the finiteness of the second momentofim, ., £[S(z)]t4° = ﬁ

Proof for LRPT

We will use the following notation in this section and throughout the rest of the
paper: B will denote the length of a regular busy perid@l(x) will denote the
length of a busy period started by a job of sizéan exceptional first service busy
period). B(z)|, will denote the length of a busy period started by a job of size
where the arrival rate i¥'.

If the job enters a busy system, then we can again take advantage of the above
property to see that'(z) = B(x + V), in distribution, wheréd/ is the amount of
work in the system (in steady-state) seen by an arbitrary arrival.

SinceL RPT is work conserving, and arrivals are Poisson, we know via PASTA that:

FCFS _ )‘E[Xz]

BIV) = BIW ()7 = S5,

where W ()¢ is the steady-state delay in queue (not including service) in a
FCFS queue. Note that[V'] does not depend on

Itis well known thatE[B(Y)] = £ for any exceptional first service timé. This
holds forY = x andY = « + V. Using this we obtain, ag — oc:

wrer _PIBG V)] e+ BV) L BYV) L

ElS(@) r (-pe T U-pr T-p

11



Proof for P-LCFS

For theP- LCFS policy it trivially follows from (3) that:

) E[T(Q})]P_LOFS 1
lim —

5.2 Convergence of all work conserving scheduling policies in expectation

This section extends the analysis of the previous section. The goal is to to bound

convergence in expectation of slowdown undery work conserving policy

Theorem 2 For any work conserving scheduling policy

lim E[S(x)] < L

If the policy is also non-preemptive, théisS(x)] — 1 asz — oc.

Proof : The proof of thel_Lp bound stems from the observation th&PT provides

an upper bound o (z)” for any work conserving policy’. That is, undet.RPT,

every job finishes the moment the busy period the job arrived into ends, which is
the last possible completion moment for any work conserving policy. So, the result
follows from Equation (5). For any work conserving poliey

lim E[S(2)]" < lim E[S()]""T =

This proves the first half of the theorem.

Now we limit our discussion to non-preemptive work conserving policies. In this
casel'(z) = W(x)+ «, andW(z) is smaller than the length of a busy period
started by a job of size equal 1. SoWW (x) < B(V) and E[W (z)] < 21, and

+1—=1, asx — cc.

12



5.3 Followup remarks on convergence in expectation

A few followup observations are in order regarding Theorem 2.

Remark 3 Theorem 2 does not extend to policies that are not work conserving.
In fact, for everyz € [1,00) there is a non work conserving policy such that
limg oo E[S(2)] = 2.

To see this, consider the policy that makes each job Wwait 1)z time before it is

allowed to enter the queue of a non-preemptive, work conserving system.

Remark 4 Theﬁ bound in Theorem 2 is tight. In fact, For everye [1, ﬁ]

there is a work conserving policy such thats(z)] — z, asax — oc.

Proof : Consider a linear combination of t#&CFS and P- LCFS policies. More
specifically, consider the following scheduling poligs, with probability ¢ an ar-
riving job preempts the job being serviced, and with probabillity ¢ an arriving
job is placed at the back off@CFS queue to await service.

We can quickly analyze this policy to finld[S(z)]”. Consider an arrival that gets
placed at the front of the queue. This arrival can only be bothered by other jobs
that are allowed to preempt. Thus, for this jblr) = B(x)|\, whereX’ = ¢ for

€ [0,1]. That is,T'(x) is the length of a busy period started by a job of size
where the arrival rate i¥'.

Now consider a job that gets placed in the back of the queue. If the system is idle
when the job arrives, we again see tlidt:) = B(x)|.. However, if the system

is busy at the time of the arrivdl(z) = B(z + V))|., whereV is the amount of
work in system seen by an arbitrary arrival. lt= % Then, putting these two
pieces together, we see thatiass oo:

E|B(x)]||\ E\B(x+ V)|

E[S(l‘)]P:q [ (x)”/\ ‘|‘(1 ) [ ( . )”/\
1 ME[X?

_ 1 _ @ 2(1-p) 1



Non work conserving:
E[S(x)] —> [1, infinity)

Work conserving
Preemptive:
E[Sx)] ——> [1, 1/(1 —p)]

Work conserving
Non—preemptive:
E[Sx)] —>1

Fig. 1. Taxonomy of scheduling policies defined by the méiri¢_, ., £[S(z)].
Notice that since’ is an arbitrary number if0, p], we can makq_l—p, any number

in[1, . u

The above remarks show that the metiia,_,.. £[S(z)] defines a taxonomy on

all scheduling policies, as shown in Figure 1. Non work conserving policies have a
value in[1, co) under this metric. Preemptive work conserving policies have a value

in [1, ﬁ] under this metric. Non-preemptive work conserving policies all have a

value of 1 under this metric. Each class is complete in that for each value in the
range, there exists a policy with that value.

5.4 Bounding all work conserving policies for sufficiently-large job sizes

Until now we have concentrated on the limiting behavior as the job:size ~.

We now show that we can easily prove an upper bound of 5)$ for the ex-
pected slowdown of all “sufficiently large” jobs under all work conserving schedul
ing policies for any > 0.

Let V' be the amount of work in the system when a job arrives. Recall A&t
is the same under all work conserving policies and for jobs of any size. In fact,
E[V] = E[W (2)])F9Fs,

14



Theorem 5 Fix ¢ > 0. Then under any work conserving scheduling pokGyf
x> LE[V], then

B[S (x)]"

IN
=
_|_
N
=
s
2
Ty
n
=
_|_
N

If the policy is also non-preemptive and> 6(11—_0)E[V], thenE[S(2)]F <1 +e.

Before we begin the proof, observe that provigeid not too high, the above the-
orem says that in fact many jobs are sufficiently large, sifigé’(z)]"“* will be
low. As an example of using the theorem, if we consifié$ (= )] under an M/M/1
with ¢ = 1 andp = .5 we find that for a jobr in the largest one percent of the
service distribution[S(z)] < 2.4, as compared with a limiting slowdown of 2.

Proof :

Recall thatLRPT provides an upper bound ofi(z)” for any work conserving
policy P. That is, every job finishes at the last possible moment ubhB&, and
so the slowdown of any other policy must be bounded by th&iRHT . Thus, we

need simply show that for sufficiently large £[S(z)]2FPT < .

Observing that'(x)“#*"'T has the same distribution (hence meanpas+ V'), we

have

Lettingz > LE[V] gives usE[S(z))” < E[S(x)]HT < 2=

g 1_p‘

Further, we can obtain a similar bound on convergence for non-preemptive, work
conserving policies. Recall from the proof of Theorem 2 that for any non-preemptive,
E[V]1

1L

work conserving policy”, we haveE[S(z)]" < T

Thus, lettingr > —1— E[V] gives usk[S(2)]F <1 +e. |

=(1-p)

15



6 Almost sure convergence of scheduling policies

In this section, we extend the analysis of Theorem 2 in order to show that under
any work conserving policy the performance of the largest jobs will be at most that
of PS almost surely. Recall that:

Definition 6.1 The sequence of random variabl€s,,n = 1,2,...} is said to
converge almost surely to a random varialfe written ¥, %% Y asn — oo,
if P(lim,— Y, = Y) = 1. We equivalently say that, converges tot” with
probability 1 (w.p.1.).

Theorem 6 Under Processor-Sharing it holds a.s. that, ... S(x)™ = 1.

Proof :

We begin by introducing an alternative model that serves as an upper bourt for
and an appropriate coupling. Unde8® denote the number of jobs in system at time
t by X(1), and the remaining service times of the jobsiy), ... , Yx)(t).

Consider an alternative M/GI/1/PS model denotedts§ in which whenever there
aren > 1jobsin the system, the server instead of giving capdgityto each of the

n jobs, gives the smaller amount(» + 1). This amounts to adding a fictitious job

— called arobserver with service timer = oc to the PS system at timie= 0. The
observer remains in the system forever using service capacity but is notd@snte
areal job. Denote the number of jobs in tA8"* system at time by X' (¢), and the
remaning service times of the jobs by(#), . .. , Yx1¢,)(t). Assume that job service
times are brought by each arrival (instead of being handed out by the server). By
using the same arrival sequence input (arrival times, service timespfiomodels

it follows that if X(0) = X*(0) = 0, then

X(H)=X'(1), t =0, (6)
(1) <Y(t), for any jobi that is inbothsystems at time, (7)

because’S! always serves each job at a slower rate (hence each job departs later
from PS! than from PS). Thus letting — oo, we obtain time-stationary and er-

16



godic versions of both models, while retaining the relations (6) and (7). We assume
from now on that this has been done so that at tiree0 both are stationary (e.g.,
have their stationary distributions).

For the PS model, it is well known that the time-stationary distributionvsrgby
P(X(0)=0)=1—p,

P(X(0)=n,Y1(0) <ay,...,Y,(0) <a,) = (1—=p)p"Feay) - Fe(n), n > 1,

where(, (z) denotes the equilibrium distribution function Bfwith density/f. (z) =
wk(z).

P51 still operates under a “symmetric” service discipline (e.g., Theorem 26, Page
339 in Wolff [27]), and hence the steady-state distributioXd¢ft) ast — o is in-
sensitive to the service time distribution except through its m¢anLet P! denote

the limiting probability that there are jobs in theP S system. Using exponential
service times yields a Birth and Death model with balance equations

1
R

and solution

Py=(n+1)p"(1—p)*, n=0. (8)
(Note that the stability condition remaips< 1 since% =1, n = 00.)

For general service time distributidn then, P S! has time-stationary distribution
given by P(X'(0) = 0) = P} and

P(X'0)=n, Y <ay,...,Y,) <a,)=PlF.(21) - F.(z,), n > 1.

A job of sizex arriving to PS (at time = 0 for simplicity via PASTA) will cause
X(0) tojumptoX(0)+ 1, and then cause (during its sojourn tifier) = T'(x)")
all current and future jobs in the PS system to be treated as ififi'asystem; the
x-job has the effect of an observer. L¥t,(¢), ¢ > 0 denote the number of jobsina

17



PS* system started off with the stationary distribution/of, i.e., X, (0) = X (0)
and theX (0) remaining service times arg (0),. .. Yx)(0). It follows that the
service capacity given to the-job at timet in the PS system is given by +
X..(t))~"; thus sojourn time for the-job in the PS system can be expressed as

T(x)=min{t > 0: /Ot HX;oo(u)du =2} = B (),

where

S|
B(t):/o S i

is the amount of service that thejob receives during the firgttime units.

By constructionX (¢) < X..(¢) < X'(¢), t > 0, yielding the bounds

O a) < T(x) < A7 (),

where

b
A(t)= /0 STt

t 1
C(t)= /0 mdu.

Whereas botH X (¢)} and{X'(¢)} are stationary{ X..(¢)} is not because of its
initial condition but will become so as— o~o. In fact, for the random time

T=min{t > 0: X'(¢) = 0}, 9)

Xoo(7) =0 (sinceX . (¢) < X'(¢)),andX (7 + 1) = X' (7 +1¢), t > 0, as., the

two processes are identical a.s. from timenwards.
We now analyze slowdown under PS for jplasx — oc:

Observe that A(¢)} is strictly increasing and has stationary ergodic increments due
to the stationary ergodicity gfX ' (¢)}. Thus by Birkhoff’s ergodic theorem,
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lim @ — E[A(1)], as. (10)

t—00

By stationarity, non-negativity and (8),

E[A(D)]=E [/01 H%l()d“] =" [H%l(u)]

g

1
:Elml -
=3 el 1=
=(1—,0)Z_:,0”(1—,0)=1—P

The inverse process

AN (@) =min{t > 0: /Ot ﬁdu =}

is strictly increasing tax and by definitionA(A~*(z)) = «z; thus from (10) and
(11)

e AATN@) . AQ)

Ay TR ATy TRy TS
and we conclude that
AL
lim (z) =(1—-p)7", as. (12)
T—00 x

From (9),A(t) — A(7) = B(t) — B(r), t > 7 yielding

B(t
lim Q = lim M, a.s.
t—oo t—oo  f
and thus

19



-1 -1
lim B~ (z) = lim A (:1;)7 a.s.
r—00 x r—00 x
SinceT'(z) = B~!(x), (12) yieldsT'(z)/x — (1 — p)~*, a.s.. [

Theorem 7 Under all work conserving scheduling policies it holds a.s. (assuming
the limit exists) that

lim S(z) < L

If the policy is also non-preemptive, then the limit does exists#nd “3 1 as

r — OQ.

Proof : The proof fomon-preemptivevork conserving policies is quick: Start with
the observation that

P(S(z)f >1)=1 Vaz,V policies P

This follows simply by definition of slowdown. By taking limits, a.s. it holtisit

liminf S(z)" > 1,V policies P

T—r 00

Now, recall that we have a.s.

B(V)

X

Sy <14 Y, Ywork conserving, non-preemptive policies P

Taking limits we have a.s. that:

limsup S(z)" < 1, Ywork conserving, non-preemptive policies P

T—r 00

Thus for all work conserving, non-preemptive policies P the limit does exists and

S(z) 23 1 asz — oo.

The remainder of the proof will concentrate on work conserving policies that may

allow for preemption
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We know that a.s.

T(x) < Bz +V),

whereB(y) is used to denote the length of a busy period started by a job of size

Thus
lim S(z)= lim T(z)/x < lim Bla+V)
T—00 T—00 T—00 T
T—r 00 x T—r 00 x

We now make two observations. First observe that sinegfinite w.p.1.

lim Bv)

T—r 00 x

=0

Second, observe further that if we leB;) : + > 1} denote an i.i.d. sequence of
regular busy periods (non-exceptional), théfy:) can be expressed as

where{N(z) : + > 1} is a Poisson process of ratendependent of B;y : © > 1}.
We conclude that this version ¢#3(x) : + > 0} is a compound Poisson process

with a linearz term added on, so it has stationary and independent increments.

Thus, almost surely,

. . B(x o1&

lim S(z)= lim i ) +0= lim ;;B(l)(i) = E[B(1)] (by S.L.L.N)
1
=15

Notice that we assumed thais integer valued, however the proof is valid even if
this is not the case; the fractional remainder @foes not affect the limit. [ |
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7 Conclusion

In this paper we consider the performance metric “slowdown for the largest job”
and we show that under this metric the performance of all work conserving schedul-

ing policies is bounded byi—p almost surely.

This metric is also interesting for another reason; it allows us to cagegat
scheduling policies into 3 classes. We find thatrion work conserving policies

the expected slowdown of the largest job can range from 1 to infinity (and in fac
every value in between is achieved by some non work conserving policypré&or
emptive work conserving policiethe expected slowdown of the largest job can
range from 1 toli—p (and again each value in between is achieved by some preemp-
tive work conserving policy). Lastly, for non-preemptive work conserving policies
the expected slowdown of the largest job is always 1.

This paper also raises the question of how scheduling policies compare with re-
spect to slowdown on job sizes other than the very largest. We find thatlfor al
“sufficiently large” jobs, the expected slowdown of these jobs under any work con-
serving policy can be made arbitrarily closel{%, where the definition of “suffi-
ciently large” depends on the degree of closeness and on the system load. When the
system load is not too high, “sufficiently large” ends up including most jobs. The
behavior of scheduling policies on jobs other than the largest job is an interesting
guestion which will surely generate further research.

The proofs in this paper are varied, but all surprisingly simple, which should help
others in extending this work. The proofs rely on a few key observations about sub-
dividing busy periods and on some alternative formulations of scheduling formulas.
Perhaps the most useful observation is that the Longest-Remaining-Processing-
Time policy can be used to bound all other work conserving policies, and that it
suffices to therefore to concentrate on this one policy.
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