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Abstract

We consider the problem of task assignment in a dis-
tributed server system, where short jobs are separated from
long jobs, but short jobs may be run in the long job parti-
tion if it is idle (cycle stealing). Jobs are assumed to be non-
preemptible, where short and long jobs have generally-
distributed service requirements, and arrivals are Pois-
son. We consider two variants of this problem: a central
queue model and an immediate dispatch model. This pa-
per presents the first analysis of cycle stealing under the
central-queue model. (Cycle stealing under the immedi-
ate dispatch model is analyzed in [9]). The analysis uses
a technique which we refer to as busy period transitions.
Results show that cycle stealing can reduce mean response
time for short jobs by orders of magnitude, while long jobs
are only slightly penalized. Furthermore using a central
queue yields significant performance improvement over im-
mediate dispatch, both from the perspective of the benefit to
short jobs and the penalty to long jobs.

1 Introduction

Distributed server model

In recent years, distributed servers have become increas-
ingly common because they allow for increased computing
power while being cost-effective and easily scalable. In a
distributed server system, jobs (tasks) arrive and must each
be dispatched to exactly one of several host machines for
processing. The rule for assigning jobs to host machines
is known as thetask assignment policy. The choice of the
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task assignment policy has a significant effect on the perfor-
mance perceived by users. Designing a distributed server
system thus often comes down to choosing the “best” pos-
sible task assignment policy for the given model and user
requirements. While devising new task assignment policies
is easy, analyzing even the simplest policies can prove to be
very difficult: Many of the long-standing open questions in
queueing theory involve the performance analysis of task
assignment policies.

In this paper we consider theparticular model of a
distributed server system in which hosts are homoge-
neous and the execution of jobs isnon-preemptive(run-
to-completion), i.e., the execution of a job can’t be inter-
rupted and subsequently resumed. We consider both the
case where jobs areimmediately dispatchedupon arrival
to one of the host machines for processing, and the case
where jobs are held in acentral queueuntil requested by a
host machine.

Our model is motivated by servers at supercomputing
centers, where jobs are typically run-to-completion (see Ta-
ble 1). Our model is also consistent with validated stochas-
tic models used to study a high-volume Web sites [10, 20],
studies of scalable systems for computers within an orga-
nization [18], and telecommunication systems with hetero-
geneous servers [4].

Previous work on Task Assignment

The analysis of task assignment policies has been the topic
of many papers. We provide a brief overview, limiting our
discussion tonon-preemptivesystems.

By far the most common task assignment policy used
is Round-Robin. TheRound-Robin policy is simple,
but it neither maximizes utilization of the hosts, nor mini-
mizes mean response time.

When the job processing requirements come from an ex-
ponential distribution, or one with increasing failure rate,
theM/G/k policy has been proven to minimize mean re-
sponse time and maximize utilization [24]. (Note: through-
out this paper we will use the termsprocessing require-
ment, service demand, and size interchangeably.) The
M/G/k policy holds all jobs at the dispatcher unit in a sin-
gle FCFS queue, and only when a host is free does it receive
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Name Location No. Hosts Host Machine
Xolas [13] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [12] MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
J90 distributed server [1] Pittsburgh Supercomputing Center 2 8-processor Cray J90 machine
C90 distributed server [2] NASA Ames Research Lab 2 16-processor Cray C90 machine

Table 1: Examples of distributed servers described by the architectural model of this paper. The schedulers used are Load-Leveler,
LSF, PBS, or NQS. These schedulers typically only support run-to-completion (non-preemptive) for several reasons: First, the memory
requirements of jobs tend to be huge, making it very expensive to swap out a job’s memory [6]. Thus timesharing between jobs only
makes sense if all the jobs being timeshared fit within the memory of the host, which is unlikely. Also, many operating systems that enable
timesharing for single-processor jobs do not facilitate preemption among several processors in a coordinated fashion[17]. Note: In such
settings it is typical for users to submit an upper bound on their job’s CPU requirement in seconds; the job is killed if it exceeds this
estimate.

the next job. TheM/G/k policy is provably identical to the
Least-Work-Remaining policy which sends each job
to the host with the least total remaining work [7]. A related
policy is theShortest-Queue policy where incoming
jobs are immediately dispatched to the host with the fewest
number of jobs [23, 5].

While policies like M/G/k and Shortest-Queue
perform well underexponentialjob size distributions, they
performpoorly when the job size distribution has higher
variability. In such cases, it has been shown analytically
and empirically that theDedicated policy far outper-
forms these other policies with respect to minimizing mean
response time [8, 19]. In theDedicated policy, some
hosts are designated as the “short hosts” and others as the
“long hosts.” Short jobs are always sent to the short hosts
and long jobs to the long hosts. TheDedicated policy
is popular in practice (e.g. Cornell Theory Center) where
different host machines have different duration limitations:
0–1/2 hour, 1/2 – 2 hours, 2 – 4 hours, etc., and users must
specify an estimated required service requirement for each
job. TheDedicated policy performs well for the case
of high-variability job size distributions because it isolates
shorts jobs from the long jobs, as waiting behind the long
jobs is very costly. TheDedicated policy is also popu-
lar in supermarkets and banks, where an “express” queue is
created for “short” jobs.

Even when the job size is not known, a policy very sim-
ilar to Dedicated, known as theTAGS policy (Task As-
signment by Guessing Size) works almost as well when job
sizes have high variability. LikeDedicated, theTAGS
policy significantly outperforms other policies that do not
segregate jobs by size [7].

Motivation for Cycle Stealing

While Dedicated assignment may be preferable to the
M/G/k andShortest-Queue policies for highly vari-
able job sizes, it is clearlynotoptimal. One problem is that
Dedicated leads to situations where the servers are not

fully utilized: five consecutive short jobs may arrive, with
no long job, resulting in an idle long host. This is espe-
cially likely in common computer workloads, where there
are many short jobs and just a few very long jobs, resulting
in longer idle periods between the arrivals of long jobs.

Ideally we would like a policy which combines the
variance-reducing benefit of theDedicated policy with
the high-utilization property ofM/G/k andShortest-
Queue: We would segregate jobs by size to provide isola-
tion for short jobs, but when the long job host is free, we
wouldstealthe long host’s idle cycles to serve excess short
jobs. This would both decrease the mean response time
of short jobs, and enlarge thestability regionof the over-
all system. Specifically, for systems where the short host
is much more heavily loaded, granting the short jobs lim-
ited access to the long partition may be the difference be-
tween an overloaded system and a well-behaved one (see
Section 3 for the stability regions for our cycle stealing
algorithms). It is important, though, that we grant short
jobs access to the long host only when that host isfree, so
we don’t starvethe long jobs, causing them undue delay.
Nonetheless, because jobs are not preemptible, there will
still be a penalty to a long job which arrives to find a short
job serving at the long host.

Removing the distinction between short and long

Above we’ve used the terms “short host” to describe the
host designated for “short” jobs and “long host” to describe
the host designated for “long” jobs, but which can be used
for short jobs when it is idle. Our reason for talking about a
“short host” and a “long host” is to emphasize the tremen-
dous performance benefit achievable when jobs can be seg-
mented by size. The analysis in this paper, however, applies
more generally to any situtation where there is a “benefi-
ciary host” and a “donor host” where beneficiary jobs may
use the “donor host” if it is idle. In particular, our analy-
sis works equally well when short jobs are indistinguish-
able from long jobs — allowing us to simply derive the
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benefit that a donor host provides to a beneficiary host. In
fact, throughout we will consider three cases: shorts shorter
than longs; shorts indistinguishable from longs; and (patho-
logically) shorts longer than longs. We will find that the
“shorts” benefit in all three cases. The “longs” suffer little,
except in the pathological case where they could get stuck
waiting behind a “short” job that is not short at all. Even in
this case, it will turn out that the penalty to “long” jobs is
still dominated by the benefit to the “short” jobs.

Two cycle stealing algorithms

We propose two cycle stealing algorithms:

Cycle stealing with Immediate Dispatch (CS-ID): In
this algorithm (shown in Figure 1(a)), all jobs are imme-
diately dispatched to a host upon arrival. There is a des-
ignated short job host and a designated long job host. An
arriving long job is always dispatched to the long job host.
An arriving short job first checks to see if the long job host
is idle. If so, the short job is dispatched to the long job host.
If the long job host is not idle (either working on a long job
or a short job), then the arriving short job is dispatched to
the short job host. Jobs at a host are serviced in FCFS order.

TheCS-ID algorithm is an improvement overDedi-
cated for short jobs. However, only those short jobs ar-
riving after the long host has entered an idle period can
steal long cycles; if a short job arrives just before the long
host enters an idle period, the short job is not eligible for
running during the idle partition. This is the motivation be-
hind our next cycle stealing algorithm.

Cycle stealing with Central Queue (CS-CQ): In this al-
gorithm (shown in Figure 1(b)), all jobs are held in a cen-
tral queue. Whenever the short job host becomes idle, it
picks the first short job in the queue to run. Whenever the
long job host becomes idle, it picks the first long job in the
queue. However, if there is no long job, the long host picks
the first short job in the queue. A minor point: Whereas in
CS-ID the short and long hosts are designated in advance,
in CS-CQwe allow renaming of hosts – i.e., if the long host
is working on a short job, and the short host is idle, then the
long host is renamed the short host and vice versa. Thus in
CS-ID, there could be one short in front of one long job in
the system with an idle (short) server, while this could not
happen underCS-CQ.

Difficulty of analysis and new analytic approaches

Cycle stealing is a very old concept. Policies likeCS-ID
andCS-CQ, as well as others of a similar flavor, have been
suggested in countless papers. However, the analysis of
such policies has eluded researchers. Even for the simplest

instance – where job arrivals are Poisson, and short and
long jobs are drawn i.i.d. from different exponential dis-
tributions – the continuous-time Markov chain, while rela-
tively easy to describe, is mathematically difficult. This is
due to the fact that the state space

(number short jobs; number long jobs)

grows infinitely in two dimensions (2D).1 While trunca-
tion of the Markov chain is possible, the errors introduced
by ignoring portions of the state space (infinite in 2D) can
be quite significant, especially at higher traffic intensities.
Thus truncation is neither sufficiently accurate nor robust
for our purposes.

In this paper we provide the first analysis of theCS-CQ
policy. The analysis ofCS-ID is given in [9]. In both
cases, the analysis is approximate, but the approximation
(based on moment matching) can be made as accurate as
desired. We assume a Poisson arrival process for short and
long jobs, which can be generalized to a MAP (Markovian
Arrival Process) [11]. The service requirements of the short
and long jobs are assumed to be drawn i.i.d. from any gen-
eral distribution (which we approximate by a Coxian dis-
tribution).

The analysis ofCS-ID hinges on decomposing the sys-
tem into two separate stochastic processes. ForCS-CQ,
this technique does not work. Here we appear to need a
Markov chain that is infinite in two dimensions, tracking
both the number of short jobs and the number of long jobs,
as the decision of which job the long host takes depends
on both of these quantities. Our solution is to instead use
a singlechain which precisely tracks the number of short
jobs, but where we use the transitions between the states
to track the duration of various types ofbusy periodscon-
cerning the long jobs. We refer to these asbusy period
transitions. This yields a Markov chain infinite in only 1D.
To understand how this works, observe that the effect of
the long jobs on the short jobs may be captured by differ-
entiating between three conditions: (i) there are zero long
jobs, and shorts are being worked on by 2 servers; (ii) there
is at least one long jobs and shorts are receiving no ben-
efit, while they wait for the long host busy period to end;
(iii) there is at least one long job, but a residual short job
in service at the long host is blocking the long jobs, which
are queueing and will create a busy period started by the
sum of the sizes of all long jobs queued. We capture these
busy period durations in our Markov chain transitions. We
can derive any number of moments for these various busy
periods. Our approach is to match the first three moments
of each busy period, and verify that this provides sufficient
accuracy via simulation (Section 4).

1The problem is equally hard when “short” and “long” jobs are indis-
tinguishable with respect to size.
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Short jobs first
check if long
server is idle.  
If so, go there.
Else come here.

Long jobs
always sent
here.

Dispatcher

Short server

Long server L L

SS

L

S

When free,
grab long job.
If no long,
grab short job.

grab next
short job.

When free,

Long server

Short server

(a) (b)

Figure 1:(a) TheCS-ID algorithm. (b) TheCS-CQ algorithm.

Notation Definition
X

L

Size (service requirement) of long job.
B

L

Busy period consisting of only long jobs,
and started by a single long job (of sizeX

L

).
E Exponential random variable with rate2�

S

.
N Number of long jobs which arrive duringE.
B

N+1

Busy period consisting of only long jobs,
and started by work whose size is the sum of
N + 1 long jobs.

Table 2:Notation necessary for analyzingCS-CQ

2 Analysis of Cycle Stealing under
Central Queue

2.1 Preliminary Notation

Throughout we assume that short (respectively, long) jobs
arrive according to a Poisson process with rate�

S

(respec-
tively, �

L

). The size, a.k.a. service requirement, of short
jobs (respectively, long jobs) is denoted by the random
variableX

S

(respectively,X
L

). The ith moment of the
size of a short (respectively, long) job is thereforeE[X

i

S

℄

(respectively,E[X i

L

℄). We will usually start by showing
the case where job sizes are exponentially distributed, us-
ing �

S

(respectively,�
L

) to denote the service rate of
short (respectively, long) jobs, where�

S

= 1=E[X

S

℄ and
�

L

= 1=E[X

L

℄. We define�
S

(respectively,�
L

) to be the
load created by short jobs (respectively, long jobs), where
�

S

= �

S

� E[X

S

℄ and�
L

= �

L

� E[X

L

℄. We assume that
the first three moments of the busy periods are finite, and
queues stable.

2.2 Formulating the Markov chain

In Figure 2(a) we show our chain representingCS-CQ. The
first component of each state descriptor denotes the number
of short jobs, which ranges from zero to infinity. The sec-
ond component of each state denotes the number of long

jobs. This is either0L, 1L, or a special state denoted by
(N + 1)L. The third component, when present, denotes
the type of job in service at the long host. The service time
for the long job is assumed to be generally-distributed. For
simplicity in specifying the Markov chain, the service time
for the short job is assumed to be exponential, with rate
�

S

, although this is straightforward to generalize using any
phase-type (e.g., Coxian) distribution [15, 11].

The logic behind the chain is as follows: Let’s start in re-
gion 1, and consider a long arrival. This causes a transition
to region 3, and starts a long busy period, whose length is
denoted byB

L

. We will return to regions 1 or 2 only after
timeB

L

. During this busy period, many smalls can arrive.
These will only be served at rate�

S

since the long host is
occupied by a long job.

Next consider a long arrival while in region 2. This
causes a transition into region 5. Before the long arrival can
run, it must first wait for one of the short jobs to finish, since
short jobs occupy both hosts. When one of the short jobs
completes, a long job will move to occupy that host (that
host will be renamed the long host) and we move to region
4. Thus, we remain in region 5 for timeE � Exp(2�

S

).
During timeE, N new long jobs arrive. At the moment
one of the short jobs completes there areN + 1 long jobs
in the system, and a long starts service. We now enter a
busy period consisting of long jobs, started by work of size
P

N+1

i=1

X

(i)

L

. The length of this busy period is denoted by
B

N+1

. At the end of this busy period, we return to region 1
or 2. During our time in region 4, short jobs can of course
arrive and depart (being served with rate�

S

) . The only
time short jobs are served at rate2�

S

is when there are
zero long jobs in the system (region 2), or when a long job
arrival finds that there are 2 short jobs being served (region
5). Notation is summarized in Table 2.

The chain in Figure 2(a) uses two types of busy period
transitions: B

L

andB
N+1

. We can derive all the mo-
ments of these busy periods. Figure 2(b) is identical to Fig-
ure 2(a), except that the busy period transitions have been
replaced by two-stage Coxian distributions, which allows
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Figure 2: (a) Chain corresponding toCS-CQ. The notationiS; jL representsi short jobs andj long jobs. The third field in the state
denotes whether a short job or a long job is in service at the long host. Light arrows represent exponential rates. Bold arrows represent
busy periods.B

L

is a busy period consisting of only long jobs, and started by asingle long job.B
N+1

is a busy period consisting of only
long jobs and started byN +1 long jobs, whereN is the number of long arrivals duringExp(2�

S

). (b) Expanded version of chain in (a)
where busy period transitions have been replaced by Coxian distributions.

us to model the first three moments of each busy period.2

More moments could be modeled using a higher-degree
Coxian, but three moments provide sufficient accuracy.

There is another slight approximation in our chain: It
does not model any dependency between the time to move
from region 5 to region 4 and the time to move from re-
gion 4 to regions 1 or 2. Simulation shows that this has
negligible effect on mean response time.

2.3 Deriving the busy period transitions

In order to specify the Markov chain, we need to compute
the first three moments ofB

L

andB
N+1

.
B

L

simply represents a busy period made up of only long
jobs. Its Laplace transform is:

f

B

L

(s) =

f

X

L

(s+ �

L

� �

L

f

B

L

(s)):

The moments ofB
L

can be obtained from the transform.
B

N+1

represents the length of a busy period made up of
only long jobs, started by work whose size is the sum of
N + 1 long jobs, whereN is the number of arrivals during
E � Exp(2�

S

).
The Laplace transform ofB

N+1

is given by

g

B

N+1

(s) =

e

E(�(1�

f

X

L

(s+ �� �

f

B

L

(s)))) �

2We assume that a 2-stage Coxian suffices to match the first 3 mo-
ments of any distribution of interest. This is true for many distributions
with higher variability. For exact conditions on the set of distributions
whose first 3 moments can be matched by a 2-stage Coxian see [16]. Dis-
tributions with lower variability require a Coxian with more than 2 stages.

f

X

L

(s+ �

L

� �

L

f

B

L

(s)):

From this transform, we can deriveB
N+1

’s moments. The
derivation is omitted, but is available at [9].

2.4 Analysis of short and long jobs

Response time for short jobs

Since our Markov chain tracks the exact number of short
jobs, the mean response time for the short jobs can now be
computed by solving the Markov chain and then applying
Little’s Law [14]. To solve the 1D-infinite Markov chain,
we apply standard matrix-analytic method [15, 11]. This is
a compact and efficient approach that allows one to solve
quasi-birth-death processes (QBDs) which are infinite in
one dimension, where the chain repeats itself after some
point, as does Figure 2. The repeating portion is repre-
sented as powers of a matrix,R, which can be added, as one
adds a geometric series, to produce a single matrix. Again
see [9] for details. Every plot in this paper which uses this
matrix-analytic analysis (to solve multiple instances with
different parameter values) was produced within a couple
of seconds using the Matlab 6 environment.

Response time for long jobs

Long jobs see an M/G/1 queue where, at times, the first
job in a busy period must wait until a short job finishes (as
short jobs occupy both servers). More succinctly, assum-
ing that short job service requirements are exponentially-
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distributed with rate�
S

, the response time for long jobs is
the response time for an M/G/1 queue with setup timeS:

S =

8

<

:

0 with probabilitya
1

=

PrfRegion 1g
PrfRegion 1 or 2g ;

E with probabilitya
2

=

PrfRegion 2g
PrfRegion 1 or 2g ;

where E � Exp(2�

S

). When a more general
phase-type distribution is used forX

S

, then S =

min(Ex
ess(X

S

); Ex
ess(X

S

)) with probabilitya
2

.
Observe thatS is defined entirely by what the first job in

a busy period sees – this job arrives in Region 1 or Region
2. The expected waiting time for an M/G/1 queue of long
jobs with setup timeS is known [21]:

E[W ℄

M=G=1=SetupS

=

2E[S℄ + �

L

E[S

2

℄

2(1 + �

L

E[S℄)

+

�

L

E[X

2

L

℄

2(1� �

L

)

:

We thus have:

E[Time for long job℄ = E[X

L

℄ +E[W ℄

M=G=1=SetupS

:

3 Stability for CS-ID and CS-CQ

ForDedicated assignment it is required that�
L

< 1 and
�

S

< 1, where�
L

(respectively,�
S

) denotes the load made
up of long jobs (respectively, short jobs). ForCS-ID we
will see that the region of stability is much wider, and for
CS-CQ wider still.

Theorem 1 For CS-CQ, the stability condition for long
jobs is�

L

< 1, and the stability condition for short jobs
is �

S

< 2 � �

L

. For CS-ID, the stability condition for
long jobs is�

L

< 1, and the stability condition for short
jobs is the solution to�

L

<

1

�

S

+ 1� �

S

.

The proof of the above theorem is available at [9]. The
restriction on�

S

for each of the three task assignment poli-
cies is shown in Figure 3. Observe the advantage of cycle
stealing in extending the stability region. When�

L

is near
zero,�

S

can be as high as about1:6 underCS-ID and close
to 2 underCS-CQ.

4 Validation of analytical method

As we are proposing a new analytical scheme to arrive at
near-exact calculations of waiting times, it is import that
we validate the accuracy of our method, particularly our
approximation of the length of a busy period by its first
three moments. We validate our method in two ways:

Validation against known limiting cases:We compare
the output of our algorithm with exact results from the lit-
erature when these exist. Due to the complexity of our

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

rhol

rh
os

Stability condition on rhos

Dedicated
Immed−Disp
Central−Q

Figure 3:Stability constraint on�
S

for Dedicated, CS-
ID, andCS-CQ.

system, this is possible only in special cases; specifically
when the traffic intensity of one of the customer classes ap-
proaches either zero or the saturation point of the system
(this saturation point may be strictly greater than one for
the short jobs). Depending on the model, and whether the
traffic intensity approaches zero or saturation, the system
approaches either an M/G/1 queue, an M/G/1 queue with
initial setup time, or an M/G/2 queue. The performance of
the first two of these models for general service times are
known, while the third is only available in the literature for
exponential service times.

Validation against simulation: Having evaluated our
approximation methods for limiting cases, we next use sim-
ulation to test our analytical results over a broad range of
loads. Simulations are limited only by the fact that simu-
lation accuracy decreases as the relative traffic intensities
approach saturation [3, 22]. Simulations were performed
in C on a 700MHz Pentium III with 256 MB RAM.

All validation results are omitted for lack of space, but
available in [9]. To summarize: We experimented with a
range of loads (�

S

, �
L

), various definitions of short and
long, and different job size distributions (exponential and
Coxian with squared coefficient of variationC2

= 8). The
validation against known limiting cases was perfect. For
the validation against simulation, we found that over all
the simulation experiments, the difference between anal-
ysis and simulation was under2% in almost all cases, and
was never over8%, and such a difference occurred rarely
and only at very high load. It is also worth pointing out
that for each results graph in [9], the simulation portion re-
quiredclose to an hourto generate, whereas the analysis
portion required less than a second to compute.

5 Results of Analysis

Recall that the motivation behind cycle-stealing algorithms
is to improve the performance of “short” jobs without in-
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flicting too much penalty on “long” jobs. Some penalty
to long jobs is inevitable, though, since our model is non-
preemptive. In this section we will study the results of
our analysis of our cycle-stealing algorithmsCS-ID and
CS-CQ. All figures will be organized into two parts, where
the first will show the benefit to short jobs and the second
the penalty to long jobs. In order to evaluate these bene-
fits/penalties we compare with theDedicated algorithm.

In Figures 4 and 5, we hold�
L

fixed at 0.5 and consider
the full range of�

S

. Recall from Section 3, forDedi-
cated we can never have�

S

> 1. However forCS-CQ,
�

S

is allowed as high as2 � �

L

, and forCS-ID, �
S

is
allowed as high as some intermediate value shown in Fig-
ure 3, which is not as high as2� �

L

and yet is higher than
Dedicated.

Figure 4 shows analytical results in the case where both
shorts and longs come from an exponential distribution.
Looking at row 1, column (a) (where shorts and longs have
mean size1), we see that the short jobs benefit tremen-
dously from cycle stealing. For�

S

> 0:8, the mean im-
provement of cycle stealing algorithms overDedicated
is over an order of magnitude. As�

S

! 1, the mean re-
sponse time underDedicated goes to infinity, whereas it
is 4 underCS-ID and 3 underCS-CQ. (Graphs have been
truncated so as to fit on the page). This shows the huge ben-
efit that short jobs obtain by being able to steal idle cycles
from the long host.

Still looking at Figure 4 row 1, column (a) we see that
the improvement ofCS-CQ overCS-ID is also vast. As
�

S

! 1:3, the mean response time underCS-ID goes to
infinity whereas it is approximately 7 underCS-CQ. This
follows as underCS-ID only newshort arrivals can benefit
from idle cycles, whereas underCS-CQ waiting short jobs
may benefit. Looking at Figure 4 row 1, columns (b) and
(c), we see that trends are similar to column (a), with only
the absolute magnitude of the numbers growing.

Figure 4 row 2, column (a) (where shorts and longs have
mean size1) shows that the penalty imposed on long jobs
by cycle stealing is relatively small. The penalty increases
with �

S

, but even when�
S

= 1, the penalty to long jobs
is only 10% underCS-CQ and 25% underCS-ID (com-
pared with the unbounded improvement for the short jobs).
In column (b), where shorts are shorter than longs, this
penalty drops to only 1% underCS-CQ and 2.5% under
CS-ID. In column (c), where shorts are longer than longs,
the penalty is greater. (This is to be expected since a long
job may get stuck behind a “short” job ten times its size.)
However, for all values of�

S

, the penalty to long jobs is
low compared with the improvement of short jobs.

One interesting observation is that the penalty to long
jobs appears lower underCS-CQ than underCS-ID. At
first this seems quite contrary, since underCS-CQ more
idle time is given to short jobs, thus it is reasonable to ex-

pect the long jobs should suffer more. The reason this is
not true is that underCS-CQ the servers are re-namable.
Thus a long job arriving to find both servers serving short
jobs need only wait forthe firstof the two servers to free
up underCS-CQ.

Other experiments, at higher values of�

L

, show behav-
ior largely similar to the case�

L

= 0:5, except that both
the benefits to short jobs and the penalty to long jobs are
reduced, see [9]. This is to be expected since there are
fewer idle cycles to steal. Nevertheless, the performance
improvement of cycle stealing overDedicated is still
orders of magnitude for high�

S

.
Figure 5 is the counterpart to Figure 4, where long

jobs are drawn from a Coxian distribution with appropri-
ate mean andC2

= 8, representing higher variability in
the long jobs (short jobs are still exponential). Increasing
the variability of the long job service time does not seem
to have much effect on the mean benefit that cycle stealing
offers to short jobs. The long jobs have higher overall re-
sponse times due to their higher variability, but similar ab-
solute increase. The percentage penalty of the long jobs is
therefore considerably lessened when the variability in long
job service times is increased. In fact, even for�

S

= 1,
in the case where shorts are shorter than longs (case (b)),
the penalty to long jobs is less than1% under both cycle
stealing algorithms. For the case where shorts are indistin-
guishable from longs (case (a)), the penalty to longs is still
under 10% forCS-ID and under 5% forCS-CQ.

Until now we have not considered the case where�

hL

,
the load at the long host, is close to 1. To investigate this
question, we again consider the setup in Figure 5, except
that this time we look at response time as a function of�

L

,
fixing �

S

= 1:5 as shown in Figure 6. To understand Fig-
ure 6, it helps to recall that Figure 3 shows the range of�

L

under whichCS-ID andCS-CQ are stable. Specifically,
when�

S

= 1:5, CS-ID is only stable for�
L

< :167 and
CS-CQ only for �

L

< 0:5. Figure 6 row 1 shows the mean
response time for short jobs under the two cycle stealing
algorithms as a function of�

L

. As each algorithm nears its
stability asymptote, the response time rises to infinity (all
graphs have been truncated). Thus, becauseCS-CQ has a
larger stability region, its performance appears far superior
to CS-ID. We couldn’t show the performance ofDedi-
cated because it is unstable over the entire region.

The prior stability criterion on�
L

was only based on
keeping theshorthost stable; the long host is stable for all
values of�

L

underDedicated and both cycle stealing
algorithms. Thus Figure 6 row 2 shows the performance
of the long jobs as a function of�

L

for CS-CQ, CS-ID,
andDedicated. Here we see that cycle stealing does not
visibly penalize the long jobs, except in the case where the
short jobs are much longer than the long jobs. In this case
cycle stealing penalizes the long jobs for lower loads, but
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Figure 4:Results of analysis, in the case where shorts and longs are drawn from exponential distributions.
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Figure 5:Results of analysis, in the case where longs are drawn from Coxian distribution with appropriate mean and squared
coefficient of variationC2

= 8. Response times are shown as a function of�
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Figure 6:Results of analysis, in the case where longs are drawn from Coxian distribution with appropriate mean and squared
coefficient of variationC2

= 8. Response times are shown as a function of�

L

.

the penalty vanishes for higher loads, since the short jobs
can’t get in to steal. Results for other values of�

S

are sim-
ilar in trend.

To summarize, we have seen that short jobs are tremen-
dously helped by cycle stealing, and thatCS-CQ offers
greater improvements to short jobs thanCS-ID. We have
also seen that, provided that short jobs are no longer than
long jobs, the impact of cycle stealing on long jobs is neg-
ligible. Even when the short jobs are longer than the long
jobs, the penalty to the long jobs is less, proportionally,
than the benefit to the shorts. This impact is greater under
CS-ID than underCS-CQ. ThusCS-CQ is always supe-
rior to CS-ID, and both are far better thanDedicated.

6 Conclusion and Discussion

The purpose of this paper is to analytically derive the ben-
efit of cycle stealing where jobs normally destined for one
machine (the beneficiaries) may steal the idle cycles of an-
other machine (the donor machine). The motivation is that
the beneficiaries will benefit immensely, while the donor
jobs experience very little penalty, since (primarily) only
their idle cycles are stolen. The paper considers two al-
gorithms for cycle stealing: Immediate-Dispatch – where

only newly arriving jobs can steal idle cycles – and Central-
Queue – where the beneficiaries include both newly arriv-
ing jobs and already queued jobs.

At the onset of the paper we assumed that arriving jobs
were designated as either “short” or “long”, where “short”
jobs were permitted to do the stealing. However through-
out the paper we also evaluate the case where “short” and
“long” jobs are indistinguishable – a perhaps more applica-
ble case – as well as the pathological case where “shorts”
are longer than “longs.”

Our results show that beneficiaries can benefit by an or-
der of magnitude under both cycle stealing algorithms. The
donors are penalized only by a small percentage, so long as
they aren’t shorter than the beneficiaries on average. Even
when the beneficiaries are longer than the donors, the ben-
eficiaries benefit more than the donors are penalized. We
also find thatCS-CQ is a superior strategy toCS-ID from
the perspective of both the beneficiaries and the donors.

This paper presents the first analysis of cycle stealing
under a Central Queue. The analysis involves creating a
Markov chain that includes transitions that correspond to
various types of busy periods. Our analysis is an approxi-
mation, since it depends on approximating these busy pe-
riods by a finite number of moments, but this approxima-
tion can be made as precise as desired by using more mo-
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ments. Even with just three moments, our analysis agrees
well with simulation. Furthermore, whereas generating a
plot of simulation results typically requires an hour, gener-
ating the plot analytically requires only a couple seconds.

In this paper we make the assumption that jobs are not
preemptible. If we allowed jobs to be preempted (inter-
rupted) and subsequently resumed where they left off, the
same basic approach would work, however, that is inconsis-
tent with our model of supercomputing systems. We have
also assumed homogeneous hosts. This assumption was
simply made for ease of exposition. This work may be ex-
tended to hosts of different speeds.

It would be interesting to compare our task assignment
policies with other non-preemptive policies. A natural can-
didate isM/G/2/SJF: A central queue holds jobs at the
dispatcher, giving short jobs preference at both hosts. It
turns out that from the perspective of both the short and
long jobs,M/G/2/SJF sometimes outperforms our cycle
stealing algorithms and sometimes does worse, depending
on�

S

, �
L

, and the job size distributions. On the plus side,
M/G/2/SJF offers the short jobs two servers where they
have priority. But, becauseM/G/2/SJF does not offer a
dedicated short server, the short jobs sometimes get stuck
behind two long jobs, one at each host. With respect to
the long jobs, on the negative side,M/G/2/SJF penalizes
long jobs at both servers, but long jobs may benefit in situ-
ations where�

S

is low and long jobs end up capturing both
hosts.
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