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Abstract

We consider the problem of task assignment in a dis-
tributed server system, where short jobs are separated from
long jobs, but short jobs may be run in the long job parti-
tionifitis idle (cycle stealing). Jobs are assumed to be-non
preemptible, where short and long jobs have generally-
distributed service requirements, and arrivals are Pois-
son. We consider two variants of this problem: a central
gueue model and an immediate dispatch model. This pa-
per presents the first analysis of cycle stealing under the
central-queue model. (Cycle stealing under the immedi-
ate dispatch model is analyzed in [9]). The analysis uses
a technique which we refer to as busy period transitions.

task assignment policy has a significant effect on the perfor
mance perceived by users. Designing a distributed server
system thus often comes down to choosing the “best” pos-
sible task assignment policy for the given model and user
requirements. While devising new task assignment policies
is easy, analyzing even the simplest policies can prove to be
very difficult: Many of the long-standing open questions in
gueueing theory involve the performance analysis of task
assignment policies.

In this paper we consider thearticular modelof a
distributed server system in which hosts are homoge-
neous and the execution of jobsnsn-preemptivgrun-
to-completion), i.e., the execution of a job can’t be inter-
rupted and subsequently resumed. We consider both the
case where jobs arenmediately dispatchedpon arrival

Results show that cycle stealing can reduce mean responseto one of the host machines for processing, and the case

time for short jobs by orders of magnitude, while long jobs
are only slightly penalized. Furthermore using a central
gueue yields significant performance improvement over im-
mediate dispatch, both from the perspective of the benefit to
short jobs and the penalty to long jobs.

1 Introduction

Distributed server model

In recent years, distributed servers have become increas-

ingly common because they allow for increased computing
power while being cost-effective and easily scalable. In a
distributed server system, jobs (tasks) arrive and must eac
be dispatched to exactly one of several host machines for
processing. The rule for assigning jobs to host machines
is known as thdask assignment policyThe choice of the
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where jobs are held in@ntral queuaintil requested by a
host machine.

Our model is motivated by servers at supercomputing
centers, where jobs are typically run-to-completion (see T
ble 1). Our model is also consistent with validated stochas-
tic models used to study a high-volume Web sites [10, 20],
studies of scalable systems for computers within an orga-
nization [18], and telecommunication systems with hetero-
geneous servers [4].

Previous work on Task Assignment

The analysis of task assignment policies has been the topic
of many papers. We provide a brief overview, limiting our
discussion taon-preemptiveystems.

By far the most common task assignment policy used
is Round- Robi n. TheRound- Robi n policy is simple,
but it neither maximizes utilization of the hosts, nor mini-
mizes mean response time.

When the job processing requirements come from an ex-
ponential distribution, or one with increasing failureeat
the M G k policy has been proven to minimize mean re-
sponse time and maximize utilization [24]. (Note: through-
out this paper we will use the ternmsocessing require-
ment service demandand size interchangeably.) The
M G k policy holds all jobs at the dispatcher unit in a sin-
gle FCFS queue, and only when a host is free does it receive



Name Location No. Hosts | Host Machine

Xolas [13] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [12] MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
JOO0 distributed server [1]| Pittsburgh Supercomputing Center 2 8-processor Cray J90 machine
C90 distributed server [2] NASA Ames Research Lab 2 16-processor Cray C90 machine

Table 1:

Examples of distributed servers described by the architatimodel of this paper. The schedulers used are Load-kevel

LSF, PBS, or NQS. These schedulers typically only supportatcompletion (non-preemptive) for several reasonsstiFrthe memory
requirements of jobs tend to be huge, making it very experisiswap out a job’s memory [6]. Thus timesharing betwees juily
makes sense if all the jobs being timeshared fit within theaneof the host, which is unlikely. Also, many operating eyst that enable
timesharing for single-processor jobs do not facilitategamption among several processors in a coordinated faghigjn Note: In such
settings it is typical for users to submit an upper bound agirtjob’s CPU requirement in seconds; the job is killed if kceeds this

estimate.

the next job. Thé\! G k policy is provably identical to the
Least - Wor k- Renai ni ng policy which sends each job

to the host with the least total remaining work [7]. A related
policy is theShor t est - Queue policy where incoming
jobs are immediately dispatched to the host with the fewest
number of jobs [23, 5].

While policies like M G k and Short est - Queue
perform well undeexponentiajob size distributions, they
performpoorly when the job size distribution has higher
variability. In such cases, it has been shown analytically
and empirically that thédedi cat ed policy far outper-
forms these other policies with respect to minimizing mean
response time [8, 19]. In thBedi cat ed policy, some

fully utilized: five consecutive short jobs may arrive, with
no long job, resulting in an idle long host. This is espe-
cially likely in common computer workloads, where there
are many short jobs and just a few very long jobs, resulting
in longer idle periods between the arrivals of long jobs.
Ideally we would like a policy which combines the
variance-reducing benefit of tHeedi cat ed policy with
the high-utilization property oM G k andShor t est -
Queue: We would segregate jobs by size to provide isola-
tion for short jobs, but when the long job host is free, we
would stealthe long host'’s idle cycles to serve excess short
jobs. This would both decrease the mean response time
of short jobs, and enlarge ttstability regionof the over-

hosts are designated as the “short hosts” and others as theall system. Specifically, for systems where the short host

“long hosts.” Short jobs are always sent to the short hosts
and long jobs to the long hosts. TBedi cat ed policy
is popular in practice (e.g. Cornell Theory Center) where
different host machines have different duration limitato

is much more heavily loaded, granting the short jobs lim-
ited access to the long partition may be the difference be-
tween an overloaded system and a well-behaved one (see
Section 3 for the stability regions for our cycle stealing

0-1/2 hour, 1/2 — 2 hours, 2 — 4 hours, etc., and users must algorithms). It is important, though, that we grant short
specify an estimated required service requirement for each jobs access to the long host only when that hofeig so

job. TheDedi cat ed policy performs well for the case
of high-variability job size distributions because it iatds
shorts jobs from the long jobs, as waiting behind the long
jobs is very costly. Théedi cat ed policy is also popu-

lar in supermarkets and banks, where an “express” queue is

created for “short” jobs.

Even when the job size is not known, a policy very sim-
ilar to Dedi cat ed, known as théTAGS policy (Task As-
signment by Guessing Size) works almost as well when job
sizes have high variability. Lik®edi cat ed, the TAGS
policy significantly outperforms other policies that do not
segregate jobs by size [7].

Motivation for Cycle Stealing

While Dedi cat ed assignment may be preferable to the
M G k andShort est - Queue policies for highly vari-
able job sizes, it is clearlgotoptimal. One problem is that
Dedi cat ed leads to situations where the servers are not

we don'tstarvethe long jobs, causing them undue delay.
Nonetheless, because jobs are not preemptible, there will
still be a penalty to a long job which arrives to find a short
job serving at the long host.

Removing the distinction between short and long

Above we've used the terms “short host” to describe the
host designated for “short” jobs and “long host” to describe
the host designated for “long” jobs, but which can be used
for short jobs when itis idle. Our reason for talking about a
“short host” and a “long host” is to emphasize the tremen-
dous performance benefit achievable when jobs can be seg-
mented by size. The analysis in this paper, however, applies
more generally to any situtation where there is a “benefi-
ciary host” and a “donor host” where beneficiary jobs may
use the “donor host” if it is idle. In particular, our analy-
sis works equally well when short jobs are indistinguish-
able from long jobs — allowing us to simply derive the



benefit that a donor host provides to a beneficiary host. In instance — where job arrivals are Poisson, and short and
fact, throughout we will consider three cases: shorts short  long jobs are drawn i.i.d. from different exponential dis-
than longs; shorts indistinguishable from longs; and (path  tributions — the continuous-time Markov chain, while rela-
logically) shorts longer than longs. We will find that the tively easy to describe, is mathematically difficult. This i

“shorts” benefit in all three cases. The “longs” suffer dittl due to the fact that the state space
except in the pathological case where they could get stuck _ _
waiting behind a “short” job that is not short at all. Even in (number short jobs, number long jobs)

this case, it will turn out that the penalty to “long” jobs is

still dominated by the benefit to the “short” jobs. grows infinitely in two dimensions (20).While trunca-

tion of the Markov chain is possible, the errors introduced

) ) by ignoring portions of the state space (infinite in 2D) can
Two cycle stealing algorithms be quite significant, especially at higher traffic intemsiti
Thus truncation is neither sufficiently accurate nor robust
for our purposes.
i . i i In this paper we provide the first analysis of {88 CQ
Cycle stealing with Immediate Dispatch CS-1D): In policy. The analysis oS- | D is given in [9]. In both
this algorithm (shown in Figure 1(a)), all jobs are imme- 4565, the analysis is approximate, but the approximation
diately dispatched to a host upon arrival. There is a des- (pa5ed on moment matching) can be made as accurate as
ignated short job host and a designated long job host. An gegired. We assume a Poisson arrival process for short and
arriving long job is always dispatched to the long job host. long jobs, which can be generalized to a MAP (Markovian
An arriving short job first checks to see if the long job host - arival Process) [11]. The service requirements of the shor
isidle. If so, the shortjob is dispatched to the long job host 5,4 long jobs are assumed to be drawn i.i.d. from any gen-

Ifthe long job host is notidle (either workingonalongjob  grg) gistribution (which we approximate by a Coxian dis-
or a short job), then the arriving short job is dispatched to tribution).

the short job host. Jobs at a host are serviced in FCFS order.
The CS- | D algorithm is an improvement ové&edi -
cat ed for short jobs. However, only those short jobs ar-
riving after the long host has entered an idle period can
steal long cycles; if a short job arrives just before the long
host enters an idle period, the short job is not eligible for
running during the idle partition. This is the motivation-be
hind our next cycle stealing algorithm.

We propose two cycle stealing algorithms:

The analysis o€S- | D hinges on decomposing the sys-
tem into two separate stochastic processes. G2rCQ,
this technique does not work. Here we appear to need a
Markov chain that is infinite in two dimensions, tracking
both the number of short jobs and the number of long jobs,
as the decision of which job the long host takes depends
on both of these quantities. Our solution is to instead use
a singlechain which precisely tracks the number of short
jobs, but where we use the transitions between the states
Cycle stealing with Central Queue CS- CQ): Inthis al- to track the duration of various types lofisy periodson-
gorithm (shown in Figure 1(b)), all jobs are held in a cen- cerning the long jobs. We refer to these tassy period
tral queue. Whenever the short job host becomes idle, it transitions This yields a Markov chain infinite in only 1D.
picks the first short job in the queue to run. Whenever the To understand how this works, observe that the effect of
long job host becomes idle, it picks the first long job in the the long jobs on the short jobs may be captured by differ-
gueue. However, if there is no long job, the long host picks entiating between three conditions: (i) there are zero long
the first short job in the queue. A minor point: Whereas in jobs, and shorts are being worked on by 2 servers; (ii) there
CS- | Dthe short and long hosts are designated in advance, is at least one long jobs and shorts are receiving no ben-
in CS- CQwe allow renaming of hosts —i.e., if the long host  efit, while they wait for the long host busy period to end,;
is working on a short job, and the short host is idle, then the (iii) there is at least one long job, but a residual short job
long host is renamed the short host and vice versa. Thus in in service at the long host is blocking the long jobs, which
CS- | D, there could be one short in front of one long job in  are queueing and will create a busy period started by the
the system with an idle (short) server, while this could not sum of the sizes of all long jobs queued. We capture these
happen undeCS- CQ busy period durations in our Markov chain transitions. We
can derive any number of moments for these various busy
periods. Our approach is to match the first three moments
of each busy period, and verify that this provides sufficient
Cycle stealing is a very old concept. Policies I&8- | D accuracy via simulation (Section 4).
andCs- CQ, as well as others of a similar flavor, have been
suggested in countless papers. However, the analysis of  ithe problem is equally hard when “short” and “long” jobs areis-
such policies has eluded researchers. Even for the simplesttinguishable with respect to size.

Difficulty of analysis and new analytic approaches
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Figure 1:(a) TheCS- | Dalgorithm. (b) TheCS- CQalgorithm.

Notation | Definition

Size (service requirement) of long job.
Busy period consisting of only long jobs,
and started by a single long job (of sixg, ).
Exponential random variable with ra@g.s.
Number of long jobs which arrive durinf.
Busy period consisting of only long jobs,
and started by work whose size is the sum
N + 1 long jobs.

of

Table 2:Notation necessary for analyzil@s- CQ

2 Analysis of Cycle Stealing under
Central Queue

2.1 Preliminary Notation

Throughout we assume that short (respectively, long) jobs
arrive according to a Poisson process with rejerespec-
tively, Ap). The size, a.k.a. service requirement, of short
jobs (respectively, long jobs) is denoted by the random
variable X5 (respectively,X ;). Theit® moment of the
size of a short (respectively, long) job is therefdfeX %]
(respectively,E[X:]). We will usually start by showing
the case where job sizes are exponentially distributed, us-
ing us (respectively,up) to denote the service rate of
short (respectively, long) jobs, whergs = 1/E[Xs] and

wur = 1/E[X1]. We definepgs (respectivelypr) to be the
load created by short jobs (respectively, long jobs), where
ps = As - E[Xgs] andpr = A, - E[X]. We assume that
the first three moments of the busy periods are finite, and
gueues stable.

2.2 Formulating the Markov chain

In Figure 2(a) we show our chain representi® CQ The

jobs. This is eithefL, 1L, or a special state denoted by
(N + 1)L. The third component, when present, denotes
the type of job in service at the long host. The service time
for the long job is assumed to be generally-distributed. For
simplicity in specifying the Markov chain, the service time
for the short job is assumed to be exponential, with rate
1s, although this is straightforward to generalize using any
phase-type (e.g., Coxian) distribution [15, 11].

The logic behind the chain is as follows: Let’s startin re-
gion 1, and consider a long arrival. This causes a transition
to region 3, and starts a long busy period, whose length is
denoted byB;. We will return to regions 1 or 2 only after
time By. During this busy period, many smalls can arrive.
These will only be served at rajg; since the long host is
occupied by a long job.

Next consider a long arrival while in region 2. This
causes a transition into region 5. Before the long arrival ca
run, it must first wait for one of the short jobs to finish, since
short jobs occupy both hosts. When one of the short jobs
completes, a long job will move to occupy that host (that
host will be renamed the long host) and we move to region
4. Thus, we remain in region 5 for timB ~ Exp(2ugs).
During time EZ, N new long jobs arrive. At the moment
one of the short jobs completes there afet- 1 long jobs
in the system, and a long starts service. We now enter a
busy period consisting of long jobs, started by work of size
Zﬁgl Xg). The length of this busy period is denoted by
By 1. Atthe end of this busy period, we return to region 1
or 2. During our time in region 4, short jobs can of course
arrive and depart (being served with ratg) . The only
time short jobs are served at relgs is when there are
zero long jobs in the system (region 2), or when a long job
arrival finds that there are 2 short jobs being served (region
5). Notation is summarized in Table 2.

The chain in Figure 2(a) uses two types of busy period
transitions: By and By41. We can derive all the mo-

first component of each state descriptor denotes the numberments of these busy periods. Figure 2(b) is identical to Fig-

of short jobs, which ranges from zero to infinity. The sec-
ond component of each state denotes the number of long

ure 2(a), except that the busy period transitions have been
replaced by two-stage Coxian distributions, which allows



Region 3

Region 1)

Region 4

Figure 2:(a) Chain corresponding t€S- CQ. The notationiS, jL represents short jobs and; long jobs. The third field in the state
denotes whether a short job or a long job is in service at tmglbost. Light arrows represent exponential rates. Boldas represent

busy periods B, is a busy period consisting of only long jobs, and started bkingle long job.Bx 1 is a busy period consisting of only
long jobs and started byv + 1 long jobs, whereV is the number of long arrivals duringzp(2us). (b) Expanded version of chain in (a)

where busy period transitions have been replaced by Coxgtritalitions.

us to model the first three moments of each busy pétriod.

More moments could be modeled using a higher-degree

Coxian, but three moments provide sufficient accuracy.
There is another slight approximation in our chain: It

does not model any dependency between the time to move

from region 5 to region 4 and the time to move from re-
gion 4 to regions 1 or 2. Simulation shows that this has
negligible effect on mean response time.

2.3 Deriving the busy period transitions

In order to specify the Markov chain, we need to compute
the first three moments @, andBy ;1.

By, simply represents a busy period made up of only long
jobs. Its Laplace transform is:

BL(s) = X1(s+ AL — ALBL(s)).

The moments ofB;, can be obtained from the transform.
By represents the length of a busy period made up of
only long jobs, started by work whose size is the sum of
N + 1long jobs, whereV is the number of arrivals during
E ~ Exp(2us).

The Laplace transform a8y, is given by

Bnii(s) = E\1-Xz(s+X—AB(5)))) -

2We assume that a 2-stage Coxian suffices to match the first 3 mo-
ments of any distribution of interest. This is true for marnstbutions
with higher variability. For exact conditions on the set @gtdbutions
whose first 3 moments can be matched by a 2-stage Coxian de®[46
tributions with lower variability require a Coxian with nethan 2 stages.

Xi(s+ Az — ALBr(s)).

From this transform, we can deriv&y,,’s moments. The
derivation is omitted, but is available at [9].

2.4 Analysis of short and long jobs
Response time for short jobs

Since our Markov chain tracks the exact number of short
jobs, the mean response time for the short jobs can now be
computed by solving the Markov chain and then applying
Little’s Law [14]. To solve the 1D-infinite Markov chain,
we apply standard matrix-analytic method [15, 11]. This is
a compact and efficient approach that allows one to solve
guasi-birth-death processes (QBDs) which are infinite in
one dimension, where the chain repeats itself after some
point, as does Figure 2. The repeating portion is repre-
sented as powers of a matrik, which can be added, as one
adds a geometric series, to produce a single matrix. Again
see [9] for details. Every plot in this paper which uses this
matrix-analytic analysis (to solve multiple instanceshwit
different parameter values) was produced within a couple
of seconds using the Matlab 6 environment.

Response time for long jobs

Long jobs see an M/G/1 queue where, at times, the first
job in a busy period must wait until a short job finishes (as
short jobs occupy both servers). More succinctly, assum-
ing that short job service requirements are exponentially-



distributed with rateus, the response time for long jobs is
the response time for an M/G/1 queue with setup téne

. . pr{Region 3
6 0  with probabilitya; = pr{Region 1 or 2 %r
- . - Pr{ gIOI’I
E with probabllltyaz W,
where E ~ Ezp(2us). When a more general

phase-type distribution is used fakKg, then S
min(Ezcess(Xgs), Fxcess(Xg)) with probabilityas.
Observe thaf is defined entirely by what the first job in
a busy period sees — this job arrives in Region 1 or Region
2. The expected waiting time for an M/G/1 queue of long

jobs with setup time5 is known [21]:

QE[S] + /\LE[S2]
21+ ALE[S])

ALE[X]]
2(1—pL)

E[W]M/G’/l/SetupS —

We thus have:

E[Time for long jo = E[X ] + E[W]M/G/1/Setups,

3 Stability for CS-ID and CS-CQ

ForDedi cat ed assignment it is required that < 1 and
ps < 1, wherepy, (respectivelyps) denotes the load made
up of long jobs (respectively, short jobs). FG8- | D we
will see that the region of stability is much wider, and for
CS- CQwider still.

Theorem 1 For CS- CQ, the stability condition for long

jobs isp, < 1, and the stability condition for short jobs
is ps < 2 — pr. For CS- I D, the stability condition for

long jobs ispr, < 1, and the stability condition for short
jobs is the solution tp;, < -1 +1 — ps.

The proof of the above theorem is available at [9]. The
restriction orpg for each of the three task assignment poli-
cies is shown in Figure 3. Observe the advantage of cycle
stealing in extending the stability region. Whenis near
zero,ps can be as high as abou® underCS- | Dand close
to 2 underCSs- CQ.

4 Validation of analytical method

As we are proposing a new analytical scheme to arrive at
near-exact calculations of waiting times, it is import that
we validate the accuracy of our method, particularly our
approximation of the length of a busy period by its first
three moments. We validate our method in two ways:
Validation against known limiting cases: We compare

the output of our algorithm with exact results from the lit-
erature when these exist. Due to the complexity of our

Stability condition on rhos

- Dedicated
—— Immed-Disp
-- Central-Q

1.5¢

rhos
[

0.5r

0.4 0.6 0.8 1
rhol

Figure 3:Stability constraint orpg for Dedi cat ed, CS-
I D, andCS- CQ.

system, this is possible only in special cases; specifically
when the traffic intensity of one of the customer classes ap-
proaches either zero or the saturation point of the system
(this saturation point may be strictly greater than one for
the short jobs). Depending on the model, and whether the
traffic intensity approaches zero or saturation, the system
approaches either an M/G/1 queue, an M/G/1 queue with
initial setup time, or an M/G/2 queue. The performance of
the first two of these models for general service times are
known, while the third is only available in the literature fo
exponential service times.

Validation against simulation: Having evaluated our
approximation methods for limiting cases, we next use sim-
ulation to test our analytical results over a broad range of
loads. Simulations are limited only by the fact that simu-
lation accuracy decreases as the relative traffic intessiti
approach saturation [3, 22]. Simulations were performed
in C on a 700MHz Pentium Il with 256 MB RAM.

All validation results are omitted for lack of space, but
available in [9]. To summarize: We experimented with a
range of loads /s, pr), various definitions of short and
long, and different job size distributions (exponentiadian
Coxian with squared coefficient of variati@i¥ = 8). The
validation against known limiting cases was perfect. For
the validation against simulation, we found that over all
the simulation experiments, the difference between anal-
ysis and simulation was und in almost all cases, and
was never ove8%, and such a difference occurred rarely
and only at very high load. It is also worth pointing out
that for each results graph in [9], the simulation portion re
quiredclose to an houto generate, whereas the analysis
portion required less than a second to compute.

5 Results of Analysis

Recall that the motivation behind cycle-stealing algorih
is to improve the performance of “short” jobs without in-



flicting too much penalty on “long” jobs. Some penalty
to long jobs is inevitable, though, since our model is non-
preemptive. In this section we will study the results of
our analysis of our cycle-stealing algorithr@S- | D and
CS- CQ All figures will be organized into two parts, where
the first will show the benefit to short jobs and the second

the penalty to long jobs. In order to evaluate these bene-

fits/penalties we compare with tidedi cat ed algorithm.

In Figures 4 and 5, we hold;, fixed at 0.5 and consider
the full range ofps. Recall from Section 3, fobedi -
cat ed we can never haves > 1. However forCS- CQ
ps is allowed as high a8 — p,, and forCS- 1 D, pg is
allowed as high as some intermediate value shown in Fig-
ure 3, which is not as high &-— p;, and yet is higher than
Dedi cat ed.

pect the long jobs should suffer more. The reason this is
not true is that unde€S- CQ the servers are re-namable.
Thus a long job arriving to find both servers serving short
jobs need only wait fothe firstof the two servers to free
up underCs- CQ.

Other experiments, at higher valuesmgf, show behav-
ior largely similar to the casp, = 0.5, except that both
the benefits to short jobs and the penalty to long jobs are
reduced, see [9]. This is to be expected since there are
fewer idle cycles to steal. Nevertheless, the performance
improvement of cycle stealing ov&®edi cat ed is still
orders of magnitude for higps.

Figure 5 is the counterpart to Figure 4, where long
jobs are drawn from a Coxian distribution with appropri-
ate mean and’? = 8, representing higher variability in

Figure 4 shows analytical results in the case where both the long jobs (short jobs are still exponential). Incregsin

shorts and longs come from an exponential distribution.
Looking at row 1, column (a) (where shorts and longs have
mean sizel), we see that the short jobs benefit tremen-
dously from cycle stealing. Fgrs > 0.8, the mean im-
provement of cycle stealing algorithms ou&edi cat ed

is over an order of magnitude. As — 1, the mean re-
sponse time undéedi cat ed goes to infinity, whereas it

is 4 underCS- | Dand 3 undeCS- CQ (Graphs have been

the variability of the long job service time does not seem
to have much effect on the mean benefit that cycle stealing
offers to short jobs. The long jobs have higher overall re-
sponse times due to their higher variability, but similar ab
solute increase. The percentage penalty of the long jobs is
therefore considerably lessened when the variabilityriglo

job service times is increased. In fact, even jgr= 1,

in the case where shorts are shorter than longs (case (b)),

truncated so as to fit on the page). This shows the huge ben-the penalty to long jobs is less thaft under both cycle

efit that short jobs obtain by being able to steal idle cycles
from the long host.

Still looking at Figure 4 row 1, column (a) we see that
the improvement o€S- CQ overCS- | Dis also vast. As
ps — 1.3, the mean response time undg3- | D goes to
infinity whereas it is approximately 7 und€s- CQ. This
follows as unde€S- | Donly newshort arrivals can benefit
from idle cycles, whereas und€s- CQwaiting short jobs
may benefit. Looking at Figure 4 row 1, columns (b) and
(c), we see that trends are similar to column (a), with only
the absolute magnitude of the numbers growing.

Figure 4 row 2, column (a) (where shorts and longs have
mean sizel) shows that the penalty imposed on long jobs
by cycle stealing is relatively small. The penalty increase
with pg, but even whems = 1, the penalty to long jobs
is only 10% undelCS- CQand 25% unde€S- | D (com-
pared with the unbounded improvement for the short jobs).
In column (b), where shorts are shorter than longs, this
penalty drops to only 1% und&S- CQ and 2.5% under
CS- | D. In column (c), where shorts are longer than longs,

stealing algorithms. For the case where shorts are indistin
guishable from longs (case (a)), the penalty to longs ik stil
under 10% foiCS- | Dand under 5% fo€CS- CQ

Until now we have not considered the case wheyg,
the load at the long host, is close to 1. To investigate this
guestion, we again consider the setup in Figure 5, except
that this time we look at response time as a functiopgf
fixing ps = 1.5 as shown in Figure 6. To understand Fig-
ure 6, it helps to recall that Figure 3 shows the rangg;of
under whichCS- | D and CS- CQ are stable. Specifically,
whenps = 1.5, CS- | Dis only stable forp;, < .167 and
CS- CQonly for py, < 0.5. Figure 6 row 1 shows the mean
response time for short jobs under the two cycle stealing
algorithms as a function ¢f,. As each algorithm nears its
stability asymptote, the response time rises to infinity (al
graphs have been truncated). Thus, bec&%eCQhas a
larger stability region, its performance appears far soper
to CS- | D. We couldn’t show the performance bedi -
cat ed because it is unstable over the entire region.

The prior stability criterion orp, was only based on

the penalty is greater. (This is to be expected since a long keeping theshorthost stable; the long host is stable for all

job may get stuck behind a “short” job ten times its size.)
However, for all values opg, the penalty to long jobs is
low compared with the improvement of short jobs.

One interesting observation is that the penalty to long
jobs appears lower und€S- CQ than underCS- | D. At
first this seems quite contrary, since un@3- CQ more
idle time is given to short jobs, thus it is reasonable to ex-

values ofpy, underDedi cat ed and both cycle stealing
algorithms. Thus Figure 6 row 2 shows the performance
of the long jobs as a function gf;, for CS- CQ, CS- | D,
andDedi cat ed. Here we see that cycle stealing does not
visibly penalize the long jobs, except in the case where the
short jobs are much longer than the long jobs. In this case
cycle stealing penalizes the long jobs for lower loads, but
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the penalty vanishes for higher loads, since the short jobs only newly arriving jobs can steal idle cycles —and Central-

can't get in to steal. Results for other valueggfare sim- Queue — where the beneficiaries include both newly arriv-
ilar in trend. ing jobs and already queued jobs.

To summarize, we have seen that short jobs are tremen- At the onset of the paper we assumed that arriving jobs
dously helped by cycle stealing, and thes- CQ offers were designated as either “short” or “long”, where “short”

greater improvements to short jobs thag | D. We have jobs were permitted to do the stealing. However through-
also seen that, provided that short jobs are no longer than out the paper we also evaluate the case where “short” and
long jobs, the impact of cycle stealing on long jobs is neg- “long” jobs are indistinguishable — a perhaps more applica-
ligible. Even when the short jobs are longer than the long ble case — as well as the pathological case where “shorts”
jobs, the penalty to the long jobs is less, proportionally, are longer than “longs.”
than the benefit to the shorts. This impact is greater under  Qur results show that beneficiaries can benefit by an or-
CS- I D than undelCS- CQ. ThusCS- CQis always supe- der of magnitude under both cycle stealing algorithms. The
rior to CS- | D, and both are far better th@edi cat ed. donors are penalized only by a small percentage, so long as
they aren't shorter than the beneficiaries on average. Even
when the beneficiaries are longer than the donors, the ben-
6 Conclusion and Discussion eficiaries benefit more than the donors are penalized. We
also find thatCS- CQis a superior strategy 6S- | Dfrom
The purpose of this paper is to analytically derive the ben- the perspective of both the beneficiaries and the donors.
efit of cycle stealing where jobs normally destined for one  This paper presents the first analysis of cycle stealing
machine (the beneficiaries) may steal the idle cycles of an- under a Central Queue. The analysis involves creating a
other machine (the donor machine). The motivation is that Markov chain that includes transitions that correspond to
the beneficiaries will benefit immensely, while the donor various types of busy periods. Our analysis is an approxi-
jobs experience very little penalty, since (primarily) ynl  mation, since it depends on approximating these busy pe-
their idle cycles are stolen. The paper considers two al- riods by a finite number of moments, but this approxima-
gorithms for cycle stealing: Immediate-Dispatch — where tion can be made as precise as desired by using more mo-



ments. Even with just three moments, our analysis agrees

well with simulation. Furthermore, whereas generating a
plot of simulation results typically requires an hour, gene
ating the plot analytically requires only a couple seconds.

In this paper we make the assumption that jobs are not

preemptible. If we allowed jobs to be preempted (inter-

rupted) and subsequently resumed where they left off, the
same basic approach would work, however, thatis inconsis-
tent with our model of supercomputing systems. We have

(9]

[10]

also assumed homogeneous hosts. This assumption wad11l
simply made for ease of exposition. This work may be ex-
tended to hosts of different speeds.

It would be interesting to compare our task assignment

policies with other non-preemptive policies. A natural-can
didate isM G 2/ SJF: A central queue holds jobs at the

dispatcher, giving short jobs preference at both hosts. It

[12]

[13]

turns out that from the perspective of both the short and [14]
long jobs,M G 2/ SJF sometimes outperforms our cycle

stealing algorithms and sometimes does worse, depending

onpgs, pr, and the job size distributions. On the plus side,
M G 2/ SJF offers the short jobs two servers where they
have priority. But, becauded G/ 2/ SJF does not offer a

dedicated short server, the short jobs sometimes get stuck
behind two long jobs, one at each host. With respect to

the long jobs, on the negative sidd,& 2/ SJF penalizes
long jobs at both servers, but long jobs may benefit in situ-
ations wherg is low and long jobs end up capturing both
hosts.
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