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1 IntroductionMotivation Since the invention of networks of workstations, systems design-ers have touted the bene�ts of allowing a user to take advantage of machinesother than her own, at times when those machines are idle. This notion is of-ten referred to as cycle stealing. Cycle stealing allows such a user, Betty, withmultiple jobs, to o�oad one of her jobs to the machine of a di�erent user,Dan, if Dan's machine is idle, giving Betty two machines to process her jobs.When Dan's workload resumes, Betty must return to using only her own ma-chine. We refer to Betty as the bene�ciary, to her machine as the bene�ciarymachine/server, and to her jobs as bene�ciary jobs. Likewise, we refer to Danas the donor, to his machine as the donor machine/server, and to his jobs asdonor jobs.Although cycle stealing provides obvious bene�ts to the bene�ciary, thesebene�ts come at some cost to the donor. For example, the bene�ciary's jobmay have to be checkpointed and the donor's working set memory reloadedbefore the donor can resume, delaying the resumption of processing of donorjobs. In our model we refer to these additional costs associated with cyclestealing as switching times.A primary goal of this paper is to understand the bene�t of cycle stealingfor the bene�ciary and the penalty to the donor, as a function of switchingtimes. A secondary goal is to derive parameter settings for cycle stealing.In particular, given non-zero switching times, cycle stealing may pay onlyif the bene�ciary's queue is \suÆciently" long. We seek to understand theoptimal threshold on the bene�ciary queue when switching to help, and theoptimal threshold on the donor queue when switching back. More broadly, weseek general insights into which system parameters have the most signi�cantimpact on the e�ectiveness of cycle stealing.The analytical model We assume there are two queues, the bene�ciaryqueue and the donor queue, with independent arrival processes and servicetime distributions operating as M/GI/1/FCFS queues. Jobs arrive at rate �B(respectively, �D) at the bene�ciary (respectively, donor) queue and have ser-vice requirement XB with distribution GB (respectively, XD with distributionGD). The load made up by bene�ciary (respectively, donor) jobs is denotedby �B (respectively, �D) where �B = �B � E[XB] and �D = �D � E[XD]. If thedonor server is idle, and if the number of jobs at the bene�ciary queue is atleast N thB , the donor transitions into the switching state, for a random amountof time, Ksw. After Ksw time, the donor server is available to work on the ben-e�ciary queue and the bene�ciary queue becomes an M/GB/2 queue. Whenthe number of donor jobs in queue reaches N thD (either during Ksw, or during2



the time the donor is helping the bene�ciary), the donor transitions into aswitching back state, for a random amount of time, Kba. After the completionof the switch back, the donor server resumes working on its own jobs untilthe donor queue is empty. The donor server cannot work on any job while thedonor is in the switching or switching back state.A few details are in order. First, in the above model, the donor processorcontinues to cooperate with the bene�ciary even if there is no bene�ciarywork left for it to do | the donor processor can switch back only when adonor job arrives. 2 Second, we assume that if the donor processor is workingon a bene�ciary job and a donor job arrives, that bene�ciary job is returnedto the bene�ciary queue and will be resumed by the bene�ciary processor assoon as that processor is available. The work done on the job is not lost (i.e.preemptive resume). 3 Our performance metric throughout is mean responsetime (overall and for each class of jobs), where the response time of a job isthe time from when the job arrives until it completes service. We assume the�rst three moments of the service times are �nite, and queues are stable.DiÆculty of analysis and previous work Consider the simplest instanceof our problem | where the service requirements of all jobs are drawn fromexponential distributions and the switching times and thresholds are zero.Even for this simplest instance the continuous time Markov chain, while easyto describe, appears computationally intractable. This is due to the fact thatthe stochastic process having state (number of bene�ciary jobs, number ofdonor jobs) grows in�nitely in two dimensions and contains no structure thatcan be easily exploited in practice to obtain an exact solution. While solutionby truncation of the Markov chain is possible, the errors that are introducedby ignoring portions of the state space (in�nite in two dimensions) can besigni�cant, especially at higher traÆc intensities. Thus truncation is neithersuÆciently accurate nor robust for our purposes.To our knowledge, there has been no previous analytical work on cycle stealingwith switching times and thresholds. The analysis of cycle stealing withoutswitching times and thresholds under exactly our model has been studied by2 We also analyzed the case where the donor processor switches back when it isnot needed, see [11]. We found that this has almost no e�ect on performance, evenunder long switching times.3 It is easy to generalize our analysis to the case where the bene�ciary requires a\switching time" before it can resume a job that the donor started. It is also trivialto extend our results to the case where all work on the job in progress is lost if adonor job arrives, provided that we assume that the job is restarted with a newservice time | which we feel is unrealistic. It is also possible to extend our resultsto the case where the donor must complete the bene�ciary job in progress before itswitches back (see Section 7). 3



Foley and McDonald [5]; they prove asymptotic, heavy-traÆc bounds on theperformance of cycle stealing under exponential job size distributions.A related model to our cycle stealing model is the \coupled processor model,"which we elaborate below. In this model two processors each serve their ownclass of jobs, and if either is idle it may help the other, increasing the rate ofthe other processor. This help incurs no switching time and has a bene�t evenif only a single job is present (i.e. two processors can work on the single job).However, because the processors work in concert, rather than on di�erent jobs,these systems will gain no multi-server bene�t when serving highly variablejobs; short jobs may get stuck waiting behind long jobs in the single queue foreach class. All works we mention below consider Poisson arrivals.Early work on the coupled processor model includes papers by Fayolle andIasnogorodski [4] and Konheim, Meilijson and Melkman [8]. Both papers as-sume exponential service times, deriving expressions for the stationary dis-tribution of the number of jobs of each type. Fayolle and Iasnogorodski usecomplex algebra, eventually solving either a Dirichlet boundary value problemor a Riemann-Hilbert boundary value problem, depending on the acceleratedrates of the servers. Konheim et. al. assume that the accelerated rate is twicethe original rate, which yields simpler expressions (still in the form of complexintegrals). While it is possible to numerically evaluate these analytical expres-sions, they were not evaluated in either work; thus no intuition was providedon the performance of these systems.The above work is extended by Cohen and Boxma [3] to the case of generalservice times. They consider stationary workload, which they formulate asa Wiener-Hopf boundary value problem. This leads to expressions involvingeither integrals or in�nite sums; if the queues are symmetric simpler expres-sions for mean total workload are found, but not for mean response time. Theyagain have the two processors working in concert, without a switching time,providing analytical expressions, rather than numerical values.In more recent work, Borst, Boxma and van Uitert [2] apply a transformmethod to the expressions in [3], yielding asymptotic relations between theworkloads and the service requirement distributions. This leads to the insightthat if a processor has a load less than one, it is \insulated" from the heavy-tail of the other, as long periods without cooperation will not lead to largebacklogs. This is not the case if the load is greater than one, as the queuenow must rely on help to be stable. Borst, Boxma and Jelenkovic [1] considera similar question under a related model of generalized processor sharing,where n classes of jobs can share a processor with arbitrary weights. Usingprobabilistic bounds, they show that di�erent service rates can either insulatethe performance of di�erent classes from the others or not, again dependingon whether the non-cooperative load is larger than one. Both of these papers4



are concerned with the asymptotic behavior of workload, whereas our workisolates mean response time. Our work is thus complementary to these results.Our approach This paper presents the �rst analysis of cycle stealing undergeneral service requirements with switching times and thresholds. Recall thatthe diÆculty in analyzing cycle stealing is that the corresponding stochasticprocess has state space that grows in�nitely in two dimensions (2D), mak-ing it computationally intractable. The key idea in our approach is to �nd away to transform this 2D-in�nite Markov chain into a Markov chain that isin�nite in only one dimension (1D-in�nite Markov chain), which can be ana-lyzed eÆciently. The questions in applying such a transformation are (i) whatshould the 1D-in�nite Markov chain track, and (ii) how can all the relevantinformation from the 2D chain be captured in the 1D-in�nite Markov chain.Our 1D-in�nite Markov chain tracks the number of bene�ciary jobs, yieldingmeasures of bene�ciary performance. For the donor jobs, our state space con-tains only limited knowledge, 0, 1, ..., N thD , or � N thD jobs. Nevertheless we areable to capture all necessary information by using special transitions in ourMarkov chain, where these transitions represent the lengths of an assortmentof busy periods. We refer to this technique as dimensionality reduction. ThediÆculty in dimensionality reduction lies in specifying the right busy periods,some of which transcend the de�nition of the analytical model.Once the 1D-in�nite Markov chain is speci�ed, the hard work is �nished, sincethe limiting probabilities in this chain can be solved eÆciently using knownnumerical (matrix analytic) techniques, which in turn gives mean responsetime for bene�ciary jobs. The mean response time of donor jobs is analyzed asan M/GI/1 queue with generalized vacations, and all the necessary informationis provided by the limiting probabilities of the 1D-in�nite Markov chain. Whilea closed-form solution may be preferable, our chain is compact enough, andmatrix analytic methods powerful enough, that only a couple of seconds arerequired to generate most of the results plots in this paper. Furthermore, ourmethod generalizes to more complex models, e.g. multiple donors (Section 7).Our analysis is approximate but can be made as accurate as desired. Theprimary approximation lies in representing the length of the busy periods byphase type (PH) distributions. The bene�ciary service requirement (XB) andthe switching time to help (Ksw) must also be approximated by PH distri-butions, although XD and Kba can be general. In this paper, we use a PHdistribution, shown in Figure 1, to capture the �rst 3 moments of the busyperiods, and verify that this is suÆcient via simulation (See Section 5) 4 . ForXB and Ksw, we assume throughout the paper that they have PH distribu-tions, and hence no approximation is involved.4 Our method naturally extends to matching more moments.5
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Exp Exp absorptionFig. 1. A 2-phase PH distribution with Coxian representation. Notice that a PHdistribution is the distribution of the absorption time in a continuous time Markovchain. The ith state has exponentially-distributed sojourn time with rate �i. Withprobability p0i we start in the ith state, and the next state is state j with probabilitypij. Each state has some probability of leading to absorption. The absorption timeis the sum of the times spent in each of the states.Summary of results Our analysis yields many interesting results concern-ing cycle stealing, detailed in Sections 4 and 6. While cycle stealing obviouslybene�ts the bene�ciaries (bene�ciary jobs) and hurts the donors (donor jobs),we �nd that when �B > 1, cycle stealing is pro�table overall even under signif-icant switching times, as it may ensure stability of the bene�ciary queue. For�B < 1, we de�ne load-regions under which cycle stealing pays. We �nd thatin general the switching time is only prohibitive when it is large comparedwith E[XD]. Under zero switching time, cycle stealing always pays.Two counterintuitive results are that when �B < 1, the mean response timeof the bene�ciaries is surprisingly insensitive to the switching time, and alsoinsensitive to the variability of the donor job size distribution. Even when thevariability of the donor job sizes is very high, and donor help thus is verybursty, the bene�ciaries still enjoy signi�cant bene�ts.Our analysis also allows us to investigate characteristics of the bene�ciaryand donor side thresholds, N thB and N thD , both with respect to their impacton stability and their impact on mean response time. With respect to bene�-ciary stability, we �nd that N thB has no e�ect, while increasing N thD increasesthe stability region. Donor stability is not a�ected by either threshold. Withrespect to overall mean response time, we �nd that mean response time is farmore sensitive to changes in N thD than to changes in N thB . This extends theresults of [12], where we study only the e�ect that N thB has on mean responsetime. We �nd the optimal value of N thB tends to be well above 1. The reason isthat increasing N thB does not appreciably diminish bene�ciary gain, but it doesalleviate donor pain. We �nd that the optimal setting of N thB is an increasingfunction of �B, �D, and switching times. By contrast, we �nd that the optimalvalue of N thD is often close to 1, provided �B < 1. Increasing N thD signi�cantlyhurts the donor, although it may provide signi�cant help to the bene�ciary if�B is high. We �nd that the optimal N thD is not a monotonic function of �D,but is an increasing function of �B and switching times.Our model deals with switching times in a general way, making the results bothapplicable to a shared-memory multiprocessor architecture and to a networkof workstations (NOW). Our switching times, Ksw and Kba, can be viewed as6



the time for switching between job types in a shared-memory multiprocessorarchitecture. In a NOW, there is an additional overhead incurred from mi-grating jobs from one server to another, where jobs which have not startedrunning require negligible overhead, whereas migrating a \running" job (inprogress) requires high overhead, since all of its state must be migrated withit. Our model captures this notion in that the switching back time, Kba, canbe viewed as the time incurred for preempting an already running job andreturning it to the bene�ciary.2 Analysis of bene�ciary mean response timeIn this section we analyze the mean response time of bene�ciary jobs. Thekey idea in the analysis is to reduce a 2D-in�nite Markov chain to a 1D-in�nite Markov chain. In Section 2.1 we illustrate this dimensionality reductiontechnique via the analysis of the simplest case with zero switching times (i.e.Ksw = Kba = 0) and threshold values �xed at 1 (i.e. N thB = N thD = 1). InSection 2.2 we extend the analysis to the general case of nonzero switchingtimes and arbitrary threshold values.2.1 Dimensionality reductionIn this section we introduce the dimensionality reduction technique via theanalysis of the simplest case of zero switching times and threshold values�xed at 1. We �rst assume that the job sizes are exponentially distributed,and then show how the analysis can be extended to the case of PH job sizes.Figure 2(a) shows the 2D-in�nite Markov chain which tracks the number ofbene�ciary and donor jobs in the case where all job sizes have exponential dis-tributions. Figure 2(b) shows a transition diagram with 1D-in�nite state space,which corresponds to Figure 2(a). Observe that this 1D-in�nite transition di-agram exactly tracks the number of bene�ciary jobs, while only providingbinary information on the number of donor jobs (speci�cally whether thereare zero or at least one donor job). This transition diagram is not a Markovchain, since the sojourn time in the bottom row is the time from when thedonor server has at least one job until the donor server is free, namely a donorbusy period, BD. Figure 2(c) shows the 1D-in�nite Markov chain where BDis represented by a 2-phase PH distribution with Coxian representation (seeFigure 1). The parameters for the PH distribution are chosen to match the�rst three moments of BD (see [10]). The moments of BD are obtained bydi�erentiating its Laplace transform, gBD(s) = gXD(s+ �D � �DgBD(s)), wheregXD(�) denotes the Laplace transform of the distribution of XD.7
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at the donor queue and the number of donor jobs is zero. In region I1+ thedonor server is working on donor jobs independently of the bene�ciary serverand there is at least one donor job. When we are in region I0, a donor arrivaltriggers a transition to region I1+; however, if the number of bene�ciary jobsbecomes N thB due to a bene�ciary arrival, we transition to region S0, where thedonor server is in the process of switching to the bene�ciary queue and thenumber of donor jobs is 0. The sojourn time in region I1+ is the length of thedonor busy period started by a donor job; so the donor queue is empty whenwe leave this region. After this busy period, we transition back to region I0 ifthe number of bene�ciary jobs is < N thB ; otherwise, we transition to region S0.In regions Si (i = 0; :::; N thD �1) the donor server is in the process of switchingto the bene�ciary queue and the number of donor jobs is i. In region Si weeither have a donor job arrival, which triggers a transition to region Si+1 (orregion B, which we de�ne below, if i = N thD � 1) for i = 0; :::; N thD � 1, orcomplete the switching, which triggers a transition to region Ci. In regionsCi (i = 0; :::; N thD � 1) the donor server is working on the bene�ciary jobs(cooperating with the bene�ciary server) and the number of donor jobs is i.When we are in region Ci, a donor job arrival causes a transition to regionCi+1 (or region B if i = N thD � 1) for i = 0; :::; N thD � 1.In region B the donor server is in the process of switching back since thereare N thD donor jobs. We de�ne the time spent in region B to include both Kbaand the time to empty the donor queue; i.e. the sojourn time in region B isthe length of the donor busy period started by N thD donor jobs and Kba. Afterthis busy period, we transition back to region I0 if the number of bene�ciaryjobs is < N thB , and transition to region S0 otherwise.Figure 4(b) shows the transition diagram with 1D-in�nite state space for thecase where N thB = 3 and N thD = 2. This state space tracks the exact number ofbene�ciary jobs. Each row corresponds to one of the regions, I0, I1+, B, Ci,and Si for i = 0 or 1, tracking the information needed about the donor. Inapplying the dimensionality reduction technique, we introduce two types ofbusy period transitions, BD and B2D+ba. BD represents the donor busy periodstarted by a donor job, and BnD+ba represents the donor busy period startedby n donor jobs (n = 2 in this case) and switching back time, Kba. These busyperiods are represented by bold transitions. To create the 1D-in�nite Markovchain from this 1D-in�nite transition diagram, we replace the bold transitionby a PH distribution that matches the �rst three moments of the busy periodduration. The moments of BD are computed by di�erentiating gBD(s), and themoments of BnD+ba are computed by di�erentiating the Laplace transform:B̂nD+ba(s) = gKba(s+ �D � �DgBD(s)) � �gXD(s+ �D � �DgBD(s))�n.10
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(b)Fig. 4. Transition diagrams used in the analysis of bene�ciary mean response timein the general case. Column (a) shows a transition diagram among regions, I0, I1+,B, Ci, and Si for i = 0; :::; N thD �1 for the general case of cycle stealing. Column (b)shows a transition diagram for cycle stealing where N thD = 2, N thB = 3, and XB andKsw have exponential distributions. Busy periods, BD and B2D+ba, are drawn usinga single transition, but this should be replaced by PH distributions as in Figure 2(c).3 Analysis of donor mean response timeIn this section we analyze the mean response time of donor jobs. The donorqueue is analyzed as an M/GI/1 queue with generalized vacations [6], wherewe use the limiting probabilities that we compute in Section 2. The followingtheorem gives a way to calculate the mean response time of donor jobs:Theorem 1 The mean response time of donor jobs, E[TD], is given byE[TD] =E[XD] + �DE[X2D]2(1� �D) + �N thD (N thD � 1) + 2N thD �DE[Kba] + �2DE[K2ba]� p2�D �(N thD + �DE[Kba])p+ (1� p)� ;wherep = Pr(Region CNthD �1) + Pr(Region SNthD �1)Pr(Region CNthD �1) + Pr(Region SNthD �1) + Pr(Region I0) ; (1)where Pr(Region R) is the limiting probability that the system state is in regionR for R = I0; CNthD �1, and SNthD �1. 11



Proof: The donor queue can be seen as an M/GI/1 queue with generalizedvacations, where a vacation starts when the number of donor jobs becomeszero and ends when the donor server starts working on donor jobs. In anM/GI/1 queue with generalized vacations, the mean response time has thefollowing expression [6]:E[T ] = E[XD] + �DE[X2D]2(1 � �D) + E[A(A� 1)]2�DE[A] ; (2)where A denotes the number of jobs that arrive during a vacation period.Observe that the �rst two terms constitute the mean response time in a corre-sponding M/GI/1 queue (without vacation). Therefore, it suÆces to analyzeE[A] and E[A(A� 1)].There are two types of vacations, depending on how the vacation ends. The�rst type of vacation ends when a donor job arrives at an empty donor queuewhile the donor server is staying at the donor queue. In this case, A = 1. Thesecond type of vacation ends when a donor job arrives at a donor queue withN thD �1 jobs while the donor server is staying at the bene�ciary queue or in theprocess of switching to the bene�ciary queue. In this case, A = N thD +B, whereB is the number of donor job arrivals during Kba. Let p be the probabilitythat a vacation is of the second type. Then,E[A] = (N thD + �DE[Kba])p+ (1� p) (3)E[A(A � 1)] = �N thD (N thD � 1) + 2N thD �DE[Kba] + �2DE[K2ba]� p: (4)All that remains is to derive p. Observe that the �rst type of vacation startswhen a donor job arrives while the system state is in Region I0, and the secondtype of vacation starts when a donor job arrives while the system state is eitherin Region CNthD �1 or in Region SNthD �1. Since the arrival process is Poisson, pis given by the expression (1). The theorem now follows from (2)-(4). 24 StabilityIn this section we derive stability conditions for cycle stealing with switchingtimes and thresholds. We �nd for example that the stability condition for thedonor jobs remains �D < 1, regardless of whether the donor jobs experienceswitching times. By contrast, the stability region for the bene�ciary jobs canbe signi�cantly below 2 � �D, speci�cally because the switching time erodesthe bene�ciary stability region. Also, interestingly, the value of N thB does nota�ect the stability region of either the donor or bene�ciary jobs. By contrast,increasing N thD increases the stability region of the bene�ciary jobs; howeverit has no e�ect of the stability region of the donor jobs.12



Theorem 2 The donor queue is stable i� �D < 1.Proof: It makes intuitive sense that the donor queue is stable i� �D < 1regardless of the switching times and threshold values, since the donor wouldnever switch if the donor queue was persistently backlogged. Below, we provesuÆciency more formally. The necessity of �D < 1 is trivial.Assume �D < 1. Let BD denote the length of a busy period at the donorqueue. We �rst consider the case of N thB = 0. A busy period at the donorqueue is started by a switching time Kba and N thD donor jobs. As �D < 1, themean length of a busy period is E[BD] = NthD E[XD]+E[Kba]1��D < 1. In this caseBD clearly has a proper limiting distribution, and hence the donor is stable.Next we consider the case of N thB > 0. In this case E[BD] is smaller than in thecase of N thB = 0 because there will be donor busy periods in which the donorhasn't left the donor queue, implying (i) there is no switching back time, and(ii) the busy period is started by only one donor job. 2Before we derive the stability condition on �B, we prove a lemma allowing usto assume N thB = 0.Lemma 1 If the bene�ciary queue is stable at N thB = 0, then it is stable atN thB = n, 8 0 � n <1.Proof: Intuitively, the stability of the bene�ciary queue is independent of N thB ,since N thB would be irrelevant when the bene�ciary queue was continuouslybacklogged.More formally, let L(n)B (t) denote the number of bene�ciary jobs at time tgiven N thB = n � 1. Consider a new process bL(n)B (t) in which the number ofjobs at time t = 0 is n, instead of 0 as in the original process, and no serviceis given by either server to a bene�ciary job if there are � n jobs presentat the bene�ciary queue. Note that bL(n)B (t) stochastically dominates L(n)B (t).Also, along any sample path, bL(n)B (t) will be equal to n + L(0)B (t). Therefore,if L(0)B (t) is proper, so too is bL(n)B (t) and hence L(n)B (t). 2We now prove the stability condition on �B.Theorem 3 The bene�ciary queue is stable i��B < 1 + max(1� �D; 0)PNthDi=0 (N thD � i) (��D)ii! ~K(i)sw(�D)N thD + �DE[Kba] ; (5)where ~Ksw(s) is the Laplace transform of Ksw and ~K(i)sw(s) is its i-th derivative.In particular, when Ksw is exponentially distributed, the condition is expressed13
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Donor queue empties Donor queue emptiesby the closed form:�B < 1 + max(1� �D; 0)nN thD � q1�q �1� qNthD �oN thD + �DE[Kba] ; (6)where q = �DE[Ksw]1+�DE[Ksw] .Proof: We �rst prove suÆciency. By Lemma 1, we can assume N thB = 0.Let F denote the fraction of time that the donor helps the bene�ciary. Thenthe strong law of large numbers can be used to show that the necessary andsuÆcient condition for stability of the bene�ciary jobs is �B < 1+F . If �D � 1,F = 0. Thus we assume �D < 1 and derive F using renewal reward theory.Let a renewal occur every time the donor queue becomes empty. Recall N thB =0. By renewal-reward theory, the fraction of time donor helps bene�ciary isF = E[R]E[Y ] , where R denotes the total time that donor helps bene�ciary (re-ward) during the renewal cycle, and Y denotes the length of the renewal cycle.Observe that there may be any number of donor arrivals ranging from 0 toN thD during Ksw and we switch back only after the N thD arrival.Let S denote the sum of the service times of N thD donor jobs and BS+ba denotethe length of the busy period started by these jobs of total size S plus Kba.Then, as �D < 1,E[Y ] = N thD � E[ID] +E[BS+ba] = N thD�D + N thD E[XD] +E[Kba]1� �D ;where ID is the interarrival time for donor jobs.To compute E[R] we condition on the number of donor arrivals during Ksw. Ifthere are i arrivals, then the mean time spent helping is the time until thereare (N thD � i) more donor arrivals, (N thD � i)E[ID]. Let pi denote the probabilitythat there are i donor arrivals during Ksw. Then, pi = (��D)ii! ~K(i)sw(�D). Usingpi, E[R] is now derived as follows:E[R] = NthD �1Xi=0 (N thD � i) 1�D pi:Thus, �B < 1+F is equivalent to (5). When Ksw is exponentially-distributed,pi = qi(1� q), where q = �D�D+�sw . Therefore,14
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(3) E[XD] = 10; E[K] = 1Fig. 5. Stability condition on bene�ciaries for cycle stealing with switching times(K = Ksw = Kba) and thresholds.E[R] = 1�D �N thD � q1� q (1� qNthD )� :Thus, �B < 1 + F is equivalent to (6).Above, we have proved the necessary and suÆcient condition for N thB = 0.By Lemma 1, this is also the suÆcient condition for N thB > 0. Now, we provenecessity for N thB > 0. When N thB > 0, the donor server does not necessarilyhelp the bene�ciary even when it is available for help. Therefore, there are twotypes of renewal periods. In the �rst type of renewal period, the donor serverhelps the bene�ciary, i.e. R > 0. In this case, E[Y ] is the same as for N thB = 0,and E[R] for N thB > 0 is at most E[R] for N thB = 0. In the second type ofrenewal period, the donor server does not help the bene�ciary, i.e. R = 0. (Inthis case E[Y ] can be smaller than that for N thB = 0.) The fraction of time, F ,that the donor server helps the bene�ciary can be expressed as F = F1 + F2,where F1 is the fraction of time that the donor server helps the bene�ciaryand the renewal period is type 1, and F2 is the fraction of time that the donorserver helps the bene�ciary and the renewal period is type 2. In fact, F2 = 0.Therefore, F = F1 � E[R]E[Y ] . This proves the necessity for N thB > 0. 2Note that the right hand side of (5) is an increasing function of N thD ; in terms ofstability, the larger N thD , the more stable the bene�ciary queue. In particular,when N thD = 0, (5) is �B < 1; as N thD !1, (5) becomes �B < 2� �D.Figure 5 shows the stability condition for bene�ciaries as a function of �Dwhen Ksw is exponentially distributed. In case (1), we set E[XD] = 1 andE[Ksw] = E[Kba] = 1. The region below each line satis�es the stability condi-tion. As N thD increases as high as 100, the e�ect of switching overhead becomesnegligible, and the stability condition approaches �B < 2 � �D. In case (2),we set E[XD] = 1 and E[Ksw] = E[Kba] = 10. The switching time is large,and there is little bene�t at moderate or high �D in terms of stability, unlessN thD is large. However, there is still large bene�t at low �D. In case (3), we setE[XD] = 10 and E[Ksw] = E[Kba] = 1. The stability region is much larger;when N thD = 1, the stability region is almost the same as that of N thD = 1015



Analytical validation: Bene�ciary response time
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Analytical validation: Donor response time
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(a) �B = 0:9; �D ! 0 (b) �B ! 0; �D = 0:6 (c) �B = 0:9; �D ! 1 (d) �B ! �maxB ; �D = 0:6Fig. 6. Validation of our analysis against four limiting cases, where N thB = 3,N thD = 2, E[Ksw] = E[Kba] = 1, XB is exponentially-distributed with mean 1,and XD has a PH distribution with mean 1 and C2D = 8.in case (1). This is intuitive: when E[XD] = 10 and N thD = 1, the expectedamount of donor work when the donor switches back is the same as that whenE[XD] = 1 and N thD = 10.5 Validation of analysisSince our analysis involves approximation of busy periods by PH distributions,it is of paramount importance to validate the analysis. Analytical validationagainst limiting load cases is presented in Section 5.1, and simulation valida-tion over a range of load is reported in Section 5.2.5.1 Validation against known limiting casesWe evaluate the performance of cycle stealing under four limiting situations:�D ! 0, �B ! 0, �D ! 1, and �B ! �maxB , where �maxB is the right handside of (5). We assume that N thB = 3, N thD = 2, E[Ksw] = E[Kba] = 1, XBis exponentially-distributed with mean 1, and XD has a PH distribution withmean 1 and C2D = 8. For these limiting cases, the mean response times of thebene�ciaries and donors are easy to evaluate.Figure 6 veri�es that our analysis has the correct limiting behavior in all ofthese cases. In case (a), �B = 0:9 and �D ! 0. The mean response time forbene�ciary jobs converges to that under an M/M/2 queue, since the donor16



server can almost always help when �D � 0. The mean response time fordonor jobs diverges to in�nity. This is because the donor job arriving at anempty donor queue must wait for the next arrival before being served (noteN thD = 2), and the interarrival time diverges to in�nity as �D ! 0. In case (b),�D = 0:6 and �B ! 0. The mean response time for bene�ciary jobs convergesto that under an M/M/1 queue, since the number of bene�ciary jobs is almostalways < N thB when �B � 0 and hence there is no help from the donor server.The mean response time for donor jobs converges to that under an M/GI/1queue, since the donor server is almost always at the donor queue and hencerequires no setup time. In case (c), �B = 0:9 and �D ! 1. The mean responsetime for bene�ciary jobs converges to that under an M/M/1 queue, since thedonor server is almost always busy working on donor jobs when �D � 1 andhence there is no help from the donor server for the bene�ciary. The meanresponse time for donor jobs diverges to in�nity, since �D < 1 is the stabilitycondition. In case (d), �D = 0:6 and �B ! �maxB . The mean response timefor bene�ciary jobs diverges to in�nity as �B ! �maxB , as is predicted by thestability condition. The mean response time of donor jobs converges to theexpression in Theorem 1 with p = 1, since Pr(Region I0)! 0 as �B ! �maxB .5.2 Validation against simulationThe accuracy of our analysis is also validated against simulation: a subsetof our validation experiments is shown in Figure 7. In simulation, 1,000,000events are generated in each run. We assume that job sizes are exponential,N thB = 3, and N thD = 2. We show three cases: 7(a), E[XB] = E[XD] = 1; 7(b),E[XB] = 1 and E[XD] = 10; 7(c), E[XB] = 10 and E[XD] = 1. In all cases,the results of analysis are in very close agreement with simulation. The onlymild discrepancy is the mean response time of the bene�ciaries in case (b),under high load (�D = :9). Under case (b), donor jobs are large, making theirbusy periods more variable, especially at high loads. As our analysis is verydependent on these busy periods, matching only the �rst three moments mayintroduce error in this case. We hypothesize that the accuracy of our analysiswould improve if we matched more moments of the busy periods using PHdistributions with more phases.6 Results of AnalysisThis section discusses our results. Throughout we will use the term \gain" todenote the improvement (drop) in mean response time experienced by bene-�ciary jobs under cycle stealing, as compared with dedicated servers, and theterm \pain" to refer to the increase in mean response time experienced by17



Simulation validation: Bene�ciary response time
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Simulation validation: Donor response time
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(c) E[XB ] = 10; E[XD] = 1Fig. 7. Validation of analysis against simulation. We �x �B = 0:9, and vary �L.(Donor response time is not shown for the case of �D = 1, since the donor isunstable there.) N thB = 3 and N thD = 2. XB and XD are exponentially-distributed.donor jobs under cycle stealing as compared with dedicated servers:gain = E[TB ]DedicatedE[TB ]CS and pain = E[TD]CSE[TD]Dedicated ;where E[TB]Dedicated refers to the mean response time of bene�ciaries underdedicated servers and E[TB]CS refers to the mean response time of bene�ciariesunder cycle stealing. E[TD]Dedicated and E[TD]CS are de�ned similarly. Observethat both pain and gain have been de�ned to range from 1 to 1, wherein�nite gain corresponds to the situation where the mean response time underdedicated is in�nite while it is �nite under cycle stealing. In Sections 6.1-6.3we �x the threshold values as N thB = N thD = 1 and study the e�ect of otherparameters, and in Section 6.4 we study the e�ect of the threshold values. Dueto limited space we typically only show a couple of options for each parameter.More graphs are available in the associated technical report [11].6.1 Bene�ts of cycle stealing: wide range �BCycle stealing is always a win when �B � 1, but doesn't pay when�B � 0:5. Figure 8 shows the mean response time for bene�ciary jobs (toprow) and donor jobs (bottom row) as a function of �B, where �D is low-to-medium (�D = 0:5; columns 1 and 2) and medium-to-high (�D = 0:8; columns3 and 4). When �B � 1 (and �D < 1), cycle stealing can provide in�nite gainto bene�ciaries over dedicated servers, with comparatively little pain for thedonors. This is because the stability region for the bene�ciaries under cyclestealing is much greater than under dedicated servers. While factors such as18



Performance of bene�ciary jobs: Mean response timelow-to-medium load: �D = :5 medium-to-high load: �D = :8
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(d) E[K] = 1Performance of donor jobs: Mean response timelow-to-medium load: �D = :5 medium-to-high load: �D = :8
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(d) E[K] = 1Fig. 8. The mean response time for bene�ciaries and donors as a function of �Bunder cycle stealing and dedicated servers. In all �gures XB and XD are exponentialwith mean 1; switching times are exponential with mean 0 or 1 as labeled.increased switching times and increased �D do increase the mean responsetime of the bene�ciary jobs, the gain is still in�nite, and these factors are lessimportant. We also see that the mean response time of donor jobs is boundedby the mean response time for an M/GI/1 queue with setup time Kba. When�B � 0:5, there is so little gain to the bene�ciaries that cycle stealing withnon-zero switching overhead doesn't pay. We therefore primarily focus the restof the results section on the remaining case: 0:5 < �B < 1.6.2 Bene�t of cycle stealing: :5 < �B < 1:0For :5 < �B < 1, cycle stealing has regions of high gain and low painand also regions where the reverse is true. These regions dependon job sizes, switching times, and loads. In this section, we categorizeperformance into these gain/pain regions and also look at the overall meanresponse time (averaged over both bene�ciary and donor jobs) to determinewhether cycle stealing is \good" or \bad" overall. In general under higher�B and lower �D, cycle stealing is \good" overall, because the gain of thebene�ciaries is so high in this region. We will �nd that when the switchingtimes are short, cycle stealing leads to high gain and low pain. However longswitching times can reverse this e�ect. More important than the absoluteswitching times are the switching times relative to the mean donor job size.We will �nd that the mean response time of the donors is sensitive to the19



switching times, while surprisingly the mean response time of the bene�ciariesis far less sensitive.Figure 9 shows the gain of bene�ciary jobs and the pain of donor jobs, where:5 < �B < 1. The odd-numbered columns of Figure 9 divide the (�B,�D) spaceinto regions of bene�ciary gain and donor pain (low, mid, and high). We de�nelow gain as a gain of 1:1 or less; mid gain as a gain of between 1:1 and 1:5;and high gain as a gain of over 1:5. Pain regions are de�ned similarly. Whileodd-numbered columns of Figure 9 consider the bene�ciary and donor meanresponse time individually, the even-numbered columns of Figure 9 look at theoverall mean response time and ask whether cycle stealing is \good" or \bad"with respect to the overall mean response time. The e�ect of mean job sizes isconsidered in the �rst three rows of Figure 9, where job sizes are exponentialwith mean 1 or 10. The e�ect of job size variability is considered in the fourthrow of Figure 9, where the variability of donor job sizes is increased. Thediscussion of this fourth row is postponed to Section 6.3.Consider �rst row 1 in Figure 9. Under zero switching time (a)-(b), all regionsare low pain regions (in fact zero pain), and higher �B yields higher gain forthe bene�ciaries. Non-zero switching times (c)-(d) create only slightly reducedgain for the bene�ciaries, but they create pain for the donor jobs. When �Dis very low, the pain appears high, but this is primarily due to the fact that\pain" is relative to the mean response time under dedicated servers, whichis clearly low for small �D. Although not shown, we have also investigatedlonger switching times, and these lead to the same trend of slightly less gainfor bene�ciaries and signi�cantly more pain for donors.We now consider the e�ect of changes in job sizes. Row 2 of Figure 9 di�ersfrom row 1 only in XD, which now has mean 10. The e�ect of this change isdramatic: now a switching time of 1 has almost no e�ect on either bene�ciariesor donors. This makes sense since the setup time experienced by donor jobsis now relatively small compared to their size. Row 3 in Figure 9 di�ers fromrow 1 only in XB, which now has mean 10. Comparing these rows, we seethe increase in E[XB] has a surprisingly small e�ect on both bene�ciaries anddonors, as compared with increasing E[XD]. This is because the donor stillexperiences the setup time, which has the same mean size as the donor job.We can conclude that cycle stealing is most e�ective when the switching timeis small relative to the size of the donor jobs.Focusing on columns 2 and 4 of Figure 9, which depict the e�ect on overallmean response time, we see that, for all rows, when the switching time iszero, cycle stealing always overwhelms the dedicated policy. When switchingtime is non-zero, cycle stealing is a good idea provided either �B is high, orthe switching time is short compared to XD. These trends continue for longerswitching times. 20



Gain of bene�ciaries & pain of donors (E[XB] = 1;E[XD] = 1)
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Gain of bene�ciaries & pain of donors (E[XB] = E[XD] = 1; C2D = 8)
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E�ect of donor job variability on bene�ciary jobs
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Fig. 10. The mean response time for bene�ciary jobs under di�erent donor job sizevariability. We �x �D at 0.5, and �B varies from 0 to the stability condition of 1.5.The mean donor job size and bene�ciary job size is 1, and switching time is zero.6.3 E�ect of donor job size variabilityFor :5 < �B < 1, we �nd variability of donor job sizes has very littlee�ect on bene�ciary mean response time. This �nding surprised us; weexpected the bene�ciary to gain far less from the bursty help of a donor withirregular (highly variable) job sizes.It seems intuitive that when donor job sizes are made more variable, twothings should happen. (i) The donor pain should drop. This is because thedonor mean response times will be higher overall, and so the relative pain willappear diminished. (ii) The bene�ciary gain should drop. This is because highvariability in the donor job sizes implies high variability in the length of thedonor busy periods, which implies that the donor's visits to the bene�ciaryqueue will be more irregular. Sporadic help should be inferior to regular helpfor the bene�ciary. Figure 9 row 4 shows that hypothesis (i) is in fact true,while hypothesis (ii) is surprisingly false, at least for �B < 1. Comparing row 1(XD has low variability:C2D = 1) with row 4 (XD has high variability:C2D = 8),we see that there is no discernible di�erence in bene�ciary performance.To study this e�ect more closely, we next increase the variability in donor jobsizes further. Figure 10 shows the mean response time of the bene�ciary jobsunder the case of zero switching time, when C2D is 1, 8, or 50, and �D is �xed at0.5. We vary �B from 0 to �maxB . As observed in Figure 9 row 4, the e�ect of thevariability of XD on the mean response time of XB is small when �B < 1, andnegligible when �B < 0:75. When �B > 1 the e�ect of variability in donor sizesmay be signi�cant. A critical factor seems to be whether the bene�ciary queueis stable in isolation; when this is not the case, high variability in donor visitsleads to prolonged intervals of instability, which in
ates the mean responsetime. This is the same phenomenon seen in [1] and [2].22
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(d) E[K] = 1Fig. 11. The mean response time for bene�ciaries and donors as a function of �B.Graphs show the case of (i) N thB = N thD = 1, (ii) N thB = 10 and N thD = 1, and (iii)N thB = 1 and N thD = 10. In all �gures XB and XD are exponential with mean 1.Switching times are exponential with mean 0 or 1 as labeled. �D = 0:5.6.4 E�ect of thresholdsThe thresholds NthB and NthD have very di�erent e�ects. In this section,we study the e�ect of threshold settings on performance. We will see that in-creasing N thB helps alleviate donor pain given nonzero switching time, withoutappreciably diminishing bene�ciary gain. Thus, the optimal value of N thB tendsto be well above 1. By contrast, increasing N thD increases bene�ciary gain sub-stantially (by increasing their stability region), but also increases donor pain.Overall, the impact of changes inN thD are much more dramatic than the impactof changes in N thB .Figure 11 shows the mean response time for bene�ciary jobs (top row) andthe mean response time for donor jobs (bottom row) as a function of �B fordi�erent threshold values. In the left half of the �gure we study the e�ect ofchanging N thB from 1 to 10 as we hold N thD �xed at 1. In the right half of the�gure we study the e�ect of changing N thD from 1 to 10 as we hold N thB �xed at1. Throughout, XB and XD are exponential with mean 1 and we �x �D = 0:5.As N thB is increased from 1 to 10, Figure 11 shows only slightly higher responsetimes for the bene�ciary jobs. Recall that increasing N thB does not changethe bene�ciary stability region, although the bene�ciary queue is helped lessfrequently. In fact, under longer switching times, the e�ect of raising N thB onbene�ciary mean response time is even more negligible, since the decreased23



frequency of helping bene�ciaries is counteracted by the positive bene�t ofwasting less time on switching. We also see that increasing N thB creates lesspenalty for the donor, as the donor doesn't have to visit the bene�ciary queueas frequently. Observe that when the switching times are nonzero, the donormean response time is always bounded above by the mean response time for acorresponding M/GI/1 queue with setup time Kba, and this bound is tight forall N thB values as �B reaches its maximum, since the bene�ciary queue alwaysexceeds N thB in this case. We conclude that N thB has somewhat small impact;however higher values of N thB are more desirable for the system as a wholeunder longer switching time.By contrast increasing N thD from 1 to 10 has dramatic e�ects. In general (as-suming non-zero switching time) increasing N thD can drastically improve ben-e�ciary response time. This result is not obvious, since increasing N thD allowsthe donor to spend more time at the bene�ciary queue before leaving, butalso means that when the donor leaves the bene�ciary queue, the donor willbe absent for a longer time (since more time is needed to empty the donorqueue). Another positive e�ect of increasing N thD is less switching overall. Inthe end, it is the enlargement of the stability region due to higher N thD whichsubstantially improves the bene�ciary response time when the switching timesare large and bene�ciary load is high. When switching times are very short,increasing N thD only slightly worsens the mean response time for bene�ciaryjobs, as bene�ciaries experience longer intervals between help. In all cases eval-uated, increasing N thD results in much higher mean response times for donorjobs, since, for N thD > 1, the donor job arriving at an empty queue must waitfor another N thD � 1 jobs to arrive before being served. We conclude that in-creasing N thD can have large impact, positive for the bene�ciaries, but negativefor the donors. Thus setting N thD is much trickier than N thB .Finally we seek to determine good values for the thresholds, N thB and N thD , asa function of the system parameters. Above, we have already observed somecharacteristics of N thB . (i) Increasing N thB leads to lower gain for the bene�-ciaries and lower pain for the donors. (ii) Perhaps less obvious, the relativedrop in gain for the bene�ciaries is slight compared to the drop in pain forthe donors. This points towards choosing a higher value of N thB . Thus, if theswitching time is zero, the optimal N thB is 1 (or 0), since there is never anypain for the donors. Figure 12 (a) and (b) show optimal values of N thB forminimizing overall mean response time (over all jobs) as a function of �B and�D under various switching times when N thD = 1. The numbers on the contourcurves show the optimal N thB at each load. For clarity we only show lines up toN thB = 14. The following additional characteristics of N thB are implied by the�gure: (iii) the optimal N thB is an increasing function of �D and a decreasingfunction of �B; (iv) increasing the switching time increases the optimal N thB .Figure 12 (c) and (d) show optimal values of N thD for minimizing overall mean24
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