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Abstract

We consider two processors, each serving its own M/GI/1 queue, where one of the
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donor sides, whereby the decision to help is based not only on idleness but also on
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analysis is approximate, but can be made as accurate as desired, and is validated
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1 Introduction

Motivation Since the invention of networks of workstations, systems design-
ers have touted the benefits of allowing a user to take advantage of machines
other than her own, at times when those machines are idle. This notion is of-
ten referred to as cycle stealing. Cycle stealing allows such a user, Betty, with
multiple jobs, to offload one of her jobs to the machine of a different user,
Dan, if Dan’s machine is idle, giving Betty two machines to process her jobs.
When Dan’s workload resumes, Betty must return to using only her own ma-
chine. We refer to Betty as the beneficiary, to her machine as the beneficiary
machine/server, and to her jobs as beneficiary jobs. Likewise, we refer to Dan
as the donor, to his machine as the donor machine/server, and to his jobs as
donor jobs.

Although cycle stealing provides obvious benefits to the beneficiary, these
benefits come at some cost to the donor. For example, the beneficiary’s job
may have to be checkpointed and the donor’s working set memory reloaded
before the donor can resume, delaying the resumption of processing of donor
jobs. In our model we refer to these additional costs associated with cycle
stealing as switching times.

A primary goal of this paper is to understand the benefit of cycle stealing
for the beneficiary and the penalty to the donor, as a function of switching
times. A secondary goal is to derive parameter settings for cycle stealing.
In particular, given non-zero switching times, cycle stealing may pay only
if the beneficiary’s queue is “sufficiently” long. We seek to understand the
optimal threshold on the beneficiary queue when switching to help, and the
optimal threshold on the donor queue when switching back. More broadly, we
seek general insights into which system parameters have the most significant
impact on the effectiveness of cycle stealing.

The analytical model We assume there are two queues, the beneficiary
queue and the donor queue, with independent arrival processes and service
time distributions operating as M/GI/1/FCFS queues. Jobs arrive at rate Apg
(respectively, Ap) at the beneficiary (respectively, donor) queue and have ser-
vice requirement Xy with distribution Gz (respectively, X with distribution
Gp). The load made up by beneficiary (respectively, donor) jobs is denoted
by pg (respectively, pp) where pg = Ap - E[Xg] and pp = A\p - E[Xp]. If the
donor server is idle, and if the number of jobs at the beneficiary queue is at
least N, the donor transitions into the switching state, for a random amount
of time, Kj,,. After K, time, the donor server is available to work on the ben-
eficiary queue and the beneficiary queue becomes an M/G /2 queue. When
the number of donor jobs in queue reaches N (either during K, or during



the time the donor is helping the beneficiary), the donor transitions into a
switching back state, for a random amount of time, K;,. After the completion
of the switch back, the donor server resumes working on its own jobs until
the donor queue is empty. The donor server cannot work on any job while the
donor is in the switching or switching back state.

A few details are in order. First, in the above model, the donor processor
continues to cooperate with the beneficiary even if there is no beneficiary
work left for it to do — the donor processor can switch back only when a
donor job arrives.? Second, we assume that if the donor processor is working
on a beneficiary job and a donor job arrives, that beneficiary job is returned
to the beneficiary queue and will be resumed by the beneficiary processor as
soon as that processor is available. The work done on the job is not lost (i.e.
preemptive resume).® Our performance metric throughout is mean response
time (overall and for each class of jobs), where the response time of a job is
the time from when the job arrives until it completes service. We assume the
first three moments of the service times are finite, and queues are stable.

Difficulty of analysis and previous work Consider the simplest instance
of our problem — where the service requirements of all jobs are drawn from
exponential distributions and the switching times and thresholds are zero.
Even for this simplest instance the continuous time Markov chain, while easy
to describe, appears computationally intractable. This is due to the fact that
the stochastic process having state (number of beneficiary jobs, number of
donor jobs) grows infinitely in two dimensions and contains no structure that
can be easily exploited in practice to obtain an exact solution. While solution
by truncation of the Markov chain is possible, the errors that are introduced
by ignoring portions of the state space (infinite in two dimensions) can be
significant, especially at higher traffic intensities. Thus truncation is neither
sufficiently accurate nor robust for our purposes.

To our knowledge, there has been no previous analytical work on cycle stealing
with switching times and thresholds. The analysis of cycle stealing without
switching times and thresholds under exactly our model has been studied by

2 We also analyzed the case where the donor processor switches back when it is
not needed, see [11]. We found that this has almost no effect on performance, even
under long switching times.

3 It is easy to generalize our analysis to the case where the beneficiary requires a
“switching time” before it can resume a job that the donor started. It is also trivial
to extend our results to the case where all work on the job in progress is lost if a
donor job arrives, provided that we assume that the job is restarted with a new
service time — which we feel is unrealistic. It is also possible to extend our results
to the case where the donor must complete the beneficiary job in progress before it
switches back (see Section 7).



Foley and McDonald [5]; they prove asymptotic, heavy-traffic bounds on the
performance of cycle stealing under exponential job size distributions.

A related model to our cycle stealing model is the “coupled processor model,”
which we elaborate below. In this model two processors each serve their own
class of jobs, and if either is idle it may help the other, increasing the rate of
the other processor. This help incurs no switching time and has a benefit even
if only a single job is present (i.e. two processors can work on the single job).
However, because the processors work in concert, rather than on different jobs,
these systems will gain no multi-server benefit when serving highly variable
jobs; short jobs may get stuck waiting behind long jobs in the single queue for
each class. All works we mention below consider Poisson arrivals.

Early work on the coupled processor model includes papers by Fayolle and
Tasnogorodski [4] and Konheim, Meilijson and Melkman [8]. Both papers as-
sume exponential service times, deriving expressions for the stationary dis-
tribution of the number of jobs of each type. Fayolle and Tasnogorodski use
complex algebra, eventually solving either a Dirichlet boundary value problem
or a Riemann-Hilbert boundary value problem, depending on the accelerated
rates of the servers. Konheim et. al. assume that the accelerated rate is twice
the original rate, which yields simpler expressions (still in the form of complex
integrals). While it is possible to numerically evaluate these analytical expres-
sions, they were not evaluated in either work; thus no intuition was provided
on the performance of these systems.

The above work is extended by Cohen and Boxma [3] to the case of general
service times. They consider stationary workload, which they formulate as
a Wiener-Hopf boundary value problem. This leads to expressions involving
either integrals or infinite sums; if the queues are symmetric simpler expres-
sions for mean total workload are found, but not for mean response time. They
again have the two processors working in concert, without a switching time,
providing analytical expressions, rather than numerical values.

In more recent work, Borst, Boxma and van Uitert [2] apply a transform
method to the expressions in [3], yielding asymptotic relations between the
workloads and the service requirement distributions. This leads to the insight
that if a processor has a load less than one, it is “insulated” from the heavy-
tail of the other, as long periods without cooperation will not lead to large
backlogs. This is not the case if the load is greater than one, as the queue
now must rely on help to be stable. Borst, Boxma and Jelenkovic [1] consider
a similar question under a related model of generalized processor sharing,
where n classes of jobs can share a processor with arbitrary weights. Using
probabilistic bounds, they show that different service rates can either insulate
the performance of different classes from the others or not, again depending
on whether the non-cooperative load is larger than one. Both of these papers



are concerned with the asymptotic behavior of workload, whereas our work
isolates mean response time. Our work is thus complementary to these results.

Our approach This paper presents the first analysis of cycle stealing under
general service requirements with switching times and thresholds. Recall that
the difficulty in analyzing cycle stealing is that the corresponding stochastic
process has state space that grows infinitely in two dimensions (2D), mak-
ing it computationally intractable. The key idea in our approach is to find a
way to transform this 2D-infinite Markov chain into a Markov chain that is
infinite in only one dimension (1D-infinite Markov chain), which can be ana-
lyzed efficiently. The questions in applying such a transformation are (i) what
should the 1D-infinite Markov chain track, and (ii) how can all the relevant
information from the 2D chain be captured in the 1D-infinite Markov chain.
Our 1D-infinite Markov chain tracks the number of beneficiary jobs, yielding
measures of beneficiary performance. For the donor jobs, our state space con-
tains only limited knowledge, 0, 1, ..., N# or > N jobs. Nevertheless we are
able to capture all necessary information by using special transitions in our
Markov chain, where these transitions represent the lengths of an assortment
of busy periods. We refer to this technique as dimensionality reduction. The
difficulty in dimensionality reduction lies in specifying the right busy periods,
some of which transcend the definition of the analytical model.

Once the 1D-infinite Markov chain is specified, the hard work is finished, since
the limiting probabilities in this chain can be solved efficiently using known
numerical (matrix analytic) techniques, which in turn gives mean response
time for beneficiary jobs. The mean response time of donor jobs is analyzed as
an M/GI/1 queue with generalized vacations, and all the necessary information
is provided by the limiting probabilities of the 1D-infinite Markov chain. While
a closed-form solution may be preferable, our chain is compact enough, and
matrix analytic methods powerful enough, that only a couple of seconds are
required to generate most of the results plots in this paper. Furthermore, our
method generalizes to more complex models, e.g. multiple donors (Section 7).

Our analysis is approximate but can be made as accurate as desired. The
primary approximation lies in representing the length of the busy periods by
phase type (PH) distributions. The beneficiary service requirement (Xz) and
the switching time to help (Kj,) must also be approximated by PH distri-
butions, although X, and K, can be general. In this paper, we use a PH
distribution, shown in Figure 1, to capture the first 3 moments of the busy
periods, and verify that this is sufficient via simulation (See Section 5)*. For
Xp and Ky, we assume throughout the paper that they have PH distribu-
tions, and hence no approximation is involved.

4 Our method naturally extends to matching more moments.
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Fig. 1. A 2-phase PH distribution with Coxian representation. Notice that a PH
distribution is the distribution of the absorption time in a continuous time Markov
chain. The ith state has exponentially-distributed sojourn time with rate u;. With
probability po; we start in the ith state, and the next state is state 5 with probability
pij- Bach state has some probability of leading to absorption. The absorption time
is the sum of the times spent in each of the states.

Summary of results Our analysis yields many interesting results concern-
ing cycle stealing, detailed in Sections 4 and 6. While cycle stealing obviously
benefits the beneficiaries (beneficiary jobs) and hurts the donors (donor jobs),
we find that when pg > 1, cycle stealing is profitable overall even under signif-
icant switching times, as it may ensure stability of the beneficiary queue. For
pp < 1, we define load-regions under which cycle stealing pays. We find that
in general the switching time is only prohibitive when it is large compared
with E[Xp]. Under zero switching time, cycle stealing always pays.

Two counterintuitive results are that when pg < 1, the mean response time
of the beneficiaries is surprisingly insensitive to the switching time, and also
insensitive to the variability of the donor job size distribution. Even when the
variability of the donor job sizes is very high, and donor help thus is very
bursty, the beneficiaries still enjoy significant benefits.

Our analysis also allows us to investigate characteristics of the beneficiary
and donor side thresholds, N and N both with respect to their impact
on stability and their impact on mean response time. With respect to benefi-
ciary stability, we find that N has no effect, while increasing N increases
the stability region. Donor stability is not affected by either threshold. With
respect to overall mean response time, we find that mean response time is far
more sensitive to changes in N than to changes in N'. This extends the
results of [12], where we study only the effect that N has on mean response
time. We find the optimal value of N tends to be well above 1. The reason is
that increasing N does not appreciably diminish beneficiary gain, but it does
alleviate donor pain. We find that the optimal setting of N is an increasing
function of pg, pp, and switching times. By contrast, we find that the optimal
value of N is often close to 1, provided pp < 1. Increasing N significantly
hurts the donor, although it may provide significant help to the beneficiary if
pp is high. We find that the optimal N is not a monotonic function of pp,
but is an increasing function of pp and switching times.

Our model deals with switching times in a general way, making the results both
applicable to a shared-memory multiprocessor architecture and to a network
of workstations (NOW). Our switching times, K, and Kj,, can be viewed as



the time for switching between job types in a shared-memory multiprocessor
architecture. In a NOW, there is an additional overhead incurred from mi-
grating jobs from one server to another, where jobs which have not started
running require negligible overhead, whereas migrating a “running” job (in
progress) requires high overhead, since all of its state must be migrated with
it. Our model captures this notion in that the switching back time, K;,, can
be viewed as the time incurred for preempting an already running job and
returning it to the beneficiary.

2 Analysis of beneficiary mean response time

In this section we analyze the mean response time of beneficiary jobs. The
key idea in the analysis is to reduce a 2D-infinite Markov chain to a 1D-
infinite Markov chain. In Section 2.1 we illustrate this dimensionality reduction
technique via the analysis of the simplest case with zero switching times (i.e.
Ky, = Ky, = 0) and threshold values fixed at 1 (i.e. N = N# = 1). In
Section 2.2 we extend the analysis to the general case of nonzero switching
times and arbitrary threshold values.

2.1 Dimensionality reduction

In this section we introduce the dimensionality reduction technique via the
analysis of the simplest case of zero switching times and threshold values
fixed at 1. We first assume that the job sizes are exponentially distributed,
and then show how the analysis can be extended to the case of PH job sizes.

Figure 2(a) shows the 2D-infinite Markov chain which tracks the number of
beneficiary and donor jobs in the case where all job sizes have exponential dis-
tributions. Figure 2(b) shows a transition diagram with 1D-infinite state space,
which corresponds to Figure 2(a). Observe that this 1D-infinite transition di-
agram exactly tracks the number of beneficiary jobs, while only providing
binary information on the number of donor jobs (specifically whether there
are zero or at least one donor job). This transition diagram is not a Markov
chain, since the sojourn time in the bottom row is the time from when the
donor server has at least one job until the donor server is free, namely a donor
busy period, Bp. Figure 2(c¢) shows the 1D-infinite Markov chain where Bp
is represented by a 2-phase PH distribution with Coxian representation (see
Figure 1). The parameters for the PH distribution are chosen to match the
first three moments of Bp (see [10]). The moments of By are obtained by
differentiating its Laplace transform, By (s) = Xp(s+ Ap — ApBp(s)), where
)f(;() denotes the Laplace transform of the distribution of Xp,.
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Fig. 2. Markov chains for cycle stealing, where Ngh = Nf)h =1, Ksy = Kp, =0, and
Xp is exponentially distributed with rate pp. Figure (a) shows a 2D-infinite Markov
chain tracking both the number of beneficiary jobs and the number of donor jobs.
Figure (b) shows a 1D-infinite transition diagram tracking the number of beneficiary
jobs and binary information (zero or > 1) on the number of donor jobs, where Bp
is represented by a bold transition. Figure (c) shows a 1D-infinite Markov chain,
where Bp is represented by a 2-phase PH distribution with Coxian representation.

So far we assumed that the job sizes have exponential distributions, but this
can be generalized. The donor job size, Xp, is used only to calculate B\]/)(‘?),
and this is valid for general distributions. The beneficiary job size, Xg, can
also be generalized to a PH distribution. Figure 3 shows how the beneficiary
job size is replaced by a 2-phase PH distribution with Coxian representation.
Observe that the state space now must maintain states for one or two partially-
completed beneficiary jobs. If a donor job arrives while the Markov chain is
in the cooperating row, the job that the donor was working on will be moved
to the head of the beneficiary queue (we currently assume zero time for the
transfer, but this is easy to generalize). To make this transition diagram to a
1D-infinite Markov chain, the bold transitions in Figure 3 should be replaced
by PH distributions as we do in Figure 2(c).

The mean response time for beneficiary jobs can be computed via Little’s law
once we know the mean number of jobs. The number of beneficiary jobs is
tracked in the 1D-infinite Markov chains, and the limiting probabilities can
be analyzed using the matrix analytic method. The matrix analytic method
is particularly efficient when it is applied to a QBD (quasi-birth-and-death)
process with 1D-infinite state space as in Figure 2(c). We use algorithms pre-
sented in Sections 8.4 and 12.2 of [9]. Most of the plots in this paper were
produced within a couple of seconds using Matlab 6 running on Linux, on a
1 GHz Pentium III with 512 MB RAM.

We emphasize the simplicity of our approach. It is easy to establish a 1D-
infinite Markov chain. It is also easy to extend the job size distributions to
PH distributions. In Section 2.2, we analyze the more general case: nonzero



Fig. 3. A transition diagram for cycle stealing where Ngh = Nch = 1,
Ky = Kpg = 0, and Xp has a 2-phase PH distribution with Coxian represen-
tation (Figure 1). Bp is represented by a bold transition, but this should be replaced
by a PH distribution as in Figure 2(c).

switching times and arbitrary threshold values. We will see that various types
of busy periods are needed to apply the the dimensionality reduction technique
in the general case, but we are still able to model the system using a 1D-infinite
Markov chain that can be analyzed efficiently via the matrix analytic method.

Notice also that approximating general distributions (of busy period dura-
tions and of job sizes) by PH distributions is the only approximation in our
approach, and this can be made as accurate as desired by using more phases
and matching more moments. However, we find that matching the first three
moments of the distribution provides sufficient accuracy in the analysis of the
mean response time (see Section 5).

2.2 Analysis of the general case

In this section we illustrate the analysis for the general case: nonzero switch-
ing times and arbitrary threshold values. We assume that the job sizes and
switching times have exponential distributions, but this can be generalized
using PH distributions in the same way as in Section 2.1. In the analysis of
the simplest case in Section 2.1, the only information that we need to track
about the donor is whether the number of the donor jobs is zero or > 1. In
the analysis of the general case, we need additional information: whether the
donor is in the process of switching, and more information on the number of
donor jobs (0, 1,..., N# — 1, or > N). We first describe these additional
states. We then apply the dimensionality reduction technique introduced in
Section 2.1 and obtain a 1D-infinite Markov chain for the particular case of
N =3 and N = 2. Alternative threshold values can be handled similarly.
This 1D-infinite Markov chain can be analyzed via the matrix analytic method
in the same way as in Section 2.1.

We define 2N + 3 states (regions) of the donor that we track in the 1D-
infinite Markov chain. These regions are denoted by [y, I, B, C;, and S; for
i=0,1,..., N# — 1 (see Figure 4(a)). In region I, the donor server is residing



at the donor queue and the number of donor jobs is zero. In region /1, the
donor server is working on donor jobs independently of the beneficiary server
and there is at least one donor job. When we are in region I, a donor arrival
triggers a transition to region I;,; however, if the number of beneficiary jobs
becomes N due to a beneficiary arrival, we transition to region Sy, where the
donor server is in the process of switching to the beneficiary queue and the
number of donor jobs is 0. The sojourn time in region /;, is the length of the
donor busy period started by a donor job; so the donor queue is empty when
we leave this region. After this busy period, we transition back to region Iy if
the number of beneficiary jobs is < N'; otherwise, we transition to region S;.

In regions S; (i = 0, ..., N# — 1) the donor server is in the process of switching
to the beneficiary queue and the number of donor jobs is 7. In region S; we
either have a donor job arrival, which triggers a transition to region S;,; (or
region B, which we define below, if i = N# — 1) for i = 0,..., N# — 1, or
complete the switching, which triggers a transition to region Cj. In regions
C; (i = 0,..., N — 1) the donor server is working on the beneficiary jobs
(cooperating with the beneficiary server) and the number of donor jobs is i.
When we are in region C;, a donor job arrival causes a transition to region
Ciy1 (or region B if i = N — 1) fori =0,..., N — 1.

In region B the donor server is in the process of switching back since there
are N donor jobs. We define the time spent in region B to include both K,
and the time to empty the donor queue; i.e. the sojourn time in region B is
the length of the donor busy period started by N donor jobs and Kj,. After
this busy period, we transition back to region Iy if the number of beneficiary
jobs is < N and transition to region Sy otherwise.

Figure 4(b) shows the transition diagram with 1D-infinite state space for the
case where N = 3 and NI = 2. This state space tracks the exact number of
beneficiary jobs. Each row corresponds to one of the regions, Iy, I, B, C},
and S; for i = 0 or 1, tracking the information needed about the donor. In
applying the dimensionality reduction technique, we introduce two types of
busy period transitions, By and Bsp .. Bp represents the donor busy period
started by a donor job, and B,,pis, represents the donor busy period started
by n donor jobs (n = 2 in this case) and switching back time, K;,. These busy
periods are represented by bold transitions. To create the 1D-infinite Markov
chain from this 1D-infinite transition diagram, we replace the bold transition
by a PH distribution that matches the first three moments of the busy period
duration. The moments of Bp are computed by differentiating BT;(S), and the
moments of B, py, are computed by differentiating the Laplace transform:

Bupisa(s) = Kua(s + Ap — ApBp(s)) - (Xp(s+Ap — ApBp(s)))".

10



Cooperating  {RegionCo g o~ o~
servers ;
#donors=0

Cooperating %Region C1
servers :
#donors=1

Switching
to help
#donors=0

Switching ~ [Region 1|
to help !
#donors=1

Working Regionlo| | _— "
independently |
#donors=0 ...l /)

Working '
independently |
#donors= 1+ !

Switching back | R&9i°" B
then emptying |
donor queue

Fig. 4. Transition diagrams used in the analysis of beneficiary mean response time
in the general case. Column (a) shows a transition diagram among regions, Ly, I 1,
B, C;, and S; fori =0, ..., Ng‘ —1 for the general case of cycle stealing. Column (b)
shows a transition diagram for cycle stealing where Nf)h =2, Ngh =3, and Xp and
Ky have exponential distributions. Busy periods, Bp and Bapype, are drawn using
a single transition, but this should be replaced by PH distributions as in Figure 2(c).

3 Analysis of donor mean response time

In this section we analyze the mean response time of donor jobs. The donor
queue is analyzed as an M/GI/1 queue with generalized vacations [6], where
we use the limiting probabilities that we compute in Section 2. The following
theorem gives a way to calculate the mean response time of donor jobs:

Theorem 1 The mean response time of donor jobs, E[Tp], is given by

M EXD] | (NF(NE — 1) + 2NGAp E[Ky] + MHE[KG,]) p

BITp] = E[Xp] + 55——0 22p (N + ApE[Kp)p + (1 - p))

where

Pr(Region ON}&jhil) + Pr(Region SN}tjhil)

= 1
P Pr(Region CN}tjhil) + Pr(Region SNBhfl) + Pr(Region Iy)’ (1)

where Pr(Region R) is the limiting probability that the system state is in region
R for R = I, C’thfl, and SN}tjhil.

11



Proof: The donor queue can be seen as an M/GI/1 queue with generalized
vacations, where a vacation starts when the number of donor jobs becomes
zero and ends when the donor server starts working on donor jobs. In an
M/GI/1 queue with generalized vacations, the mean response time has the
following expression [6]:

2(1 — pD) QADE[A] ’

E[T) = E[Xp] +

where A denotes the number of jobs that arrive during a vacation period.
Observe that the first two terms constitute the mean response time in a corre-
sponding M/GI/1 queue (without vacation). Therefore, it suffices to analyze
E[A] and E[A(A — 1)].

There are two types of vacations, depending on how the vacation ends. The
first type of vacation ends when a donor job arrives at an empty donor queue
while the donor server is staying at the donor queue. In this case, A = 1. The
second type of vacation ends when a donor job arrives at a donor queue with
N1 jobs while the donor server is staying at the beneficiary queue or in the
process of switching to the beneficiary queue. In this case, A = N+ B, where
B is the number of donor job arrivals during K,. Let p be the probability
that a vacation is of the second type. Then,

B[A] = (N + Ap E[Kpu))p + (1 - p) (3)
B[A(A = 1)) = (NB(NB = 1) + 2NFAp E[Kya] + X5 EIKL]) p. (4)

All that remains is to derive p. Observe that the first type of vacation starts
when a donor job arrives while the system state is in Region [, and the second
type of vacation starts when a donor job arrives while the system state is either
in Region CNch,l or in Region SNch,l. Since the arrival process is Poisson, p
is given by the expression (1). The theorem now follows from (2)-(4). O

4 Stability

In this section we derive stability conditions for cycle stealing with switching
times and thresholds. We find for example that the stability condition for the
donor jobs remains pp < 1, regardless of whether the donor jobs experience
switching times. By contrast, the stability region for the beneficiary jobs can
be significantly below 2 — pp, specifically because the switching time erodes
the beneficiary stability region. Also, interestingly, the value of N% does not
affect the stability region of either the donor or beneficiary jobs. By contrast,
increasing NI increases the stability region of the beneficiary jobs; however
it has no effect of the stability region of the donor jobs.

12



Theorem 2 The donor queue is stable iff pp < 1.

Proof: It makes intuitive sense that the donor queue is stable iff pp, < 1
regardless of the switching times and threshold values, since the donor would
never switch if the donor queue was persistently backlogged. Below, we prove
sufficiency more formally. The necessity of pp < 1 is trivial.

Assume pp < 1. Let Bjp denote the length of a busy period at the donor
queue. We first consider the case of N = (0. A busy period at the donor

queue is started by a switching time K, and N donor jobs. As pp < 1, the

mean length of a busy period is F[Bp| = N Fpl(f’HF[Kb“} < oc. In this case

Bp clearly has a proper limiting distribution, and hence the donor is stable.
Next we consider the case of N > 0. In this case E[Bp] is smaller than in the
case of N = 0 because there will be donor busy periods in which the donor
hasn’t left the donor queue, implying (i) there is no switching back time, and
(ii) the busy period is started by only one donor job. O

Before we derive the stability condition on pg, we prove a lemma allowing us
to assume NI = 0.

Lemma 1 If the beneficiary queue is stable at N = 0, then it is stable at
Nt =n,V0<n<oc.

Proof: Intuitively, the stability of the beneficiary queue is independent of N,
since N would be irrelevant when the beneficiary queue was continuously
backlogged.

More formally, let Lgl) (t) denote the number of beneficiary jobs at time ¢

given NI = p > 1. Consider a new process Zg)(t) in which the number of
jobs at time ¢ = 0 is n, instead of 0 as in the original process, and no service
is given by either server to a beneficiary job if there are < n jobs present
at the beneficiary queue. Note that L' (t) stochastically dominates Lgl)(t).

Also, along any sample path, i(g’(t) will be equal to n + L(Bﬂ)(t). Therefore,
if L(Bﬂ)(t) is proper, so t0o0 is Z(,;”(t) and hence L") (t). O

We now prove the stability condition on pg.

Theorem 3 The beneficiary queue is stable iff

Nth  (=Ap)t (i
max(1 — pp,0) X1 (NI — i) 2L K0 (Ap)
N + X\pE[Kp,] ’

pp <1+ (5)

where K, (s) is the Laplace transform of K, and K (s) is its i-th derivative.
In particular, when K, 1s exponentially distributed, the condition is expressed
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Ksw | Donor helping BSiba

Donor arrival Donor arrival — Donor arrival ~ Ni'—th donor arrival

Donor queue empties Donor queue empties

by the closed form.:

max(1 — pp,0) {Nch - ﬁ (1 — qN},h>}

pB < 1+ ) (6)
N+ ApE[Kp,]
ApE[Ksw
where ¢ = %
Proof: We first prove sufficiency. By Lemma 1, we can assume N& = 0.

Let F' denote the fraction of time that the donor helps the beneficiary. Then
the strong law of large numbers can be used to show that the necessary and
sufficient condition for stability of the beneficiary jobsis pp < 1+F. If pp > 1,
F = 0. Thus we assume pp < 1 and derive F' using renewal reward theory.

Let a renewal occur every time the donor queue becomes empty. Recall N&* =
0. By renewal-reward theory, the fraction of time donor helps beneficiary is
F = %, where R denotes the total time that donor helps beneficiary (re-
ward) during the renewal cycle, and Y denotes the length of the renewal cycle.
Observe that there may be any number of donor arrivals ranging from 0 to

N during K, and we switch back only after the N arrival.

Let S denote the sum of the service times of N donor jobs and Bg_, denote
the length of the busy period started by these jobs of total size S plus Kp,.
Then, as pp < 1,

N NUME[Xp]+ E[K,
BIY] = N8 - Bllp] + BlBsya] = 52 + T2t P,

where Ip is the interarrival time for donor jobs.

To compute E[R| we condition on the number of donor arrivals during Kj,,. If
there are 7 arrivals, then the mean time spent helping is the time until there
are (N} —i) more donor arrivals, (N} —i) E[Ip]. Let p; denote the probability
that there are ¢ donor arrivals during K,,. Then, p, = %Kﬁ(}\p). Using
pi, E|R] is now derived as follows:

Nth_1 1
E[R|= Y (Nf i)
i=0

Thus, pp < 1+ F is equivalent to (5). When K, is exponentially-distributed,

pi = q'(1 — q), where ¢ = /\Dﬁ_Dusw. Therefore,
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Fig. 5. Stability condition on beneficiaries for cycle stealing with switching times
(K = Ky = Kpg) and thresholds.

Thus, pp < 1+ F is equivalent to (6).

Above, we have proved the necessary and sufficient condition for N# = 0.
By Lemma 1, this is also the sufficient condition for N > 0. Now, we prove
necessity for N¥ > 0. When N% > 0, the donor server does not necessarily
help the beneficiary even when it is available for help. Therefore, there are two
types of renewal periods. In the first type of renewal period, the donor server
helps the beneficiary, i.e. R > 0. In this case, E[Y] is the same as for N = 0,
and E[R] for N > 0 is at most E[R] for N# = 0. In the second type of
renewal period, the donor server does not help the beneficiary, i.e. R = 0. (In
this case F[Y] can be smaller than that for N = 0.) The fraction of time, F,
that the donor server helps the beneficiary can be expressed as F' = F} + Fy,
where Fj is the fraction of time that the donor server helps the beneficiary
and the renewal period is type 1, and F; is the fraction of time that the donor
server helps the beneficiary and the renewal period is type 2. In fact, 5, = 0.

Therefore, F' = F} < g%ﬂ This proves the necessity for N > 0. O

Note that the right hand side of (5) is an increasing function of N'; in terms of
stability, the larger N the more stable the beneficiary queue. In particular,
when N =0, (5) is pp < 1; as NI — oo, (5) becomes pp < 2 — pp.

Figure 5 shows the stability condition for beneficiaries as a function of pp
when Ky, is exponentially distributed. In case (1), we set F[Xp] = 1 and
E[K,| = E[Kp) = 1. The region below each line satisfies the stability condi-
tion. As N increases as high as 100, the effect of switching overhead becomes
negligible, and the stability condition approaches pp < 2 — pp. In case (2),
we set E[Xp] = 1 and E[K,,| = E[Kp,] = 10. The switching time is large,
and there is little benefit at moderate or high pp in terms of stability, unless
N is large. However, there is still large benefit at low pp. In case (3), we set
E[Xp] = 10 and E[K,,] = E[K,,] = 1. The stability region is much larger;
when N = 1, the stability region is almost the same as that of NI = 10
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Analytical validation: Beneficiary response time
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Fig. 6. Vulidation of our analysis against four limiting cases, where N}E?h = 3,
N’Dh = 2, E[Ks] = E[Ky] = 1, Xp is exponentially-distributed with mean 1,
and Xp has a PH distribution with mean 1 and C% = 8.

in case (1). This is intuitive: when E[Xp] = 10 and N = 1, the expected
amount of donor work when the donor switches back is the same as that when
E[Xp] =1 and N = 10.

5 Validation of analysis

Since our analysis involves approximation of busy periods by PH distributions,
it is of paramount importance to validate the analysis. Analytical validation
against limiting load cases is presented in Section 5.1, and simulation valida-
tion over a range of load is reported in Section 5.2.

5.1 Validation against known limiting cases

We evaluate the performance of cycle stealing under four limiting situations:
pp — 0, pp — 0, pp — 1, and pp — pp**, where pE** is the right hand
side of (5). We assume that N#* = 3, N = 2, F[K,,| = E[Ky] = 1, Xp
is exponentially-distributed with mean 1, and X, has a PH distribution with
mean 1 and C% = 8. For these limiting cases, the mean response times of the

beneficiaries and donors are easy to evaluate.

Figure 6 verifies that our analysis has the correct limiting behavior in all of
these cases. In case (a), pp = 0.9 and pp — 0. The mean response time for
beneficiary jobs converges to that under an M/M/2 queue, since the donor
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server can almost always help when pp ~ 0. The mean response time for
donor jobs diverges to infinity. This is because the donor job arriving at an
empty donor queue must wait for the next arrival before being served (note
N = 2), and the interarrival time diverges to infinity as pp — 0. In case (b),
pp = 0.6 and pg — 0. The mean response time for beneficiary jobs converges
to that under an M/M/1 queue, since the number of beneficiary jobs is almost
always < N when pg ~ 0 and hence there is no help from the donor server.
The mean response time for donor jobs converges to that under an M/GI/1
queue, since the donor server is almost always at the donor queue and hence
requires no setup time. In case (c), pg = 0.9 and pp — 1. The mean response
time for beneficiary jobs converges to that under an M/M/1 queue, since the
donor server is almost always busy working on donor jobs when pp ~ 1 and
hence there is no help from the donor server for the beneficiary. The mean
response time for donor jobs diverges to infinity, since pp < 1 is the stability

max

condition. In case (d), pp = 0.6 and pp — pE**. The mean response time
for beneficiary jobs diverges to infinity as pp — pg**, as is predicted by the
stability condition. The mean response time of donor jobs converges to the

max

expression in Theorem 1 with p = 1, since Pr(Region y)— 0 as pp — p}j

5.2 Validation against simulation

The accuracy of our analysis is also validated against simulation: a subset
of our validation experiments is shown in Figure 7. In simulation, 1,000,000
events are generated in each run. We assume that job sizes are exponential,
N =3 and N = 2. We show three cases: 7(a), F[Xp| = E[Xp| = 1; 7(b),
E[Xp] =1 and E[Xp] = 10; 7(c), E[Xg] = 10 and E[Xp] = 1. In all cases,
the results of analysis are in very close agreement with simulation. The only
mild discrepancy is the mean response time of the beneficiaries in case (b),
under high load (pp = .9). Under case (b), donor jobs are large, making their
busy periods more variable, especially at high loads. As our analysis is very
dependent on these busy periods, matching only the first three moments may
introduce error in this case. We hypothesize that the accuracy of our analysis
would improve if we matched more moments of the busy periods using PH
distributions with more phases.

6 Results of Analysis

This section discusses our results. Throughout we will use the term “gain” to
denote the improvement (drop) in mean response time experienced by bene-
ficiary jobs under cycle stealing, as compared with dedicated servers, and the
term “pain” to refer to the increase in mean response time experienced by
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Simulation validation: Beneficiary response time
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Fig. 7. Validation of analysis against simulation. We fix pp = 0.9, and vary pr,.
(Donor response time is not shown for the case of pp = 1, since the donor is
unstable there.) Ngh =3 and Nch = 2. Xp and Xp are exponentially-distributed.

donor jobs under cycle stealing as compared with dedicated servers:

E[TB]Dedicated
E [TB] Ccs

E[TD]CS

and pain = E[TD]Dedicated’

gain =
where E[Tg]Pe4*°2*? refers to the mean response time of beneficiaries under
dedicated servers and E[Tg]% refers to the mean response time of beneficiaries
under cycle stealing. E[Tp[P?*2*d and E[Tp|® are defined similarly. Observe
that both pain and gain have been defined to range from 1 to oo, where
infinite gain corresponds to the situation where the mean response time under
dedicated is infinite while it is finite under cycle stealing. In Sections 6.1-6.3
we fix the threshold values as NI = N = 1 and study the effect of other
parameters, and in Section 6.4 we study the effect of the threshold values. Due
to limited space we typically only show a couple of options for each parameter.
More graphs are available in the associated technical report [11].

6.1 Benefits of cycle stealing: wide range pp

Cycle stealing is always a win when pg > 1, but doesn’t pay when
pB < 0.5. Figure 8 shows the mean response time for beneficiary jobs (top
row) and donor jobs (bottom row) as a function of pg, where pp is low-to-
medium (pp = 0.5; columns 1 and 2) and medium-to-high (pp = 0.8; columns
3 and 4). When pg > 1 (and pp < 1), cycle stealing can provide infinite gain
to beneficiaries over dedicated servers, with comparatively little pain for the
donors. This is because the stability region for the beneficiaries under cycle
stealing is much greater than under dedicated servers. While factors such as
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Performance of beneficiary jobs: Mean response time
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Fig. 8. The mean response time for beneficiaries and donors as a function of pp
under cycle stealing and dedicated servers. In all figures Xpg and X are exponential
with mean 1; switching times are exponential with mean 0 or 1 as labeled.

increased switching times and increased pp do increase the mean response
time of the beneficiary jobs, the gain is still infinite, and these factors are less
important. We also see that the mean response time of donor jobs is bounded
by the mean response time for an M/GI/1 queue with setup time Kj,. When
pp < 0.5, there is so little gain to the beneficiaries that cycle stealing with
non-zero switching overhead doesn’t pay. We therefore primarily focus the rest
of the results section on the remaining case: 0.5 < pg < 1.

6.2 Benefit of cycle stealing: .5 < pg < 1.0

For .5 < pg < 1, cycle stealing has regions of high gain and low pain
and also regions where the reverse is true. These regions depend
on job sizes, switching times, and loads. In this section, we categorize
performance into these gain/pain regions and also look at the overall mean
response time (averaged over both beneficiary and donor jobs) to determine
whether cycle stealing is “good” or “bad” overall. In general under higher
pp and lower pp, cycle stealing is “good” overall, because the gain of the
beneficiaries is so high in this region. We will find that when the switching
times are short, cycle stealing leads to high gain and low pain. However long
switching times can reverse this effect. More important than the absolute
switching times are the switching times relative to the mean donor job size.
We will find that the mean response time of the donors is sensitive to the
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switching times, while surprisingly the mean response time of the beneficiaries
is far less sensitive.

Figure 9 shows the gain of beneficiary jobs and the pain of donor jobs, where
.5 < pp < 1. The odd-numbered columns of Figure 9 divide the (pg,pp) space
into regions of beneficiary gain and donor pain (low, mid, and high). We define
low gain as a gain of 1.1 or less; mid gain as a gain of between 1.1 and 1.5;
and high gain as a gain of over 1.5. Pain regions are defined similarly. While
odd-numbered columns of Figure 9 consider the beneficiary and donor mean
response time individually, the even-numbered columns of Figure 9 look at the
overall mean response time and ask whether cycle stealing is “good” or “bad”
with respect to the overall mean response time. The effect of mean job sizes is
considered in the first three rows of Figure 9, where job sizes are exponential
with mean 1 or 10. The effect of job size variability is considered in the fourth
row of Figure 9, where the variability of donor job sizes is increased. The
discussion of this fourth row is postponed to Section 6.3.

Consider first row 1 in Figure 9. Under zero switching time (a)-(b), all regions
are low pain regions (in fact zero pain), and higher pp yields higher gain for
the beneficiaries. Non-zero switching times (c)-(d) create only slightly reduced
gain for the beneficiaries, but they create pain for the donor jobs. When pp
is very low, the pain appears high, but this is primarily due to the fact that
“pain” is relative to the mean response time under dedicated servers, which
is clearly low for small pp. Although not shown, we have also investigated
longer switching times, and these lead to the same trend of slightly less gain
for beneficiaries and significantly more pain for donors.

We now consider the effect of changes in job sizes. Row 2 of Figure 9 differs
from row 1 only in Xp, which now has mean 10. The effect of this change is
dramatic: now a switching time of 1 has almost no effect on either beneficiaries
or donors. This makes sense since the setup time experienced by donor jobs
is now relatively small compared to their size. Row 3 in Figure 9 differs from
row 1 only in Xpg, which now has mean 10. Comparing these rows, we see
the increase in F[Xg] has a surprisingly small effect on both beneficiaries and
donors, as compared with increasing E[Xp]. This is because the donor still
experiences the setup time, which has the same mean size as the donor job.
We can conclude that cycle stealing is most effective when the switching time
is small relative to the size of the donor jobs.

Focusing on columns 2 and 4 of Figure 9, which depict the effect on overall
mean response time, we see that, for all rows, when the switching time is
zero, cycle stealing always overwhelms the dedicated policy. When switching
time is non-zero, cycle stealing is a good idea provided either pg is high, or
the switching time is short compared to X . These trends continue for longer
switching times.
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Fig. 9. The gain of beneficiary jobs and pain of donor jobs (columns 1 and 3), and
the effect of cycle stealing on the overall mean response time relative to dedicated
servers (columns 2 and 4). In columns 1 and 3, solid lines delineate high/mid/low
gain regions, and dashed lines delineate high/mid/low pain regions. Xp has an ez-
ponential distribution; Xp has an exponential distribution in rows 1-3 and o PH
distribution with C?% = 8 in row 4. The means of Xp and Xp are as labeled.

21



Effect of donor job variability on beneficiary jobs
50

IN
o

N w
=] =]

beneficiary response time
=
o

o

15

Fig. 10. The mean response time for beneficiary jobs under different donor job size
variability. We fix pp at 0.5, and pp varies from 0 to the stability condition of 1.5.
The mean donor job size and beneficiary job size is 1, and switching time is zero.

6.3 Effect of donor job size variability

For .5 < pg < 1, we find variability of donor job sizes has very little
effect on beneficiary mean response time. This finding surprised us; we
expected the beneficiary to gain far less from the bursty help of a donor with
irregular (highly variable) job sizes.

It seems intuitive that when donor job sizes are made more variable, two
things should happen. (i) The donor pain should drop. This is because the
donor mean response times will be higher overall, and so the relative pain will
appear diminished. (ii) The beneficiary gain should drop. This is because high
variability in the donor job sizes implies high variability in the length of the
donor busy periods, which implies that the donor’s visits to the beneficiary
queue will be more irregular. Sporadic help should be inferior to regular help
for the beneficiary. Figure 9 row 4 shows that hypothesis (i) is in fact true,
while hypothesis (ii) is surprisingly false, at least for pp < 1. Comparing row 1
(Xp has low variability: C% = 1) with row 4 (Xp, has high variability: C% = 8),
we see that there is no discernible difference in beneficiary performance.

To study this effect more closely, we next increase the variability in donor job
sizes further. Figure 10 shows the mean response time of the beneficiary jobs
under the case of zero switching time, when C% is 1, 8, or 50, and pp, is fixed at
0.5. We vary pp from 0 to p5**. As observed in Figure 9 row 4, the effect of the
variability of Xp on the mean response time of Xp is small when pg < 1, and
negligible when pg < 0.75. When pg > 1 the effect of variability in donor sizes
may be significant. A critical factor seems to be whether the beneficiary queue
is stable in isolation; when this is not the case, high variability in donor visits
leads to prolonged intervals of instability, which inflates the mean response
time. This is the same phenomenon seen in [1] and [2].
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Fig. 11. The mean response time for beneficiaries and donors as a function of pp.
Graphs show the case of (i) NIt = N =1, (i) N =10 and N = 1, and (iii)
N}%h =1 and Ng‘ = 10. In all figures Xp and Xp are exponential with mean 1.
Switching times are exponential with mean 0 or 1 as labeled. pp = 0.5.

6.4 Effect of thresholds

The thresholds N and Nt have very different effects. In this section,
we study the effect of threshold settings on performance. We will see that in-
creasing N helps alleviate donor pain given nonzero switching time, without
appreciably diminishing beneficiary gain. Thus, the optimal value of N tends
to be well above 1. By contrast, increasing N increases beneficiary gain sub-
stantially (by increasing their stability region), but also increases donor pain.
Overall, the impact of changes in N are much more dramatic than the impact
of changes in N

Figure 11 shows the mean response time for beneficiary jobs (top row) and
the mean response time for donor jobs (bottom row) as a function of pg for
different threshold values. In the left half of the figure we study the effect of
changing N from 1 to 10 as we hold N¥ fixed at 1. In the right half of the
figure we study the effect of changing N from 1 to 10 as we hold N fixed at
1. Throughout, Xz and X are exponential with mean 1 and we fix pp = 0.5.

As N is increased from 1 to 10, Figure 11 shows only slightly higher response
times for the beneficiary jobs. Recall that increasing N% does not change
the beneficiary stability region, although the beneficiary queue is helped less
frequently. In fact, under longer switching times, the effect of raising N on
beneficiary mean response time is even more negligible, since the decreased
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frequency of helping beneficiaries is counteracted by the positive benefit of
wasting less time on switching. We also see that increasing N creates less
penalty for the donor, as the donor doesn’t have to visit the beneficiary queue
as frequently. Observe that when the switching times are nonzero, the donor
mean response time is always bounded above by the mean response time for a
corresponding M/GI/1 queue with setup time Kj,, and this bound is tight for
all NI values as pp reaches its maximum, since the beneficiary queue always
exceeds N in this case. We conclude that N has somewhat small impact;
however higher values of N are more desirable for the system as a whole
under longer switching time.

By contrast increasing N from 1 to 10 has dramatic effects. In general (as-
suming non-zero switching time) increasing N can drastically improve ben-
eficiary response time. This result is not obvious, since increasing N allows
the donor to spend more time at the beneficiary queue before leaving, but
also means that when the donor leaves the beneficiary queue, the donor will
be absent for a longer time (since more time is needed to empty the donor
queue). Another positive effect of increasing N is less switching overall. In
the end, it is the enlargement of the stability region due to higher N which
substantially improves the beneficiary response time when the switching times
are large and beneficiary load is high. When switching times are very short,
increasing N only slightly worsens the mean response time for beneficiary
jobs, as beneficiaries experience longer intervals between help. In all cases eval-
uated, increasing N results in much higher mean response times for donor
jobs, since, for N# > 1, the donor job arriving at an empty queue must wait
for another N — 1 jobs to arrive before being served. We conclude that in-
creasing NI can have large impact, positive for the beneficiaries, but negative
for the donors. Thus setting N¥' is much trickier than N

Finally we seek to determine good values for the thresholds, N# and N as
a function of the system parameters. Above, we have already observed some
characteristics of N (i) Increasing N leads to lower gain for the benefi-
ciaries and lower pain for the donors. (ii) Perhaps less obvious, the relative
drop in gain for the beneficiaries is slight compared to the drop in pain for
the donors. This points towards choosing a higher value of N, Thus, if the
switching time is zero, the optimal N% is 1 (or 0), since there is never any
pain for the donors. Figure 12 (a) and (b) show optimal values of N for
minimizing overall mean response time (over all jobs) as a function of pz and
pp under various switching times when N = 1. The numbers on the contour
curves show the optimal N at each load. For clarity we only show lines up to
N = 14. The following additional characteristics of N are implied by the
figure: (iii) the optimal N is an increasing function of pp and a decreasing
function of py; (iv) increasing the switching time increases the optimal N

Figure 12 (c) and (d) show optimal values of N for minimizing overall mean
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Fig. 12. Graphs showing the optimal value of Ngh and Ngl with respect to overall
mean response time, where Xpg and Xp are exponentially distributed with mean 1.

response time when N = 1. First observe that (i) under low pp or low pg
the optimal N is 1. When pp is low and N > 1, the pain for donor jobs
is so huge that the optimal N is always 1. When pp is low, the beneficiary
gains little from increasing N, while the donor can have nonnegligible pain,
which increases with N!; hence the optimal N is always 1. The following
characteristics of N are also implied by the figure: (ii) the optimal N is not
a monotonic function of pp, but is an increasing function of ppg; (iii) increasing
the switching time increases the optimal N Note that although the range
of the optimal values of N is smaller than N in Figure 12, Figure 11 tells
us that the performance effect of changing N on the mean response time of
both beneficiary jobs and donor jobs is more significant than changing N,

7 Extensions and Current Work

This paper analyzes the mean response time under cycle stealing with switch-
ing times and thresholds, presenting many insights into the characteristics
and performance of cycle stealing. Our analytical approach can be applied to
other variants of cycle stealing models [11]. For example, we don’t need to
require that the donor switches back immediately when N is reached; we
can allow the donor to first complete the beneficiary job in progress. Complet-
ing the beneficiary job obviates the need for checkpointing the job; however
it sometimes reduces system performance, particularly when beneficiary jobs
have higher variability than donor jobs. We can also handle the model of one
beneficiary and two or more donor queues, where if 7 donors are helping, the
beneficiary sees an M/GI/i queue. This extension also allows the different
donors to have different switching thresholds and switching times. The case
of multiple beneficiary queues does not seem readily solvable for the model in
this paper, but has been solved for a related model [7]. Another interesting
question involves servers that function as both beneficiaries and donors, as in
[13]. Unlike our own model, in [13] the state of each processor is assumed to be
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stochastically independent and identical to the state of the other processors.
This means there is no need for a 2D-infinite chain, and no need for dimen-
sionality reduction. In our, more complex model, the analysis of servers which
function as both beneficiaries and donors is still open at the present time.
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