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We measure the distribution of lifetimes for UNIX processes and
propose a functional form that fits this distribution well. We use
this functional form to derive a policy for preemptive migration,
and then use a trace-driven simulator to compare our proposed

policy with other preemptive migration policies, and with a non-
preemptive load balancing strategy. We find that, contrary to previ-
ous reports, the performance benefits of preemptive migration are
significantly greater than those of non-preemptive migration, even

when the memory-transfer cost is high. Using a model of migration
costs representative of current systems, we find that preemptive mi-

gration reduces the mean delay (queueing and migration) by 35 –

50%, compared to non-preemptive migration.

1 Introduction

Most systems that perform load balancing use remote execution

(i.e. non-preemptive migration) based on a priori knowledge of

process behavior, often in the form of a list of process names eligi-

ble for migration. Although some systems are capable of migrating
active processes, most do so only for reasons other than load bal-

ancing (such as preserving autonomy), A previous analytic study

([ELZ88]) discourages implementing preemptive migration for load
balancing, showing that the additional performance benefit of pre-
emptive migration is small compared with the benefit of simple
non-preemptive migration schemes. But simulation studies (which
can use more realistic workload descriptions) and implemented sys-

tems have shown greater benefits for preemptive migration ([KL88]
and [B SW93]). This paper uses a measured distribution of process

lifetimes and a trace-driven simulation to investigate these conflict-

ing results.

1.1 Load balancing taxonomy

On a network of shared processors, load balancing is the idea of

migrating processes across the network from hosts with high loads
to hosts with lower loads, The motivation for load balancing is to
reduce the average completion time of processes and improve the

utilization of the processors, Analytic models and simulation studies
have demonstrated the performance benefits of load balancing, and
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these results have been

(see Section 1.4).

confirmed in existing distributed systems

An important part of the load balancing strategy is the migra-
tion policy, which determines when migrations occur and which
processes are migrated. This is the question we address in this

paper. 1
Process migration for purposes of load balancing comes in two

forms: remote execution (also called non-preemptive migration), in
which some new processes are (possibly automatically) executed on

remote hosts, and preemptive migration, in which running processes

may be suspended, moved to a remote host, and restarted. In non-
preemptive migration only newborn processes are migrated.

Load balancing may be done explicitly (by the user) or implicitly

(by the system). Implicit migration policies may or may not use a
priori information about the function of processes, how long they
will run, etc.

Since the cost of remote execution is usually significant relative
to the average lifetime of processes, implicit non-preemptive poli-

cies require some a priori information about job lifetimes. This

information is often implemented as an eligibility list (e.g. [Sve90])

that specifies (by process name) which processes may be migrated.

In contrast, most preemptive migration policies do not use a

priori information, since this it is often difficult to maintain and

preemptive strategies can perform well without it. These systems

use only system-visible data like the current age of each process or
its memory size.

This paper examines the performance benefits of preemptive,
implicit load brdancing strategies that assumeno a priori informa-
tion about processes.

1.2 Process Model

In our model, processes use two resources: CPU and memory (we

do not consider JfO). Thus, we use “age” to mean CPU age (the CPU

time a process has used thus far) and “lifetime” to mean CPU lifetime
(the total CPU time from start to completion). Since processes may

be delayed while on the run queue or while migrating, the slowdown
imposed on a process is

Slowdown of process p =
wall time (p)

CPU time (p)

where wall-time(p) is the total time p spends running, waiting in

queue, or migrating.

1.3 Outline

The effectiveness of load balancing — either by remote execution or
preemptive migration — depends strongly on the nature of the work-

l’Ibe other half of a load balancing strategy is the location policy — the selection
a new host for the migrated process. Previous work ([Zho89] and [Kun91 ]), has
s.ggestsd that choosing the target host with the shortest CPUrun qUGUG is both simple

and effective. Our work confirms rlre relative unimportance of Iecstion policy.
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load, including the distribution of process lifetimes and the arrival

process. This paper presents empirical observations about the work-

load on a network of UNIX workstations, and uses a trace-driven
simulation to evaluate the impact of this workload on proposed load

balancing strategies.

Section 2 presents a study of the distribution of process lifetimes
for a variety of workloads in an academic environment, including

instructional machines, research machines, and machines used for

system administration. We find that the distribution is predictable
(with goodness of fit > 99%) and consistent across a variety of

machines and workloads. As a rule of thumb, the probability y that a

process with CPU age of one second uses more than T seconds of

total CPU time is l/T (see Figure 1).
Our measurements are consistent with the results of [L086], but

this prior work has been incorporated in few subsequent analytic

and simulator load brdancing studies. This omission is unfortunate,
since the results of these load balancing studies are quite sensitive

to the lifetime model,
Our observations of lifetime distributions have the following con-

sequences for load balancing:

. They suggest that it is preferable to migrate older processes

because these processes have a higher probability of living
long enough (eventually using enough CPU) to amortize their

migration cost.

. A functional model of the distribution provides an analytic

tool for deriving the eligibility of a process for migration as

a function of its current age, migration cost, and the loads at
its source and target host (the eligibility criterion doesn’t rely
on free parameters that must be hand-optimized). This tool is

generally useful for analysis of system behavior.

Specifically, Section 3 shows the derivation a migration eligibility
criterion that guarantees that the slowdown imposed on a migrant

process is lower (in expectation) than it would be without migration.

According to this criterion, a process is eligible for migration only

if its

CPU age >
1

— migration cost
n—m

where n (respectively m) is the number of processes at the source
(target) host.

In Section 5 we use a trace-driven simulation to compare our

preemptive migration policy (from Section 3) with a non-preemptive

policy based on name-lists. The simulator (see Section 5.1) uses

start times and durations from traces of a real system, and migration
costs chosen from a measured distribution.

We use the simulator to run three experiments: first (Section 5.2)
we evaluate the effect of migration cost on the relative performance
of the two strategies. Not surprisingly, we find that as the cost of

preemptive migration increases, it becomes less effective. Never-

theless, preemptive migration performs better than non-preemptive

migration even with surprisingly large migration costs (despite sev-
eral conservative assumptions that give non-preemptive migration
an unfair advantage),

Next (Section 5.3) we choose a specific model of preemptive
and non-preemptive migration costs (described in Section 4), and
use this model to compare the two migration strategies in more

detail. We find that preemptive migration reduces the mean delay

(queueing and migration) by 35- 50%, compared to non-preemptive
migration. We also propose several alternative metrics intended to
measure users’ perception of system performance. By these metrics,

the additional benefits of preemptive migration (compared to non-
preemptive migration) appear even more significant.

Finally, in Section 5.4 we use the simulator to compare our pre-

emptive migration strategy with other preemptive schemes in the
literature.

We finish with a self-criticism of our model in Section 6 and

conclusions in Section 7.

1.4 Related Work

1.4.1 Systems

Most existing systems provide some form of user-controlled remote

execution, but relatively few provide automated load balancing. Of

the ones that do, the majority are based on implicit remote execution

of newborn processes; few use preemptive migration.

(The following taxonomy is based in large part on [Nut94].)

The following systems have implemented explicit remote exe-
cution and/or explicit preemptive migration; that is, both forms

of migration are only performed at the user’s request: Accent
[Zay87], Locus [Thi91], Utopia [ZWZD93], DEMOS/MP [PM83],

V [TLC85], NEST [AE87], and MIST [CCK+95].

Some other systems provide implicit remote execution, but per-
form preemptive migration only at the request of a user or for
reasons other than load balancing (such as preserving autonomy):

Amoeba [TvRaHvSS90], Charlotte [AF89], Sprite [D091], and

Condor [LLM88]. Although these systems are capable of migrating
active processes (with varying degrees of transparency), none have

implemented a policy that preempts processes for purposes of load

balancing.

Only a few systems have implemented automated load balancing
policies with preemptive migration: MOSIX[BSW93] and RHO-

DOS [GGI+91 ]. The MOSIX load balancing scheme is similar to

the strategies recommended in this papeq our results support their
claim that their scheme is effective and robust.

In general, non-preemptive load balancing strategies depend on a

priori information about processes; e.g., explicit knowledge about

the runtimes of processes or user-provided lists of migratable pro-

cesses ([AE87], [LL90], [D09 1], [ZWZD93]).

1.4.2 Studies

Although few systems use preemptive migration for load balancing,

there have been many simulation studies and analytic models show-
ing the performance benefits of various load balancing strategies.
Some of these studies have focused on load balancing by remote

execution ([LM82], [WM85], [CK87], [Zho89], [PTS88], [Kun91 ],
[HJ90], [ELZ86]); others have compared the performance of sys-
tems with and without preemptive migration ([ELZ88], [KL88]).

Our work differs from [ELZ88] in both system model and work-
load description. [ELZ88] model a server farm in which incoming

jobs have no affinity for a particular processor, and thus the cost
of initial placement (remote execution) is free. This is different

from our model, a network of workstations, in which incoming jobs
arrive at a particular host and the cost of moving them away, even

by remote execution, is significant.

Also, [ELZ88] use a degenerate hyperexponential distribution
of lifetimes that includes many jobs with zero lifetime, and far
fewer short jobs (O - 1 seconds) than we observed. For a more

detailed explanation of this distribution and its effect on the study,
see [DHB95].

[KL88] use a hyperexponential lifetime distribution that approxi-
mates closely the distribution we observed; as a result, their findings

are largely in accord with ours. One difference between their work
and ours is that they used a synthetic workload with Poisson ar-

rivals. The workload we observed, and used in our trace-driven

simulations, exhibits serial correlation; i.e. it is more bursty than
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Figure 1: Distribution of process lifetimes for processes with lifetimes greater than 1 second, observed on machine “PO” mid-semester.

l%; dotted (thicker) line shows the measured di&ibution; the solid (thim-er) line shows the least squares curve fit. To the right the same

distribution shown on a log-log scrde. The straight line in log-log space indicates that the process lifetime distribution can be modeled by Tk,
where k is the slope of the line.

a Poisson process. Also, our migration policy differs from [KL88]
in that our proposed migration policy uses preemptive migration

exclusively, rather than in addition to, remote execution.

Like us, [BF81] discuss the distribution of process lifetimes and

its effect on preemptive migration policy, but their hypothetical
distributions are not based on system measurements. Also like us,

they choose migrant processes on the basis of expected slowdown on
the source and target hosts, but their estimation of those slowdowns
is very different from ours. In particular, they use the distribution

of process lifetimes to predict a host’s future load as a function of

its current load and the ages of the processes running there. We

have examined this issue in detail and found (1) that this model

fails to predict future loads because it ignores future arrivals, and
(2) that current load is the best predictor of future load. Thus, in

our estimates of slowdown, we will assume that the future load on
a host is equal to the current load.

2 Distribution of lifetimes

The general shape of the distribution of process lifetimes in an

academic environment has been known for a long time [Ros65]:
there are many short jobs and a few long jobs, and the variance of

the distribution is greater than that of an exponential distribution.

In 1986 [L086] proposed a functional form for the process life-

time distribution, based on measurements of the lifetimes of 9.5

million UNIX processes between 1984 and 1985. Leland and Ott
concluded that process lifetimes have a UBNE (used-better-than-
new-in-expectation) type of distribution. That is, the grmter the

current CPU age of a process, the greater its expected remaining

CPU lifetime.z Specifically, they found that for T > 3 seconds,

the probability of a process’ lifetime exceeding T seconds is rTk,

where – 1.25< k < – 1.05 (r normalizes the distribution).

In contrast to [L086], Rommel ([Rom91]) claimed that his

measurements show that “long processes have exponential service

*In contrast, the exponentkd distribution is memoryless; the expected renminins
lifetime of a process is independent of age.

times.”

Because of the importance of the process lifetime distribution to

load balancing policies, we performed an independent study of this

distribution, which we describe in Section 2.1.

In our study the functional form proposed by [L086] fits all

our observed distributions well, for processes with lifetimes greater
than 1 second. For the longest jobs (> 1000 seconds), there are so
few processes in our sample that the fit deteriorates, but overall the

goodness of fit of the model is excellent.3 This functional form is

consistent across a variety of machines and workloads, and although

the parameter, k, varies from -1.3 to -.8, it is generally near -1.0.

Thus, as a rule of thumb,

1. The probability that a process with age 1 second uses at least

T seconds of total CPU time is about 1/T.

2. The probability that a process with age T seconds uses at least

an additional T seconds of CPU time is about 1/2. Thus, the

median remaining lifetime of a process is equal to its current
age.

Despite the [L086] study, many researchers have continued to ss-

sume an exponential process lifetime distribution in their analysis of

migration strategies (e.g., [MTS90], [BK90] [EB93], [LR93]). The

reasons for assuming an exponential lifetime distribution include:

(1) analytic tractability, and (2) the belief that the exponential dis-

tribution is close enough to real distributions that the results of the

analyses are not affected.
In this paper, we make the following claims about lifetime distri-

butions:

● The performance of various migration strategies (and other

system features) depends strongly on the details of the work-

load description. For example, two distributions that match

3Tlwoughout this paper, we distinguish between observed lifetime distributions
(taken from our rmmsumments) rmd the proposed functional form (which fits rhe ob-
served distribution over all but the longest processes). Although fire functional form
hasinfinite mean and variurrce, the observed distributions (necessarily) have finite mean

snd vurisnce.
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Name
of

Host

pol

po2

po3

cow

pors

bugs

faith

Total
Number

Procs.

Studied

77440

154368

111997

182523

141950

83600

76507

Num.
Procs.

with

Age> 1

4107

11468

7524

14253

10402

4940

3328

Estim. Std.
Lifetime Error

Distrib.

Curve

==+=

q-r- .015
lY- .007
ql- . .045

R2
Val

0.997

0.999

0.997

0.982

0.997

0.999

0.964

Table 1: The estimated lifetime distribution curve for each machine

measured, and the associated goodness of fit statistics. Descrip-

tion of machines: Po is a heavily-used DECserver5000/240, used
primarily for undergraduate coursework. Pol, po2, and po3 re-

fer to measurements made on po mid-semester, late-semester, and

end-semester. Cory is a heavily-used machine, used for course-
work and research. Porsche is a less frequently-used machine, used

primarily for research on scientific computing. Bugs is a heavily-

used machine, used primarily for multimedia research. Faith is an
infrequently-used machine, used both for video applications and
system administration.

●

●

with respect to both mean and variance might still produce

significantly different results.

The properties of an exponential distribution are very different
from those of the distributions we observed. For example,

the distributions we observed all have a tail of long-lived jobs
(i.e., the distributions have high variance). An exponential

distribution with the same mean would have lower variance; it
lacks the tail of long-lived jobs.

Although the alternate functional form that we (and [L086])

propose cannot be used in queueing models as easily as an
exponential distribution, it nevertheless lends itself to some
forms of analysis, as we show in Section 3.2.

In previous work, some simulations and analyses have used a

hyperexponential distribution of lifetimes (a hyperexponential dis-

tribution consists of two or more exponential branches). The mo-
tivation for this model is that by using more than one exponen-
tial distribution, it is possible to match an observed distribution
more closely. In cases where the hyperexponential distribution has

enough branches to fit the observed distribution well, as in [KL88],
this model has been successful.

The remainder of this section focuses on our distribution measure-

ments, We observed that long processes (with lifetimes greater than
1 second) have a predictable and consistent distribution. Section 2.1
describes this distribution. Section 2.2 makes some additional ob-
servations about shorter processes.

2.1 Lifetime distribution when lifetime > 1s.

To determine the probability distribution function for UNIX pro-
cesses, we measured the lifetimes of over one million processes,
generated from a variety of academic workloads, including instruc-
tional machines, research machines, and machines used for system
administration. We obtained our data using the UNIX command

Observed distribution and two cwve fits
[fraction of mocesses with duration > T)

1

118

1/64

1/512

1/4096

1 8 64 512

Duration (T sees.)

Figure 2: In log-log space, this plot shows the distribution of life-

times for the w 13000 processes with lifetimes > 1 second from

our trace-driven simulation (see Section 5), and two attempts to fit

a curve to this data. One of the fits is based on the model proposed

in this paper, Tk. The other fit is an exponential curve, c e–’~.
Although the exponential curve is given the benefit of an extra free
parameter, it fails to model the observed data. The proposed model

fits well. Both fits were performed by iteratively-weighted least

squares.

lastcomm, which outputs the CPU time used by each completed

process.

Figure 1 shows our process lifetime measurements on a heavily-

used instructional machine in mid-semester. The plot shows only

processes whose lifetimes exceed one second. The dotted (heavy)
line indicates the measured distribution; the solid (thinner) line
indicates the least squares curve fit. The straight line in log-log
space indicates that the process lifetime distribution fits the curve

Tk, where k is the slope of the line.

For all the machines we studied, the process lifetime data (for
processes with age greater than one second) fit a curve of the form

Tk, where k ranged from about – 1.3 to –.8 for different machines.
Table 1 shows the estimated lifetime distribution curve for each

machine we studied. The parameters were estimated by an itera-
tively weighted least squares fit (with no intercept, in accordance
with the functional model). The standard error associated with each

estimated parameter gives a confidence interval for that parameter
(all of these parameters are statistically significant at a high degree

of certainty). Finally, the R2 value indicates the goodness of fit of

the model — the values shown here indicate that the fitted curve ac-
counts for greater than 99% of the variation of the observed values.
Thus, the goodness of fit of these models is very high.

Although the range of parameters we observed is fairly broad,
in rhe absence of measurements from a specific system, assuming

a distribution of 1/T is substantially more accurate than assuming

that process lifetimes are exponentially distributed, as shown by
Figure 2.

Table 2 shows the lifetime distribution function, the correspond-
ing density function, and the conditional distribution function. We
will refer to the conditional lifetime distribution often during our
analysis of migration strategies. The second column of Table 2

shows these functions when k = —1, which we will assume for our
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Process Lifetime Distribution for

z

When

Processes of Age ~ 1 second k=–1

Pr {Proc. lifetime > T sec I age> 1 see} = Tk
!-l

= l/T

11-/Pr {Lifetime= 2’ sec I age = 1 see}= –kTk-’ = I/T*

II-JPr{Lifetime > a sec I age= b >1 see} = (~)h = ~

Table 2: The cumulative distribution function, probability density
function, and conditional distribution function of processes life-

times. The second column shows the functional form of each for
the typical value k = – 1.0.

analysis in Section 3.

2.2 Process lifetime distribution in general

For completeness we discuss the lifetime distribution for processes

with lifetimes less than one second. Since our measurements were

made using the lastcomm command the shortest process we were

able to measure was .01 seconds. For processes between .01 and 1
second, we did not find a consistent functional form, however for
rdl machines we studied these processes had an even lower hazard
rate than those of age > 1 second. That is, while the probability
that a process of age T > 1 second lives another T seconds is

approximately 1/2, the probability that a process of age T < 1

second lives another T seconds is something greater than 1/2.

3 Migration Policy

A migration policy is based on two decisions: when to migrate pro-

cesses and which processes to migrate. The focus of this paper is the

second question (we will touch on the first question in Section 5.1):

Given that the load at a host is too high, how do we choose
which process to migrate?

Our heuristic is to choose the process that has highest probability

of running longer than its migration time.
The motivation for this heuristic is twofold. From the host’s

perspective, a large fraction of the migration time is spent at the host

(packaging the process). The host would only choose to migrate
processes that are likely to be more expensive to run than tn migrate.

From the process’ perspective, migration time has a large impact

on response time. A process would choose to migrate only if the
migration overhead could be amortized over a longer lifetime.

Most existing migration policies only migrate newborn processes
(no preemption), because these processes have no allocated memory

and thus their migration cost is less (see Section 4).4 The problem
with this policy is that, according to the process lifetime distribution

(Section 2), these newborn processes are unlikely to live Iongenough
to justify the cost of remote execution.

Thus a “newborn” migration policy is only justified if the system

has prior knowledge about the processes and can selectively migrate

only those processes likely to be CPU hogs. However, the ability of
the system to predict process lifetimes by name is limited, as shown

in Section 5.3.1.
Can we do better? The lifetime distribution points us towards

migrating older processes, since they have the highest probability of

4Tbe idea of migrating newborn processes might also stim from the fallacy that

process lifetimes have an exponential distribution, implying that all processes have

equal expected remaining lifetimes regardless of their age.

living long enough to justify the cost of migration, but there are two
potential problems with this strategy: (1) since the vast majority of

processes are short, there might not be enough long-lived processes

to have a significant load balancing effect, and (2) the additional

cost of migrating old processes (the memory transfer cost) might

overwhelm the benefit of migrating longer-lived processes.

The following sections address these concerns. Section 3.2 also

proposes anew preemptive migration strategy based on the lifetime

distribution.

3.1 Moving Enough Work

If only old processes are eligible for migration, and the majority of
processes are short-lived, there might not be enough old processes

to produce a significant load balancing effect.

In fact, although there are few old processes, they account for a
large part of the total CPU load. According to our process lifetime

measurements (Section 2), typically fewer than 3.590 of processes

live longer than 2 seconds, yet these processes makeup more than

60% of the total CPU load. This is due to the long tail of the

process lifetime distribution (see Figure 2). [L086] make a similar

observation.

Furthermore, we will see that the ability to migrate even a few
large jobs can have a large effect on system performance, since a
single large job on a busy host imposes slowdowns on many small
processes.

3.2 Our Migration Policy

The obvious disadvantage of preemptive migration is the need to

transfer the memory associated with the migrant process; thus, the

migration cost for an active process is much greater than the cost of
remote execution. If preemptive migration is done carelessly, this

additional cost might overwhelm the benefit of migrating processes
with longer expected lives.

For this reason, we propose a strategy that guarantees that every
migration improves the expected performance of the migrant process

and the other processes at the source host.5

Whenever more than one process is running on a host and one

process migrates away, the expected slowdown of the others de-

creases, regardless of the duration of the processes or the cost of
migration. But the slowdown of the migrant process might increase,

if the time spent migrating is greater than the time saved by running

on a less-loaded host. Thus we will perform migration only if it

improves the expected slowdown of the migrant process.

If there is no process on the host that satisfies this criterion, no
migration is done. If migration costs are high, few processes will

be eligible for migration; in the extreme there will be no migration
at all. But in no case is the performance of the system worse (in

expectation) than the performance without migration.

Using the distribution of process lifetimes, we now show how
to calculate the expected slowdown imposed on a migrant process,
and use this result to derive a minimum age for migration based on

the cost of migration. Denoting the age of the migrant process by
a; the cost of migration by c; the (eventual total) lifetime of the

migrant by L, the number of processes at the source host by n; and

the number of processes at the target host (including the migrant)

by m, we have:

‘Of course, processeson dre target host are slowed by an arriving migrant, but on
a moderately-loaded system them are almost always idle hosts, thus the number of
processesat the target host is usually zero, fn any caae,the number of processesat the

target is always less than the number at the source.
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.

t=.~ t

1 g+m+n. (5a )
If there are n processes at a heavily loaded host, then a process

should be eligible for migration only if its expected slowdown after
migration is less than n (which is the slowdown it expects in the

absence of migration).

Thus, we require ~ (~ + m + n) < n, which implies

Mi ration cost
Minimum migration age = g ~_m

This analysis extends easily to the case of heterogeneous proces-

sor speeds by applying a scale factor to n or m.

This analysis assumes that current load predicts future load; that
is, that the load at the source and target hosts will be constant
during the migration, In an attempt to evaluate this assumption,

and possibly improve it, we considered a number of alternative load

predictors, including (1) taking a load average (over an interval

of time), (2) summing the ages of the running processes at the
target host, and a (3) calculating a prediction of survivors and future

arrivals based on the distribution model proposed here. We found

that current (instantaneous) load is the best single predictor, and

that using several predictive variables in combination did not greatly
improve the accuracy of prediction. These results are in accord with

Zhou’s thesis, [Zho89] and with [Kun91 ].
The MOSIX migration policy [BSW93] is based on a restriction

that is similar to the criterion we are proposing: the age of the process
must exceed the migration cost. Thus, the slowdown imposed on

the migrant process (due to migration) must be less than 2.0. This

bound is based on the worst case, in which the migrant process
completes immediately upon arrival at the target.

The MOSIX requirement is likely to be too restrictive, for two
reasons. First, it ignores the slowdown that would be imposed at the

source host in the absence of migration (presumably there is more
than one process there, or the system would not be attempting to

migrate processes away). Secondly, it is based on the worst-case

slowdown rather than (as shown above) the expected slowdown. We
will explicitly compare the MOSIX policy with ours in Section 5.4.

4 Model of migration costs

Since migration cost has such a large effect on the performance
of preemptive load balancing, this section presents the model of
migration costs we will use in our simulation studies.

We model the cost of migrating an active process as the sum
of a jixed migration cost for migrating the process’ system state
plus a memory transfer cost that is proportional to the amount of

the process’ memory that must be transferred. We model remote

execution cost as a fixed cost; it is the same for all processes.

Throughout this paper, we refer to the following parameters:

. r: the cost of remote execution, in seconds

. j: the fixed cost of preemptive migration, in seconds

● b: the memory transfer bandwidth, in MB’s per second

. m: the memory size of migrant processes,in MB

and thus:

cost of remote execution = r

cost of preemptive migration = f + m/b

We refer to the quotient mlb as the memory transfer cost.

4.1 Memory transfer costs

The amount of a process’ memory that must be transferred during
preemptive migration depends on properties of the distributed sys-

tem. [D091 ] have an excellent discussion of this issue, and we

borrow from them here.
At the most, it might be necessary to transfer a process’ entire

memory. On a system like Sprite, which integrates virtual memory

with a distributed file system, it is only necessary to write dirty pages

to the file system before migration. When the process is restarted at

the target host, it will retrieve these pages. In this case the cost of

migration is proportional to the size of the resident set rather than
the size of memory.

In systems that use precopying (such as the V [TLC85] system),

pages are transferred while the pro~am continues to run at the

source host. When the job stops execution at the source, it will have
to transfer again any pages that have become dirty during the pre-

copy. Although the number of pages transferred might be increased,
the delay imposed on the migrant process is greatly decreased.

Additional techniques can reduce the cost of transferring memory

even more ([Zay87]).

4.2 Migration costs in real systems

The specific parameters of migration cost depend not only on the
nature of the system (as discussed above) but also on the speed of

the network. In this section, we will present repotted values for
parameters on a variety of real systems. Later we will use a trace-

driven simulator to evaluate the effect of these parameters on system
performance.

The cost of remote execution, r, on a typical UNIX workstation

connected to an Ethernet is 1-4 seconds. Systems that use re-
mote execution for load sharing have made an effort to reduce this

cost. On Sprite [D091 ] T = .33 seconds. Similarly for GLUNIX
[VGA94], an operating system designed for networks of worksta-

tions connected by an ATM network, r = .25-.5 seconds [Vah95].

The Utopia System takes z 1.0 seconds to establish a connection
between source and target hosts, but once this is done, subsequent
remote executions can take as little as .1 seconds [ZWZD93].

Sprite was implemented on a network of SPARCststion 1 work-
stations connected by a 10Mb/second Ethernet. On Sprite preemp-

tive migrations took ~ = .33 seconds plus 1/b = 2.0 seconds per

megabyte of memory transferred.
By implementing migration at the kernel level (on a cluster of

Pentium-90 and i486/DX66 workstations), MOSIX reduces the
fixed cost, ~, to only 6 ms; the inverse memory transfer bandwidth,

I/b, is .44 seconds per megabyte [Bra95].

The MIST system ([CCK+95]) is implemented on a network of
HP9000/720 workstations running HP-UX 9.03 and connected by a



10Mb/second Ethernet. On this system, preemptive migration takes

f = .24 seconds PIUSI/b = .99 seconds per megabyte of process
memory,

5 Trace-driven Simulation

In this section we present the results of a trace-driven simulation of

process migration. Wecompare twomigration strategies: ourpro-

posed age-based preemptive migration strategy (Section 3.2) and a
non-preemptive strategy that migrates newborn processes according

to the process name (similar to strategies proposed by [WZKL93]

and [Sve90]). Although weuseasimple name-based strategy, we
give it the benefit of several unfair advantages; forexarnple, the

name-lists are derived from the same trace data used by the simula-
tor.

Section 5.1 describes the simulator and the two strategies in more
detail. We use the simulator to run three experiments. First, in
Section 5.2, we evaluate the sensitivity of each strategy to the pa-

rameters r, ~, b, and m discussed in Section 4. Next, in Section 5.3,
we choose values for these parameters that are representative of

current systems and compare the performance of the two strategies

in detail. Lastly, in Section 5.4, we evaluate the analytic criterion

for migration age (proposed in Section 3.2) used in our preemptive

migration strategy, compared to criteria used in the literature.

5.1 The simulator

We have implemented a trace-driven simulation of a network of

six identical workstations.c We selected six daytime intervals from

the traces on machine PO (see Section 2.1), each from 9:00 a.m.
to 5:00 p.m. From the six traces we extracted the start times and

CPU durations of the processes. We then simulate a network where

each of six hosts executes (concurrently with the others) the process
arrivals from one of the daytime traces.

Although the workloads on the six hosts are homogeneous in

terms of the job mix and distribution of lifetimes, there is consid-
erable variation in the level of activity during the eight-hour trace.

For most of the traces, every process arrival finds at least one idle
host in the system, but in the two busiest traces, a small fraction of

processes (O.1%) arrive to find all hosts busy. In order to evaluate

the effect of changes in system load, we divided the eight-hour trace

into eight one-hour intervals. We refer to these as runs O through 7,

where the runs are sorted from lowest to highest load. Run O has a

total of- 15000 processes submitted to the six simulated hosts; Run

7 has R 30000 processes. The average duration of processes (for
all runs) is N .4 seconds. Thus the total utilization of the system, p,

is between .27 and .54.

The birth process of jobs at our hosts is burstier than a Poisson
process. For a given run and a given host, the serial correlation

in the process interrtrrival times is typically between .08 and .24,

which is significantly higher than one would expect from a Poisson
process (uncorrelated interarrival times yield a serial correlation of

0.0; perfect correlation is 1.0).

Although the start times and durations of the processes come
from trace data, the memory size of each process, which determines
its migration cost, is chosen randomly from a measured distribution

(see Section 5.2). This simplification obliterates any correlations

between memory size and other process characteristics, but it al-

%he trace-driven simulator and the trace data are available at
http:/Mp.cs.berkeley.edu/wharchol/loadbalsncing.htmf.

‘In our informal study of processes in our department, we did ml detect any
correlations between memory size end precess CPU usage. [KL88] make the sam

observation in their department.

lows us to control the mean memory size as a parameter and examine

its effect on system performance.

In our system model, we assume that processes are always ready

to run (i.e. are never blocked on I/0). During a given time interval,

we divide CPU time equally among the processes on the host.

In real systems, part of the migration time is spent on the source

host packaging the transferred pages, part in transit in the network,

and part on the target host unpacking the data, The size of these
parts and whether they can be overlapped depend on details of the

system. In our simulation we charge the entire cost of migration to

the source host. This simplification is a pessimistic assumption for

advocates of preemptive migration.

5.1.1 Strategies

We compare a non-preemptive migration strategy with our proposed
preemptive migration strategy (from Section 3.2). For purposes

of comparison, we have tried to make the policies as simple and
as similar as possible. For both types of migration, we consider
performing a migration only when a new process is born, even

though a preemptive strategy might benefit by initiating migrations

at other times. Also, for both strategies, a host is considered heavily-
loaded any time it contains more than one process; in other words,

any time it would be sensible to consider migration. Finally, we

use the same location policy in both cases: the host with the lowest

instantaneous load is chosen as the target host (ties are broken by

random selection).
Thus the only difference between the two migration policies is

which processes are considered eligible for migration:

name-based non-preemptive migration A process is eligible for

migration only if its name is on a list of processes that tend

to be long-lived. If an eligible process is born at a heavily-

loaded host, the process is executed remotely on the target host.
Processes cannot be migrated once they have begun execution.

The performance of this strategy depends on the list of eligible
process names. We derived this list by sorting the processes

from the traces according to name and duration and selecting

the 15 common names with the longest mean durations. We

chose a threshold on mean duration that is empirically optimal
(for this set of runs). Adding more names to the list detracts

from the performance of the system, as it allows more short-

lived processes to be migrated. Removing names from the list

detracts from performance as it becomes impossible to migrate

enough processes to balance the load effectively. Since we
used the trace data itself to construct the list, our results may

overestimate the performance benefits of this strategy.

age-based preemptive migration A process is eligible for migra-
tion only if it has aged for some fraction of its migration cost.

Based on the derivation in Section 3.2, this fraction is ~.—-f. .
where n (respectively m) is the number of processes at the

source (target) host. When a new process is born at a heavily-
Ioaded host, all processes that satisfy the migration criterion
are migrated away.

This strategy understates the performance benefits of preemp-
tive migration, because it does not allow the system to initiate

migrations except when a new process arrives. We have mod-

eled strategies that allow migration at other times, and they do
improve the performance of the preemptive strategy, but we
have omitted them here to facilitate comparison between the

two migration strategies.

As described in Section 3.2, we also modeled other location

policies based on more complicated predictors of future loads, but
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none of these predictors yielded significantly better performance
than the instantaneous load we use here.

5.1.2 Metrics

We evaluate the effectiveness of each strategy according to the
following performance metrics:

mean slvwdown Slowdown is the ratio of wall-clock execution
time to CPU time (thus, it is always greater than one). The
average slowdown of all jobs is a common metric of system
performance. When we compute the ratio of mean slowdowns
(asfrom different strategies) we will usenormalized slowdown,
which is the ratio of inactive time (the excessslowdown caused
by qutxwing and migration delays) to CPU time. For example,
if the (unnormalized) mean slowdown drops from 2.0 to 1.5,
the ratio of normalized mean slowdowns is .5/1.0 = .5: a
50% reduction in delay.

Mean slowdown alone, however, is not a sufficient measure of

the difference in performance of the two strategies; it understates
the advantages of the preemptive strategy for these two reasons:

1, Skewed distribution of slowdowns: Even in the absence of

migration, the majority of processes suffer small slowdowns

(typically 80% are less than 3.0. See Figure 3). The value of
the mean slowdown will be dominated by this majority.

2, User perception: From the user’s point of view, the important
processes are the ones in the tail of the distribution, because

although they are the minority, they cause the most noticeable

and annoying delays. Eliminating these delays might have a
small effect on the mean slowdown, but a large effect on a
user’s perception of performance.

Therefore, we will also consider the following two metrics:

variance of slowdown : This metric is often cited as a measure
of the unpredictability of response time [S PG94], which is a
nuisance for users trying to schedule tasks. In light of the ~is-
tribution of slowdowns, however, it may be more meaningful

to interpret this metric as a measure of the length of the tail of
the distribution; i.e. the number of jobs that experience long
delays.

number of severely slowed processes : In order to quantify the
number of noticeable delays explicitly, we consider the number

(or percentage) of processes that are severely impacted by

queueing and migration penalties.

5.2 Sensitivity to migration costs

In this section we compare the performance of the non-preemptive

and preemptive strategies over a range of values of r-, f, b and rn
(the migration cost parameters defined-in Section 4).

For the following experiments, we chose the remote execution

cost r = .3 seconds. We considered a range for the fixed migration

cost of. 1 < f < 10 seconds.

The memory transfer cost is the quotient of m (the memory size of

the migrant process) and b (the bandwidth of the network). We chose

the memory transfer cost from a distribution with the same shape
as the distribution of process lifetimes, setting the mean memory

transfer cost (MMTC) to a range of values from 1 to 64.

The shape of the memory transfer cost distribution is based on

an informal study of memory-use patterns on the same machines
from which we collected trace data. The important feature of this

distribution is that there are many jobs with small memory demands

and a few jobs with very large memory demands. The exact form of

this distribution does not affect the performance of either migration

strategy strongly, but of course the mean (MMTC) does have a
strong effect.

Figures 4a and 4b are contour plots of the ratio of the perfor-

mance of the two migration strategies using normalized slowdown.

Specifically, for each of the eight one-hour runs we calculate the

mean (respectively standard deviation) of the slowdown imposed

on all processes that complete during the hour. For each run, we
then take the ratio of the means (standard deviations) of the two

strategies. Lastly we take the geometric mean [HP90] of the eight

ratios.

The two axes in Figure 4 represent the two components of the

cost of preemptive migration, namely the fixed cost (~) and the

MMTC (m/b). As mentioned above, the cost of non-preemptive

migration (r) is fixed at .3 seconds. As expected, increasing either

the fixed cost of migration or the MMTC hurts the performance of
preemptive migration. The contour line marked 1.0 indicates the

crossover where the performance of preemptive and non-preemptive
migration is equal (the ratio is 1.0). For smaller values of the cost

parameters, preemptive migration performs bette~ for example, if
the fixed migration cost is .33 seconds and the MMTC is 2 sec-

onds, the normalized mean slowdown with preemptive migration

is - 4070 lower than with non-preemptive migration. When the
fixed cost of migration or the MMTC are very high, almost all pro-
cesses are ineligible for preemptive migration; thus, the preemptive
strategy does almost no migrations. The non-preemptive strategy

is unaffected by these costs so the non-preemptive strategy can be

more effective.

Figure 4b shows the effect of migration costs on the standard devi-

ation of slowdowns. The crossover point — where non-preemptive
migration surpasses preemptive migration — is considerably higher
in Figure 4b than in Figure 4a. ‘I%us there is a region where preemp-

tive migration yields a higher mean slowdown than non-preemptive
migration, but a lower standard deviation. The reason for this is
that non-preemptive migration occasionally chooses a process for
remote execution that turns out to be short-lived, These processes

suffer large delays (relative to their run times) and add to the tail of
the distribution of slowdowns. In the next section, we show cases in
which the standard deviation of slowdowns is actually worse with

non-preemptive migration than with no migration at all (three of the
eight runs).
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5.3 Comparison of preemptive and non-preemptive strate-
gies

In this section we choose migration cost parameters representative

of current systems (see Section 4.2) and use them to examine more
closely the performance of the two migration strategies. The values
we chose are:

. r: the cost of remote execution, .3 seconds

. ~: the fixed cost of preemptive migration, .3 seconds

● b: the memory transfer bandwidth, .5 MB per second

. m: the mean memory size of migrant processes, 1 MB

In Figures 4a and 4b, the point corresponding to these parameter

values is marked with an “X’. Figure 5 shows the performance of

the two migration strategies at this point (compared to the base case
of no migration),

Non-preemptive migration reduces the normalized mean slow-

down (Figure 5a) by less than 20% for most runs (and - 40% for

the two runs with the highest loads). Preemptive migration reduces

the normalized mean slowdown by 50% for most runs (and more

than 60% for two of the runs). The performance improvement of

preemptive migration over non-preemptive migration is typically

between 35% and 50%,

As discussed above, we feel that the mean slowdown (normalized
or not) understates the performance benefits of preemptive migra-
tion. We have proposed other metrics to try to quantify these ben-

efits. Figure 5b shows the standard deviation of slowdowns, which

reflects the number of severely impacted processes. Figures 5C and
5d explicitly measure the number of severely impacted processes,

according to two different thresholds of acceptable slowdown. By
these metrics, the benefits of migration in general appear greater, and

the discrepancy between preemptive and non-preemptive migration
appears much greater. For example in Figure 5d, in the absence of

migration, 7- 18% of processes are slowed by a factor of 5 or more.

Non-preemptive migration is able to eliminate 42- 62% of these,

which is a significant benefit, but preemptive migration consistently

eliminates nearly all (86 - 97910)severe delays.

An important observation from Figure 5b is that for several runs,
non-preemptive migration actually makes the performance of the

system worse than if there were no migration at all. For the pre-

emptive migration strategy, this outcome is nearly impossible, since
migrations are only performed if they improve the slowdowns of

all processes involved (in expectation). In the worst case, then, the
preemptive strategy will do no worse than the case of no migration

(in expectation).

Another benefit of preemptive migration is graceful degradation

of system performance as load increases (as shown in F@re 5). In

the presence of preemptive migration, both the mean and standard

deviation of slowdown are nearly constant, regardless of the overall
load on the system.

5.3.1 Shortcomings of Non-preemptive Migration

The alternate metrics discussed above shed some light on the rea-

sons for the performance difference between preemptive and non-

preemptive migration. We consider two kinds of mistakes that are

possible for either migration strategy:

M@ating short-lived jobs : This type of error imposes large
slowdowns on the migrated process,wastesnetwork resources,
and fails to effect significant load balancing. Under non-
preemptive migration, this error occurs when a process whose
name is on the eligible list turns out to be short-lived. Our
preemptive migration strategy eliminates this type of error by

guaranteeing that the performance of a migrant improves in
expectation.

Failing to migrate long-lived jobs : This type of error imposes
moderate slowdowns on a potential migrant, and, more impor.

tantly, inflicts delays on short jobs that are forced to share a
processor with a CPU hog.
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Under non-preemptive migration, this error occurs whenever
a long-lived process is not on the name-list, possibly because

it is an unknown program or an unusually long execution of

a typically brief program. Preemptive migration can correct
these errors by migrating long jobs later in their lives.

Even occasional mistakes of the second kind can have a large

impact on performance, because one long job on a busy machine
will impede many small jobs. This effect is aggravated by the serial

correlation between arrival times (see Section 5.1 ), which suggests
that a busy host is likely to receive many future arrivals.

In our simulations the second type of error was more significant:
most severely-slowed jobs suffered because they were forced to

run on a heavily-loaded host, not because they suffered migration

delays. Specifically, under non-preemptive migration almost all
(99.2%) processes that suffered slowdowns greater than 3.0 were

short processes (< 1 second) that never migrated; their slowdowns
were caused by running on a busy host.

Preemptive migration is able to help some of these processes by

performing more — and more effective — migrations, but still 96%

of severe slowdowns are due to high loads, not migration delays.

This suggests that there are additional performance benefits to be
gained from improving load balance, even at the cost of additional

migration.

The primary reason for the success of preemptive migration is
its ability to identify long jobs accurately and to migrate those jobs

away from busy hosts. In our simulations, the average lifetime of

migrant processes under non-preemptive migration was between 1.5

and 2.1 seconds (the mean lifetime for all processes is 0.4 seconds).

Our preemptive migration policy was better able to identify long

jobs; the average age of migrant processes was between 4.1 and 5.7
seconds.

There is, however, one type of migration error that is more prob-

lematic for preemptive migration than for non-preemptive migra-
tion: stale load information. A target host may have a low load
when a migration is initiated, but its load may have increased by

the time the migrant arrives. This is more likely for a preemptive
migration because the migration time is longer. In our simulations,
we found that these errors do occur, although infrequently enough

that they do not have a severe impact on performance.

Specifically, we counted the number migrant processes that ar-
rived at a target host and found that the load was higher than it had

been at the source host when migration began, For most runs, this
occurred less than O.5~o of the time (for two runs with high loads

it was O.WO). Somewhat more often, ~ S90 of the time, a-migrant

process arrived at a target host and found that the load at the target
was greater than the current load at the source. These results sug-
gest that the performance of a preemptive migration strategy might

be improved by rechecking loads at the end of a memory transfer
and, if the load at the target is too high, aborting the migration and
restarting the process on the source host.

One other potential problem with preemptive migration is the
volume of network traffic that results from large memory transfers.

In our simulations, we did not model network congestion, on the
assumption that the traffic generated by migration would not be
excessive. This assumption seems to be reasonable: under our pre-

emptive migration strategy fewer than 4~o of processes are migrated

once and fewer than. zs~o of processes are migrated more than once.
Furthermore, there is seldom more than one migration in progress
at a time.

In summary, the advantage of preemptive migration — its ability

to identify long jobs and move them away from busy hosts —

overcomes its disadvantages (longer migration times and stale load
information).
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5.4 Evaluation of analytic migration criterion

As derived in Section 3.2, the minimum age for a migrant process

according to the analytic criterion is

Minimum Migration cost

migration age = (n -m)

where n is the load at the source host and m is the load at the target
host (including the potential migrant).

In order to evaluate the performance of this criterion, we will
compare it with thejixed parameter criterion:

Minimum

migration age
= a * Migration cost

where a is a free parameter. For comparison, we will use the
bestfied parameter, which is, for each run, the best parameter for
that run, chosen empirically by excuting the run with a range of
parameter values (of course, this gives the fixed parameter criterion
a considerable advantage).

As discussed in Section 3.2, MOSIX uses the parameter a = 1.0,

based on a worst-case analysis of the slowdown imposed on the
migrant. Although this age threshold offers a strict limit on the

slowdown seen by a migrant process, it imposes greater slowdowns

on the processes that would have benefited if a younger process

were allowed to migrate away. A previous simulation study [KL88]
chose a lower value for this parameter (a = O.1), but did not explain

how it was chosen.

Figure 6 compares the performance of the analytic minimum

age criterion with the best fixed parameter (cr). The best fixed

parameter varies considerably from run to run, and appears to be
roughly correlated with the average load during the run (the runs

are sorted in increasing order of total load).
The performance of the analytic criterion is always within a few

percent of (and sometimes better than) the performance of the best

fixed value criterion, The advantage of the analytic criterion is
that it is parameterless, and therefore more robust across a vanet y
of workloads. We feel that the elimination of one free uarameter
is a useful result in an area with so many

parameters,

6 Weaknesses of the model

Our simulation ignores a number of factors
performance of migration in real systems:

(usually hr&i-tuned)

that would affect the

environment : Our migration strategy takes advantage of the used-

better-than-new property of process lifetimes. In an enviro-

nment with a different distribution, this strategy will not be

effective. We are currently examining the distribution of life-

times on a Cray C90 at the San Diego Supercomputer Center.

I/O : Our model considers all jobs CPU-bound; thus, their response

time necessarily improves if they run on a less-loaded host. For

I/O bound jobs, however, CPU contention has little effect on
response time. These jobs would benefit less from migration.

dependencies : Our model of migration cost considers only the
cost of transferring a process, and not the additional costs
imposed by future interaction and other I/O. For some jobs,

these additional costs might be significant. To see how large
a role this plays, we noted the names of the processes that
appear most frequently in our traces (with CPU time greater

than 1 second, since these are the processes most likely to
be migrated). The most common names were “ccl plus” and
“ccl ,“ both of which are CPU bound. Next most frequent were:

tm, cpp, ld, jove (a version of emacs), and ps. So although

some jobs in our traces are in reality interactive, our simple

model is reasonable for many of the most common jobs.

memory size : One weakness of our model is that we choose mem-
ory sizes from a measured distribution and therfore our model

ignores any correlation between memory size and other pro-

cess characteristics. This choice however allows us to control
the mean memory size as a parameter and examine its effect

on system performance. In this paper we’ve made the pes-
simistic simplification that a migrant’s entire memory must be
transferred, although this is not always the case.

network contention : Our model does not consider the effect of

increased network traffic as a result of process migration. We

observe, however, that for the load levels we simulated, migra-
tions are occasional (one every few seconds), and that there is

seldom more than one migration in progress at a time.

7 Conclusions

●

●

●

●

Migrating a long job away from a busy host helps not only the
long job, but also the many short jobs that are expected to arrive

at the host in the future. A busy host is expected to receive
many arrivals because of the serial correlation (“burstiness”)

of the arrival process.

Preemptive migration outperforms non-preemptive migration

even when memory-transfer costs are high, for the follow-
ing reason: non-preemptive name-based strategies choose pro-

cesses for migration that are expected to have long lives. If this
prediction is wrong, and a process runs longer than expected,

it cannot be migrated away, and many subsequent small pro-

cesses will be delayed. A preemptive strategy is able to make
a more accurate prediction about the duration of a process

(based on the its age) and, more importantly, if the prediction
is wrong, it can recover by migrating the process later.

Using the functional form of the distribution of process life-

times, we have derived a criterion for the minimum time a
process must age before being migrated. This criterion is pa-
rameterless and robust across a range of loads.

Exclusive use of mean slowdown as a metric of system perfor-
mance understates the benefits of load balancing as perceiyed
by users, and especially understates the benefits of preemptive
load balancing,
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. Although preemptive migration is difficult to implement, sev-
eral systems have chosen to implement it for reasons other

than load balancing. Our results suggest these systems would
benefit from preemptive load balancing.
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