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ABSTRACT 1. INTRODUCTION
We define the class of SMART scheduling policies. These are poli- It is well known that policies that bias towards small job sizes

cies that bias towards jobs with small remaining service times, jobs (service requirements) or jobs with small remaining service times
with small original sizes, or both, with the motivation of mini-  perform well with respect to mean response time and mean slow-
mizing mean response time and/or mean slowdown. Examples ofdown. This idea has been fundamental in many system implemen-
SMART policies include PSJF, SRPT, and hybrid policies such as tations including, for example, the case of Web servers, where it
RS (which biases according to the product of the remaining size has been shown that by giving priority to requests for small files, a
and the original size of a job). Web server can significantly reduce mean response time and mean
For many policies in the SMART class, the mean response time slowdown [9, 18]. This heuristic has also been applied to other
and mean slowdown are not known or have complex representa-application areas; such as, scheduling in supercomputing centers.
tions involving multiple nested integrals, making evaluation dif- Here too it is desirable to get small jobs out quickly to improve the
ficult. In this work, we prove three main results. First, for all overall mean response time.
policies in the SMART class, we prove simple upper and lower  Two specific examples of policies that employ this powerful heuris-
bounds on mean response time. Second, we show that all policiestic are the Shortest-Remaining-Processing-TiBRRT) policy, which
in the SMART class, surprisingly, have very similar mean response preemptively runs the job with shortest remaining processing re-
times. Third, we show that the response times of SMART policies quirement and has been proven to be optimal with respect to mean
are largely insensitive to the variability of the job size distribution. response time [19]; and the Preemptive-Shortest-Job-HglK)
In particular, we focus on the SRPT and PSJF policies and prove policy, which is easier to implement and preemptively runs the job

insensitive bounds in these cases. with shortest original size. _
While formulas are known for the mean response time under

. . . both SRPT andPSJF, these formulas are complex, involving mul-
Categories and SUbJeCt Descriptors tiple nested integrals. The formulas can be evaluated numerically,
F.2.2 Nonnumerical Algorithms and Problemg: Sequencingand  but the numerical calculations are quite time-consuming — in many
Scheduling; G.3Probability and Statistics]: Queueing Theory; situations simulating the policy is faster than evaluating the formu-

C.4 [Performance of Systemp Performance Attributes las numerically in Mathematica — and are numerically imprecise
at high loads. Naimpleclosed form formula is known for either
General Terms of these policies. The complexity of these formulas also makes it
. difficult to understand how far the mean response time of a novel
Performance, Algorithms policy is from optimal. Furthermore, one can imagine many other
scheduling policies that are hybrids of tBRPT andPSJF policies
Keywords for which response time has never been analyzed.

In the current work, we define tHBMART policies: a classifica-
tion of all scheduling policies that “do the smart thing,” i.e. follow
the heuristic of biasing towards jobs that are originally short or have
small remaining service requirements (see Definition 3.1). We then
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in the SMART class have near optimal mean response times. In fact

all SMART policies have mean response time within a factor of 2 of

optimal across all loads and all service distributions. Further, since
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at least the variability of an exponential distribution. This has es-
caped prior investigation due to the complexity of the known rep-
resentations of mean response time and is contrary to intuition in
the literature, which suggests that the mean response tiiieR¥
significantly improves under highly variable service distributions.
Throughout the paper we will consider only a preempt-resume
M/GI/1 system with a differentiable service distribution having fi-
nite variance. We focus on work conserving scheduling policies.
We let T'(z) be the steady-state response time for a job of size
x, where the response time is the time from when a job enters

the system until it completes service. Define the slowdown for

a job of sizex, S(x) def T(z)/x. Letp < 1 be the system

load. That isp €of AE[X], where X is the arrival rate of the
system andX is a random variable distributed according to the
service (job size) distributio#’(x) having density functiory ()
defined for allz > 0. Let F(z) % 1 — F(z). The expected
response time for a job of size under scheduling policy’ is

E[T(x)]F, and the expected overall response time under schedul-

def

ing policy Pis E[T]" = [° E[T(x)]" f(x)dz. Definem. (z)
Jo ' f(t)dt andm (x) of i [ t""'F(t)dt. Notice that equiva-
lently m;(z)/F(z) = E[X*|X < z] andm;(z) is theith mo-

ment of X, min(X, z). Further definep(z) = Am4(z) and

p(x) = Ay (x). Finally, defineC?[X] %' E[X?)/E[X]*> — 110

be the squared coefficient of variation &t

2. BACKGROUND

sponse time for a job of sizeis [11]:

E[T(x)]PSJF _ E[R(x)]PSJF +E[W($)]PSJF
PSJF z

E[R(z)] =)
PSJF Ama(z)

P 20— (@)

Not only have countless papers been written analyzing individ-
ual scheduling policies; many others have been written comparing
the response times of pairs of policies. Mean response time com-
parisons forSRPT andPS are made in [2, 8]; the mean response
times forFB andPS are compared in [7, 22], and all three policies
are compared in [17].

Recently however, there has been a trend in scheduling research
towards grouping policies and proving results about policies with
certain characteristics or structure. For example, the recent work
of Borst, Boxma and Nunez-Queija groups policies with respect to
their tail behavior [4, 13]. These authors have discovered that the
tail of response time unde&RPT, FB, andPS is the same as the
tail of the service time distribution; however all non-preemptive
policies, such a&CFS, have response time distributions with tails
equivalent to the integrated service distribution. Another example
of a classification of scheduling policies is with respect to their
“fairness” properties [10, 23].

All this work has had a large impact on the implementation of
scheduling policies. Across domains, scheduling policies that bias
towards small job sizes are beginning to be adopted [7, 9, 17]. This
paper continues the trend towards classifying scheduling policies

There have been countless papers written on the analysis and?y defining a particular class of scheduling policies that all have

implementation of individual scheduling policies. The “smarter”
policies, such aSRPT dominate this literature [5, 14, 15, 20, 21].
Many individual “smart” policies have been analyzed for mean re-
sponse time; two particularly important examples SRPT and
PSJF.

Before introducing the known results abd8JF and SRPT, it
is important to point out that, although formulas have been derived
for the mean performance of boBRPT andPSJF, these formulas

are not closed form. For many service distributions these formulas

similar, near optimal mean response time; thus placing additional
structure on the vast domain of scheduling policies.

3. DEFINING THE SMART CLASS

We will need the following notation throughout. Jobs will typi-
cally be denoted by, b, or c. Joba will have remaining size,
original sizes,, and arrival time,,. The original sizes, remaining
sizes, and arrival times éfandc are defined similarly.

Throughout this paper, we defijeb a to have priority over job

must be evaluated numerically. Further, the complicated nature of if job b can never run while joh is in the system.

these formulas hide any information about how properties of the
service distribution affect the mean response time.
Under theSRPT policy, the server is processing the job with the

We now defineSMART as follows.

DerINITION 3.1. Every work conserving policy € SMART

shortest remaining processing time at every moment of time. The myst obey the following properties.

SRPT policy is well known to minimize overall mean response time
[19]. The mean response time for a job of sizis as follows [20]:

E[T(x)}SRPT E[R(JZ)}SRPT + E[W(l’)}SRPT

whereE[R(z)]” (a.k.a the expected residence time for a job of size
z under policyP) is the time for a job of size to complete once it
begins execution, anB[W (z)]” (a.k.a the expected waiting time
for a job of sizer under policyP ) is the time between when a job
of sizex arrives and when it begins to receive service.

sgpr [T dt
s = [

SRPT Ama(z) + A’ F(x) _ dmo(z)
P 20— p@P 20 p@)?

We will further use the notatio®’[R]” < [ E[R(z)]” f(z)dz

andE[W]" <[> BIW (2)]” f(z)da.
Under thePSJF policy, at every moment of time, the server is

processing the job with the shortest original size. The mean re-

Bias Property: If r, > s,, then joba has priority over jobb.

Consistency Property: If job a ever receives service while jéb
is in the system, thereafter jabhas priority over jobb.

Transitivity Property: If an arriving job b preempts jolx; there-
after, until jobc receives service, every arrival, with size
sa < sy is given priority over joke.

This definition has been crafted to mimic the heuristic of biasing
towards jobs that are (originally) short or have small remaining ser-
vice requirements. Each of the Properties that make up the defini-
tion formalizes a notion of “smart” scheduling. The Bias Property
guarantees that the job being run at the server will have remaining
size smaller than the original size of all jobs in the system. In par-
ticular, this implies that ifP € SMART, P will never work on anew

'Note that every such job would have had priority over job at
timet due to the Bias Property sineg = s, < s» = 7r(t), where
ru(t) is the remaining size df at timet.
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Figure 1: This example illustrates that the SMART definition only enforces a partial ordering on the priorities of jobs in the system.
Thus a SMART policy may change its priority rule over time, e.g. fromPSJF to SRPT at time 9 in the example. In the diagram, an
arrow from a to b indicates thata has priority over b. Up until time 9, jobs have been scheduled according tBSJF . However, after
time 9, if PSJF scheduling is continued, jobd will receive service before joba, and if SRPT is used instead, joba will receive service
before job d. Both of these choices are possible regardless of the priority rulesed up to time 9.

arrival of size greater tham while a previous arrival of original cies. Thus, while serving, a job can only increase its priority, which
sizex remains in the system. The Consistency Property prevents is already the highest in the system.

time-sharing by guaranteeing that after jols chosen to run ahead To see thaBMART« policies obey the Transitivity Property, as-
of b, job b will never run ahead of jol. The Transitivity Property sume that an arrival with size, preempts a job in service with
guarantees th&MART policies do not second guess themselves: if sizes; and remaining size;. Thusp(si,71) < p(s2,s2). Un-

an arrivala is determined to be “better” than jdh future arrivals der anySMART= policy, a future arrival of sizes < sz, must have
that are smaller thasmm must also be considered “better” thiaontil p(ss,s3) > p(s2,s2) > p(s1,71), which completes the argument.
b receives service. Finally, notice thaBMART is strictly larger tharsMART*. We can

The first thing to notice about the class®fART policies is that see this by giving an example of a policy $MART that is not in
many common policies ar@MART. The SMART class includes the SMART*. One such example is a polidy that simply alternates
SRPT andPSJF policies. Further, itis easy to prove that $MART the priority function across busy periods, i.e. uses priority func-
class includes thBS policy, which assigns to each job the product tion p: (s, ) for odd numbered busy periods and priority function
of its remaining size and its original size and then gives highest pri- p2(s, ) for even numbered busy periods whexe# p. are both
ority to the job with lowest product. Likewise, tl#ART class in- in SMARTx. [
cludes many generalizations of these policies. SpecificaMyRT
includes all policies of the forni*S?, wherei, 7 > 0 and a job is
assigned the product of its remaining size raised toitheower
and its original size raised to thgh power (where again the job
with highest priority is the one with lowest product). TBBART
class also includes a range of policies having more complicated
priority schemes. We now introduce tB®ARTx* classification, a
subset 08MART, in order to illustrate the breadth of the static prior-
ity schemes that are allowed in tBEART class. Note tha$MART:
includes all commoiSMART policies (e.g.SRPT, PSJF, andRS).

Beyond the static priority policies SMART*, SMART policies can
also change how they make decisions based on system state infor-
mation, randomization, or even arbitrarily as long as the Bias, Con-
sistency, and Transitivity Properties are maintained. These gener-
alizations are possible because $MART definition does not force
a total ordering on the priorities of jobs in the system. Instead,
only apartial orderingis forced, and thuSMART policies can, for
instance, change how the policy makes decisions at arrival and de-
parture instants. See Figure 1 for an example. Traditional analysis
of scheduling policies assumes that policies obey one fixed rule.
In analyzingSMART policies, we are analyzing policies that may
change their prioritization rule over time.
The power of theMART classification is that we can show that all
SMART policies have near optimdl[7’]. Think of SMART policies
as policies that provide “SMAIl Response Timé&y “doing the
THEOREM 3.1. SMART+ G SMART smart thing.” HoweverSMART policies can differ significantly in
PROOF Suppose policyP € SMART+. To see that the Bias their p_erformgnce on other me;ri_cs. F_or ir_lstance, b)_/ in_corporating
Property is maintained, let, andr; be the original size and cur- the original size and the remaining size into the priority scheme,

DEFINITION 3.2. A policy P € SMARTx if, at any given time,
P schedules the job with the highest priority and gives each job of
sizes and remaining size a priority using a fixed priority function
p(s,r) such that fors; < s2 andry < r2, p(s1,71) > p(s2,72).

rent remaining size of a tagged job in the queue. Suppesad theRS policy and its variations are able to improve mean slowdown
7o correspond to the the original size and current remaining size ©Ver SRPT when the service distribution is highly variable. Thus,
of another job in the queue such that > s;. It follows that the.SMART class prov!deg a starting pomt.fo.r picking a scheduling
$2 > 12 > 81 > r1. Thus,p(s2, m2) < p(s1,71), S0 job 2 will not policy when an application wants to optimize for batf7’] and

be served. some other metric of interest.

To see thaBMART:x policies obey the Consistency Property ob-
serve thap(s,r1) > p(s,r2) for r1 < ro under allSMART* poli- 2We thank Hanoch Levy for his suggestion of this acronym.




Despite its breadth, many policies are excluded fBORT. The
class ofSMART policies does not include any non-preemptive poli-
cies, not even Shortest-Job-Fir&JF); nor does it include any
age based policies, not even Least-Attained-SenligS). This
restrictiveness is necessary in order to show S¥RT policies
provide near optimaE[T] across all service distributions and alll
loads. For example, thoudbAS can provide near optimat|T’]

this will complete the proof.

In the remainder of the proof, in order to analyiZg , we track
“contributing” work. At timet;_, the “contributing” work will be
equal toV,”.

We define “Small Contributors” as all jobs of original sizezx.
ForSMART policies, all Small Contributors in the system at time
serve ahead gf, and thus add their remaining size at tieto the

under service distributions having decreasing failure rates, when response time of jol,,. We say a Small Contributor is “contribut-

the service distribution has an increasing failure lafs is far
from optimal.

4. BOUNDING THE PER-SIZE RESPONSE
TIME UNDER SMART POLICIES

ing” the whole time that it is in the system and its “contribution” at
any time is its remaining size. Thus, at tiye every Small Con-
tributor in the system is “contributing” the amount of work it adds
to the response time ¢f..

We define “Large Jobs” as all jobs of original size . For
all SMART policies, at mosbnelLarge Jobg, in the system at time

In this section, we present an upper bound on the mean respons§. can add to the response time of jgb; call job ¢ a “Large

time for a job of sizer under policies irBMART. The purpose of
this bound is solely in its use towards deriving an upper bound on
E[T] underSMART policies in Section 5.

Define V2T to be the steady state work in the system with
remaining size less than underSRPT. Further, defineB,(y) to
be the length of a busy period started by a job of giznd made
up of only arrivals having size less than

THEOREM 4.1. The mean response time for a job of sizen-
der any policyP € SMART satisfies:

)\’f“rvlz (I)

@) < 21 - (@)

~ 1-p(z)

Further,
T(z)" <u Ba (a: n VfRPT>

Observe that the upper bound @&{7'(z)]” for P € SMART
in Theorem 4.1 is a combination of the residence tim&8iF,
z/(1 - p(z)), and the waiting time o8RPT. Intuitively, this is not
surprising. PSJF maximizes residence time amoSyART poli-

cies because it allows the greatest number of arrivals to preempt

service.SRPT maximizes waiting time amongMART policies be-

cause it allows the greatest amount of work already in the system to

finish before an arriving job. This observation illustrates the tight-

Contributor.” The uniqueness ofis proven in Lemma 4.1. We say
that Large Jolz becomes a Large Contributor whenbecomes:.
The amount jokz: adds to the response time ff is the remaining
size ofc at timet;,,, which can be at most. We considek to be
“contributing” . at all times when. < z. Thus, attime;_, cis
“contributing” the amount it adds to the response timg,of

We now limit our discussion to times € [to, t;,] wheret, is
the last moment beforg. arrives that no job is “contributing.” So,
atto either a Large Job becomes a Large Contributor, a Small Con-
tributor arrives, orj, arrives ¢o = t;,). Further, fort € (to,t;,),
there is always either a Large or Small Contributor in the system.
We refer toty as the beginning of the “contribution period” into
which j, arrives.

We defineV,F' () as the total work being contributed by Small
and Large Contributors in the system at timender P, where, as
usual, the definition of Contributors is relative to jgp arriving
at timet;, . It is important to point out tha¥,” (¢;,) = Vi, i.e.
the work contributing whep,. arrives is exactly the work that will
serve ahead of;.

There are three types of periods into whighcan arrive:

Type (a) A period idle of contributing jobs (i.et;, = to). Thus,
job j, seesV,” (to) = 0 for all P € SMART.

ness of the upper bound and the proof of the theorem formalizes of TYP€ (b) A contribution period started by a Small Contributor

these ideas. Note that, though the following proof of Theorem 4.1
for SMART is quite involved, a simpler proof is possible if Theo-
rem 4.1 is proven instead only fét € SMART*. The fixed priority
structure used iBMART= policies significantly simplifies the proof.

PrROOF We break up the mean response time for a tagged job

J= Of sizex arriving to the steady state system at titpe into: (i)
VP, the portion of the work in the system whgparrives that will
complete undeP beforej,, completes, (iijx work made up by,
and (iii) the work done byP on jobs that arrive aftej,. arrives.

Notice that the Bias Property guarantees that (iii) includes, at
most, all arriving jobs of size less than Thus, we can stochasti-
cally upper bound(z)* with the length of a busy period started
by = + V;I' work and made up of only arrivals having sizex:

T(z)" <a Be(z+Vy)
for P € SMART. In expectation, this gives:
poat E[V,F]

1= p(x)

It remains to bound’”. We will show thatV,” <, VSEFT for
any P € SMART. Noting that [20]:

E[T(2)]

)\7712(1')

BV = 5=

arriving and contributing;, < z. Thus,Vy (o) = s, under
all P € SMART.

Type (c) A contribution period started by a Large Jobecoming
a Large Contributor and contributing i.e. . becomes: at
timeto. Thus,V.” (to) = = under allP € SMART.

Letp?, pf’, andp? be the time-average probability f arriving
into a contribution period of type (a), (b), and (c) respectively under
policy P € SMART. Recall thatj, is a Poisson arrival, so PASTA
applies. Notice that these are the only legal possibilities for what
can occur at time, and that there is zero probability of more than
one event happening.

Claim (1) pf > pSRFPT, pf > pRPT and thup? < pSFPT.

CLAIM (1): We divide the proof of claim (1) into two parts.

Part (a): We will first show thatpZ is minimized undeSRPT.
Under SRPT, the system is idle of Small and Large Contributors
exactly when there are no jobs in the system having remaining size
< z. Using PASTA and the fact that, is a Poisson arrival, this
gives thatp ®°T = 1 — p(x), i.e. the time-average idle time in
a system having arrival rate and job sizesX, = min(z, X).

All P € SMART are also guaranteed to be idle of Small and Large
Contributors when there are no jobs in the system with remaining



size< x; however they may also be idle of Contributors whenthere  Note that a Large Job must be receiving service when it becomes

existjobs in the system with remaining size x if these jobs will a Large Contributor, and thus a Large Job can only become a Large

not receive priority oveyj, whenj, arrives. Thusp? > pSfFPT, Contributor when the system is idle of Small Contributors due to
Part (b): We now prove thap? > p7 7. A type (b) period is the Bias Property.

started when a Small Contributor arrives into a system idle of con-  We first show that a Large Jab# b, in the system at time;,

tributors. Small Contributors arrive independentlyf®faccording cannot become a Large Contributor. Note thag, by definition,

to a Poisson process with raté’(z). Thus,pi’ > py®F7 because  nota Large Contributor i, and thus must receive service in order

SRPT is the least likelyP € SMART to be idle of contributing jobs to become a Large Contributor. Furtheis in the queue at; and

(from part (a)). It follows thap? < pI%FP7 sincepl > pIBFT b is at the server. So can never receive service whigis in the

andpl > pgBPT. We can also see thaf < pSFFT directly by system because of the Consistency Property.

noting thatall Large Jobs can become Large Contributors and thus  To complete the proof, we will show that a Large Jothat ar-

start type (c) periods undSRPT. We are now finished with the rives aftert; cannot become a Large Contributor. Againmust

proof of claim (1). receive service before timg, in order to become a Large Con-
Consider whatj, sees when it arrives into the system. With tributor. Furtherc must be in the system at tintg, to be a Large
probabilityp? > p37F7T j, sees atype (a) period, and with prob-  Contributor. However, upon arrival. = r. > z, so if job ¢ runs
ability pf’ + p =1 —pl <1 — pJRPT = pgRPT 4 (,SRPT ahead of jobb, the Consistency Property gives jolpriority over
j= Sees a contribution period. Thus, in proviig <., V> *P7 it job b. Further, since: is in the system at timg;,,, b cannot receive
suffices analyze th&,” (¢;, ) in a contribution period, i.e. givef. service until then, and thus the Transitivity Property will giue
arrives into a type (a) or (b) period. priority over b when j, arrives. This contradicts the fact thiats
We will complete the proof of the theorem by showing that a Large Contributor. Thus can never run ahead éf andc can

Claim (2) V7 (to) <e: VSRPT(t), i.e. the initial jump of the ~ "EVe'Pecome alarge Contributor.]

contribution period is smaller undét than undelSRPT.

Claim (3) Fort € (to,t;,), VI (t) is always reduced at the full
2 ©. BOUNDING MEAN RESPONSE TIME

service rate and increases only at the Poisson arrivals of Smal

Contributors under alP € SMART. UNDER SMART POLICIES

; Py SRPT (y . : — . In this section we derive bounds on the overall mean response
Claim (4) V' (t5,) <st Vo (t,) for Poisson arrivaj; dur time of policies inSMART. To do this, it will be helpful to start
by deriving bounds on thBSJF policy, then use those bounds to
CLAIM (2): Note that the initial contribution in a type (b) period  derive bounds on th8RPT policy, and finally use those bounds to
is at most the initial contribution in a type (c) period. The claim bound the entir&éMART class.
then follows becausgl > p3 7 andp? < pSEPT. We derive two types of bounds. The first type illustrates that all
CLAIM (3): To prove claim (3), notice that, under &l € SMART policies are near optimal in a very strong sense: they all
SMART, Large Jobs that are not Large Contributors cannot receive have E[T'] within a factor of 2 of optimal.
service givert € (to,t;,) (Lemma 4.1). Thus, alP € SMART
reduceV;” (¢) at the maximal rate for all, i.e. the full service rate

ing a contribution period.

is devoted to contributing jobs. Further, under&lle SMART, ar- THEOREM 5.1. For P € SMART:
riving Large Jobs cannot become Large Contributors after time
(Lemma 4.1). Thus, the only arrivals that affécf’ (¢) are Small E[T}SRPT < E[T}P < QE[T]SRPT
Contributors, which arrive according to a Poisson process of rate - - 3
AF(x) under allP € SMART, including SRPT. E[T)?RPT < E[TP7F < ZE[T)PRPT
CLAIM (4): To prove claim (4) we will analyze the contributing
work thatj,, sees upon arrival into a contribution period unéfee
SMART andSRPT . Note thatj,, arriving into a contribution period We prove these bounds in Section 5.3. These bounds serve to
under P seesV, |(V, > 0) contributing work. By claim (2),  validate the heuristic of “biasing towards small job sizes,” but they
Vz (to) <st Vo™ (to). Thus, there is some random tire > do not provide any simpler representation f6f7’] under SMART
to whenVi” (to) £ VSRPT (¢) for the first time. Ift;, > t* > ¢, policies. The second type of result in this section provides com-

underSRPT thenV,” (¢,,) def VSRPT (1. (by claim (3) and the putationally simple bounds oR|[T] that are insensitive to the vari-

definition of*). If to < t;, < t*, thenj, sees a stochastically ability of the service distribution. The bounds do not involve nested

larger amount of contributing work (by the definition 6. So, integrals; yet we will see in Sec@ion 6 that they are nevertheless ac-
VP (t;,) <ot VSRPT (1, ). O curate. AI! of these bounds will _be stated in terms of the mean
o ’ response time of Processor-ShariR$), a very common schedul-
We now prove the Lemma used in the proof of Theorem 4.1. ing policy that serves as a convenient benchmark for mean response

time. Under thePS policy, at any point in time, the service rate is

shared evenly among all jobs in the system. Recall that the overall
mean response time undes is [11]: E[T]7° = ?[T);]. Recall

LEMMA 4.1. There is at most one Large Contributor in the sys-
tem at any time, where a Large Contributor is defined with respect
to job j.. Further, no Large Jobs that are not Large Contributors 5 ) o S
can receive service while a Large or Small Contributor is in the thatC®[X]is the square coefficient of variation af.
system.

PROOF. Supposé becomes a Large Contributor at tirheand THEOREM 5.2. Let f(z) be decreasing and define
is the only Large Contributor in the systemat We will show that

no other Large Jobs can become Large Contributors vhigein W) — 1—0p 1 1
the system. (p) = B\1= P



Then forP € SMART: We now move to bounding the waiting time undRSJF.

h(p)E[T)’S < E[T)SEPT < (2 _2y lh(p)) E[T)PS LEMMA 5.2. Let K satisfyAma(z) < Kzp(z). Then

3 3 3
PSJF 1.2 PS psir _ K P
E[T] < (5t 3h0) EM] BW)™ < 35 (15 + 1ol =)
E[TP < <,é + p“; p) (2+ C2[X]) + gh(p)> E[T)PS PROOF. Using Lemma A.3, we have:
The above bounds are tighter than those previously known relating E[W]PSJF < 2)\/ )‘ff @) ‘;J dx
—p(x

mean response time undeRPT andPS [2, 8].

An important point to notice is that the bounds BRPT and _ K p +1 (1=p)
PSJF are insensitive to the variability of the service distribution. - 2)\ 08 P
Although, as discussed in Section 2, there are known formulas
for the mean response times 8RPT andPSJF, the complicated 0
nature of these formulas hid this fact from prior research. The
simplicity of the bounds in 5.2 illuminate this practical property.
We will see later that these bounds are in faght in the sense
that there are distributions with low variability for which the upper
bounds are exact and there are distributions with high variability
for which the lower bounds are exact.

A second important point about Theorem 5.2 is that it provides a
lower bound on the mean response time of the optimal scheduling PROOF Recall that the p.d.f. ofnin(X1, X2) iS fmin(z) =
policy, SRPT. Despite the fact that there is a known formula for the  2f(z)F(z). Thus
mean performance &RPT, researchers have been forced to resort A\
to computational techniques when comparing the performance of E[w]PSJF > / /

0
A
= —/ 20° f(t)F (t)dt
4 0

new scheduling policies to that &PT. The lower bound in 5.2
provides asimplebenchmark that can be used to understand how

Using our bounds on the waiting time und&sJF, we can now
derive bounds on the overall mean response time ur8&F.

LEMMA 5.3.
E[W]PS7E > 2E[min(X1,X2)2]

whereX; and X, are independent random variables from the ser-
vice distribution on an M/GI/1.

f(t)dtdx

far the mean response times of other scheduling policies are from
optimal.

The results of Theorem 5.2 are presented in greater generality in
Theorems 5.4, 5.5, 5.7, 5.8, and 5.9 in this section, where they are
stated in terms of a paramet&r. This K parameter is a constant
such thatvma (z) < Kxzp(z), which serves to bound then(x)
term that arises in Theorem 4.1. Theorem 5.3 shows that the con-
stantK may be set a§ when the service distribution is decreasing,
as has been done in Theorem 5.2. But in more generality, it defines PSJF K K 1—p PS
K in a way that is highly tied to the tail properties fz). Note E[T] = (5 + (? B 1) (T) log(1 = p)) EIT]
that K < 1 under all service distributions.

O

THEOREM 5.4. Let K satisfyAma(z) < Kzp(x). Then

ProOE The result follows from Lemmas 5.1 and 5.2.]

'THEOREM 5.3. Leti be a positive integer. Defingsuch that
2’ f(z) is decreasing and < 7 + 1. Then,

nuH@>s( >xmxm

THEOREM 5.5.

i—j+1

E[T]PSJF Z
i—jt2

(AEmmthnghl_p)

4E[X]

We defer the proof of Theorem 5.3 to Section 5.4 and we will
first use this bound oAm2(x) to bound the performance BSJF,
SRPT, and allSMART policies. In reading this section, note that Ap-

_pbdl—M)Eﬁfs

ProOFE The result follows from Lemmas 5.1 and 5.3.]

pendix A contains a list of integrals that are useful in these calcula-
tions and that Appendix B contains some crucial technical lemmas. 5.2 Bounding mean response timeunder SRPT

51 Bounding mean response time under PSJF Using the results from the previous section and the technical lem-

In this section, we derive bounds on the overall mean responsemas in Appendix B, we can now derive bounds BT]**"*.
time undeiPSJF, E[T]757F. To accomplish this, we will first cal- Similar bounds have been derived in the case of the M/IM/1/SRPT

culate the residence tim&[R]7S”", and then bound the waiting queue with the focus of understanding the performance of SRPT

time, E[W]757F. Both of these preliminary bounds will be useful asp — 1 [1]. Our goal s to obtain bounds on the M/GI/L/SRPT

in lat . I In all of the follow fs ob that queue that are tight acropsandG. To do this, we first bound the
|r; ater sections as well. In all of the following proofs, observe that | - " o ciqence tima[R)SRET
awp(@) = Az f(z).

LEMMA 5.1. LEMMA 5.4.

2

E[R"PT > BIX] + 5_)\ — %E[mm(Xth) ]

whereX; and X, are independent random variables from the ser-
vice distribution on an M/GI/1.

BRJPSIF = S log(1 - p)

PROOF. Follows immediately from the fact thd[R]"5/F =

57 8 de and L p(x) = A f(x). O




ProoFr Recall that the p.d.f. ofnin(X1, X2) iS fmin(z) =
2f(x)F(z). Thus

E[R]SEFPT f(z) <x +' OI 0] )dt> dz
f(x) <x + 1, p(t > dx
E[X] + % /OOO o (x)p(z)dx — )\/;O t2f(t)F(t)dt
]

Interestingly, we can exactly characterize the improverS&RT
makes ovePSJF. Define

ef [ Az f(2)F ()
B [ e

Although we cannot evaluatB[I1V;] exactly, we can show that the

mean response time BSJF is exactlyE[W,] away from optimal.
THEOREM 5.6.
E[T]SRPT — E[T]PSIF 7E[W2}

PrROOF Using Lemma B.1, we have:

E[T]SRPT E[R]SRPT+E[W]PSJF +E[W2]
_ %E[R]PSJF + %E[R}SRPT + E[W]PSJF
— E[T)PSIE %E[R]PSJF n %E[R]SRPT
— E[T]PSJF . E[WQ]

O

We are now ready to bounl[T]°F7,

THEOREM 5.7. Let K satisfydma(z) < Kzp(x). Then

BITSEPT < (K = 50 (6= 1) (52 ) g1 - ) B

PROOF Using Lemmas B.1 and B.4, we have:

BITSRPT =~ Clog(1 — p) - S E[RISRPT
+E[W]PSJF+E[R]SRPT
< 75 log(1 — p)
+% ((IK_’); +2Kp+ (2K — 1) log(1 — p)>
- <K - % F(K—1) (1‘7”> log(1 — p)) B[T]PS
O

THEOREM 5.8.
E[T]SRPT > (ﬂ) log(1 — p) E[T]"S
P
PrROOF Using Lemma B.5, we have:

E[T]SRPT = _% log(1 — p) — %E[R]SRPT
+E[W]PSJF+E[R]SRPT

1
L og1 = p) = Log(1 —
N og(1 —p) X og(1 —p)

\Y

An interesting observation about Theorem 5.8 is that the lower
bound we have proven is exactly the mean residence time under
PSJF. Further, Theorem 5.8 is perhaps the most important result
of this section because it providessanple lower bound on the
optimal mean response time. Thus, it provides a simple benchmark
that can be used in evaluating the mean response times of other
scheduling policies.

5.3 Bounding the mean response time under
all SMART policies

In this section, we derive an upper bound on the overall mean
response time under any policy in tB®ART class. Note that the
lower bound onSRPT serves as a lower bound on the mean re-
sponse time of any policy in tlMART class since&SRPT is known
to be optimal with respect to overall mean response time.

To derive an upper bound on the response timeMsRT poli-
cies, we start by integrating the expression#j’(z)] from The-
orem 4.1. The result is shown in Theorem 5.9. Before we present
this result, we make another interesting observation: the mean re-
sponse time of angMART policy is at most2E[WW,] away from
optimal, where (by Theorem 5.6) we can think Bfi72] as be-
ing the difference in mean mean response time bet&&RHT and
PSJF. Another way to think abouk[WW5] is stated in Lemma B.1:

2E[W2] _ E[R}PSJF _ E[R]SRPT.

LEMMA 5.5. For P € SMART:

E[T)" < E[T)*T 4+ 2E[W,)

Using the previous lemma, we can prove Theorem 5.1.

PrROOF (of Theorem 5.1)

We will prove the first statement only, since the second statement
follows using the same technique.

It is clear thatE[T]9#FT < E[T]¥ becauseSRPT is optimal
with respect to mean response time. Thus we need only show the
upper bound. Using Lemmas 5.5 and B.5, we have

E[T)" < E[T]SRPTJrQE[Wg}

_ E[T]SRPT (1 Ty 2 [I;/[Qj}w]sgpi[WQ])
PSJF

< E[T)EPT (1 n E[W]E[T]S;E[WQ]>

S 2E[T]SRPT

O

We are now ready to upper bound the mean response time of
policies inSMART.

THEOREM 5.9. Let K satisfyAma(z) < Kxp(z). Then for
P € SMART:

p K—-1 p? AE[min(X1, X2)?]
ETF < <Z+ 5 *ZJr(l*P)T[X]

(522) (52 =)

PROOF Using Theorem 5.4, Lemma B.1, and Lemma 5.4, we
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Figure 2: These plots show our analytic upper and lower bounds on th mean response time o$MART policies (shown in solid lines).
The metric shown, E[T](1 — p), depicts the improvement made bySMART policies overPS. Between the solid lines are dashed lines
showing our tighter bounds for PSJF and SRPT. The service distribution in these plots is Weibull with mean 1 and (a°?[X] = 1,
(b) C?[X] = 10.865, respectively.

have: we know thats f(s) is decreasing for somgsuch that < ¢ + 1.
x x t .
E[T)” < E[TPF 4+ EWe) / mi(t)dt = / / s f(s)dsdt
iy K 1 t=0 t=0 Js=0
< log(1 — p) + — E[T)"% — ZE[R]*FFT ¢ b
2 2 > / t' f(t) / s dsdt
< B tog(1- )+ 4Bl BT
= — eI e
1 2 — /
-3 <E[X] + g—/\ - 5E[xnin(Xl,XQ)Z}) ¢ Jl+ L Ji=o
p K-1 p? )\E[min(Xl,Xg)Q] = T n 1mi+1(1') (2
L R Y /5 s R
[x] In this chain of equalities, the inequality follows directly from the
+ (K — 3> (ﬂ) log(1 — p)> E[T)PS assymption thaff(s) is def:reasing. .
2 p Finally, combining Equation 1 and Equation 2, we can complete
the proof.
U 1
zmi(z) —miv1(z) > mmiﬂ(w)
Theorems 5.9 and 5.8 give simple benchmarks that provide upper i—j+1
and lower bounds on the mean response times of “smart” schedul- (m) zmi(z) > mit1()

ing policies. These bounds will hopefully facilitate the evaluation
of policies that are na8MART but still claim to provide good mean

response time. ) ) ) )
A few comments are in order about this theorem. First, notice

54 A proof of Theorem 5.3 that in this work we only apply the lemma in the case whetel,
) o ) but the more general form is useful for investigating higher mo-
The upper bounds for aiMART policies are expressed in terms  ants. Second, notice that becauseis defined in terms of,

of a constant(, which is the smallest constant satisfyingn:(¢) < wherej is such that? f () is decreasing i, K is related to the
Kzp(x), wherem, (z) = [ ¢'f(t)dt. In this section we derive  \ariapility of the service distribution. Third, notice that for any

this constants’. service distributions” < 1.
PrROOF (of Theorem 5.3)
First, we observe the following equality: 6. EVALUATING THE BOUNDS
N S In order to better understand the bounds derived in the previous
/ mi(t)dt = / / s'f(s)dsdt sgctllon,.we investigate how the bounds perform for specific service
+=0 1—0 Js—0 distributions.
T T The Weibull and Erlang distributions are convenient ways to eval-
= / s'f(s) / dtds uate the effects of variability in the service distribution because they
S:O t=s allow a wide range of variability and tail behavior. Investigating the
= / (x — s)sif(s)ds effect of the weight of the tail of the service distribution is impor-
s=0 tant in light of many recent measurements that have observed job
= ozm(z) — mit1(x) 1) size distributions that are well-modeled by heavy tailed distribu-
tions such as the Weibull distribution [3, 6, 12, 16].
We will now use this relation to boungh;;1(x) in terms of The goal in investigating how the bounds perform under these

m;(x) by first boundingfoz m;(t)dt. Remember, by assumption  service distributions is twofold. Our first goal is to illustrate the
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Figure 3: These plots show a comparison of the bounds proven foa] SRPT and (b) PSJF with simulation results. The service
distribution in these plots is a Weibull with mean 1, and varying coefficiat of variation. System loads are 0.5, 0.7, and 0.9 in the first,

(a) SRPT

(b) PSIF

second, and third rows respectively. These plots illustrate thatite lower bounds on bothPSJF and SRPT are tight.
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Figure 4: These plots show a comparison of our analytic bounds pran for (a) SRPT and (b) PSJF with exact results. The service
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and second rows respectively. These plots illustrate that the ugp bounds on bothPSJF and SRPT are tight.



similar mean response time attained by all policie3MART, and in An important point that Figure 3 illustrates is the surprisingly

particularPSJF andSRPT. It is well known thatSRPT is optimal, small effect of variability on the overall mean response time. The

but it is quite surprising to the authors of this paper how close to fact thatPS is insensitive to variability in the service distribution

optimal the mean response time B8JF is — and further, how is usually thought of as a very special property. However, these

close to optimal the mean response time of 8M§RT policy is. plots illustrate that botlBRPT andPSJF are almost insensitive to
Second, our bounds on the mean response timeSdfF and the variability of the service distribution ong&®[X] > 1 under

SRPT are insensitive to the variability of the service distribution. moderatep. This is in contrast to the common intuition that as the

Thus, it is difficult to tell how tight they are without investigating  variability of the service distribution increases there will be a larger

the mean response time of these two policies under a wide rangeseparation between the large and small job sizes an®GRRE will

of service distributions. This section will illustrate that the bounds perform significantly better.

are tight in the sense that there are low variability service distri- N .

butions under which the mean response time of these two policies6-2 ~ The Erlang distribution

match our upper bounds, and high variability service distributions ~ When looking at the Weibull distribution in the previous section,

under which the mean response times of these two policies matchwe were able to illustrate that our lower bounds are tight as the

our lower bounds. Thus, no insensitive bounds can improve signif- variability of the service distribution increases. Our goal in this

icantly on the bounds presented in this work. section is to show that our upper bounds are tight as the variability
) o decreases. Thus, we investigate how our bounds perform under
6.1 The Weibull distribution the Erlang service distribution. Th&rl(n, x) distribution is the

We will first investigate the Weibull distribution. The Weibull ~ convolution ofn exponential distributions each having rate
distribution is defined by (z; b, ¢) — o (8)° The key differences between the Erlang and Weibull distribu-

We will be concerned with the case where< 1, which corre- tions are (1) the Erlang distribution is limited to haviag[X] < 1

sponds to the case where the distribution is at least as variable asand (2) under the Erlang distribution, agrows smaller, smallef

an exponential. To get a feeling for the variability of this distribu- are necessary in order to guarantee ’*’“?fﬁ(?) IS decreasing. This
. . L L second point means that, for Erlang distributions, we must weaken
tion notice that forc = 1/1 wherel is limited to positive integer

2 21 the bounds by setting’ = 1 (as discussed in Section 5.4).

values, we have that*(X] = (;) — 1. Thus, as:decreasesthe ™, "cio\ e 4’ the hounds derived fGRPT andPSJF are com-
distribution becomes more variable very quickly. : -~

P - pared with the exact values for these policies under an Erlang ser-

First, in Figure 2, the bounds in Theorem 5.2 SRPT, PSJF, . o .
i . . vice distribution. We follow the same methodology for generating

and SMART are pictured as a function ¢f both in the case of a . . - .

- R - L . L these plots as described in the previous section. Throughout these
service distribution with low variability and high variability. These

plots illustrate the huge performance gains (a factdr ef3 under g?l?éweedrpoe\?gr)?f the service distribution is fixed at 1, GH(lX]
high load) made b$RPT andPSJF overPS. We also see that any . . ;
SMART policy will have a huge performance gain o8 — also a i ';ﬁg:%?s'tlrlx)it{gtﬁsﬂfg }givl:/gﬁzrbli)noundﬁﬁw andPSJF are
factor of 2 — 3 under high load. Further, the mean response time 9 Y-
of any of theSMART policies cannot differ too much from the mean
respgnse time of thrza optimal polic$RPT. 7. CONCLUSION

Second, in Figure 3, the bounds 8IRPT andPSJF in Theorem The heuristic of “biasing towards small job sizes” is commonly
5.2 are compared with the exact mean response time of these poli-accepted as a way of providing good mean response times. How-
cies under a Weibull service distribution. It is important to point ever, some practical roadblocks remain.
out that the “exact results” for the points in these plots are often  First, the mean response time for policies that bias towards small
obtained via simulation, and then spot-checked via analysis. This jobs is often not known; and even in the cases where the policy has
is because simulations, despite being slow, are still orders of mag-been analyzed, the resulting formula is typically complex, involv-
nitude faster than Mathematica in evaluating the expressions for theing multiple nested integrals. Consequently, evaluating the mean
exact mean response time. Thus, the methodology used in creatingesponse times of such policies via lengthy simulation is actually
all the plots in this paper was to pick a mesh of points on the plot faster than evaluating the known complex analytical expressions
and calculate the exact mean response time of these points. Thenysing Mathematica.
using these points to judge the accuracy of simulations, determine Second, there is the question of how such policies that bias to-
how many iterations of simulations are necessary to attain the de-wards small jobs compare to each other with respect to mean re-
sired accuracy, and fill in the plot using simulated valuHse fact sponse time. There are many possible variants of such policies,
that simulations are used to generate these plots underscores theeach with their own benefits and weaknesses. Some P8dF,
importance of the results in this paper, which provide simple, back- are relatively easy to implement, because priority is never updated.

of-the-envelope calculations for the mean response time. Others, likeSRPT, are more complex to implement because they
Throughout the plots in Figure 3, the mean of the service distri- require updating priorities as jobs run, but have superior fairness
bution is fixed at 1, and’?[X] is allowed to vary. The values of properties. Yet others, lik&S improve mean slowdown. How-
range betwee and2/9, which corresponds t6[X] betweenl ever, when choosing among these policies, it is not clear how much
and more thari00. Thus, the plots show the effect variability has one sacrifices with respect to mean response time in order to attain
on E[T] underSRPT andPSJF. these other benefits. The little work that exists on comparing mean

Note that the lower bound becomes extremely accurate when theresponse time among policies compares specific, individual poli-
service distribution has high variability, but that the upper bound is cies and leads to bounds that are not as tight as the ones provided
loose throughout these plots. The reason the upper bound appearm this work.
loose in this figure is that we keep the parametex 1, so the This paper fills both gaps above. We begin by formalizing the
Weibull cannot haveC?[X] < 1. Thus, since the upper bound heuristic of biasing towards short jobs by defining SMART class,
applies for all distributions, it is tight for distributions with much  which is very broadly defined to include all policies that “do the
lower C?[X]. We will illustrate this in the next section. smart thing,” i.e. bias towards jobs that are originally short or have



small remaining service requirements (see Definition 3.1). Interest-
ingly, SMART policies do not necessarily obey a static priority rule,
but may also switch between different priority rules (e.g. changing

betweenSRPT andPSJF over time). We provesimpleupper and
lower bounds on the mean response of 8M¥RT policy. These
bounds show that aiMART policies haver[T'] within a factor of 2

of optimal. This result theoretically validates the heuristic of “bias-
ing towards small job sizes” that many system designers apply. We

then go on to prove even tighter bounds on two particBl&RT
policies: SRPT andPSJF .

An unanticipated discovery of this work is the near insensitiv-

ity of SMART policies to the variability of the job size distribution
(particularly whenC?[X] > 1). It is well known that the mean
response time dPS is insensitive to the service distribution’s vari-
ability, but the fact that mean response time for policies 8RPT
andPSJF is nearly insensitive of the service distribution’s variabil-
ity is counter the folklore of the community.

Beyond the definition of thBMART class, we believe some of the

observations in this work can impact future scheduling research.
First, our results show that understanding the mean response tim
of a SMART policy in the case of an M/M/1 queue may suffice to
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16:678-690, 1968.

considered (e.g. distributions with decreasing failure rates), how [20] L. E. Schrage and L. W. Miller. The queue M/G/1 with the

canSMART be extended? ArMART policies near optimal for mea-
sures other tha®’[17]?
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APPENDIX
A. USEFUL INTEGRALS

This section contains integrals that are useful in the ¢aficns of Sec-

tion 5.

LEMMA A.l.
/I p(t)dt = A /z(x —OLf(8)dt = zp(x) — Ama ()
JO JO

LEMMA A.2.

E[R]SRPTz/(;OO f(:t)/z L)dz:/:o E(t) dt

o 1—p(t 1—p()
LEMMA A.3.
° Naf@p(@) , _ p
[ G ppte = 7, st = o)
PROOF
> p@p@) oo _p@) [T @)
I et = (@), Il




O

LEMMA A4
< Azf(z)p(x)
/0 fp(x)dmf—log(l—p)—
PROOF
< p'(@)p(x) _ oo
o de = —p(x)log(l — p(x))lg
- /0 —¢/ (@) log(1 — p())da
= —plog(1—p)— (1 —p)log(l—p)—p
= —log(l—p)—p
[l
LEMMA A5,
7T G~ £ tontt )+ 29
1—p
PROOF
*©p@e@? o p@?® |7 [ 29 @)p@)
LG = e h
= P olea(l— p)+ 2
1—-p
l

B. SOME TECHNICAL LEMMATA

In performing the analyses 8RPT andSMART, we need a few technical
lemmata. These lemmata relate the waiting time and residenceuimdes

PSJF, SRPT, and our upper bound BMART policies. Define

det [ Az?f(2)F(x)
Bl [ R
LEMMA B.1.
2E[W2] — E[R]PSJF _ E[R}SRPT

PrROOF Using Lemmas 5.1 and A.2, we have:

e~ [ AL,
= /oof( /Ot 1gip (x))) dxdt
- /\/oolfi(;) /oo /O )dacdt
- —Xlog(l—p /Ooljp())dx
_ BRPSIF _ B[RSRPT
U
LEMMA B.2.

E[R(w)]SRPT + 2E[W(I)}PS]F
A (@)p(e)

T PSJF
= PO G w2

PROOF Using Lemma A.1, we have:

E[R(x)}SRPT + 2E[W(x)]PSJF

_ T dt Ama(x)
= /0 1= o) " 1= p0))?

_ z [T p(x)—p(t) Ama(x)
-~ 1—p() /o (1= p(x))(1 - ﬂ(t))dt - (1 - p(z))?
z (z) — p(t) Ama ()
ol et G
_ z _ zp(z) — zp(x) + Ama(z) Ama(z)
1-p(z) (1 —p(x)) (1-p(x))?
_ pPsIF | Ama(2)p(z)
= RO T e
O
LEMMA B.3.

E[R(a))* T 4 2B[W ()] 757" > E[R(«))"57F
PROOF Using Lemma A.1, we have:

E[R(.’L')}SRPT 4 2E[W($)]PSJF

o = p(a) = plt) Ams (z)

- 1—p(a) /0 (1= p(@)(A = p(?)) e (1= p(x))?
e [Tp@) —p(t)  ma(a)
> = Gt ey
_ x _zp(x) —zp(z) + Ama(z) Ama(x)
1= p(z) (1= p(z))? (1= p(x))?

= BR@)TST

U

LEMMA B.4. Let K satisfydma(z) < Kzp(x).

E[R]SRPT + QE[W]PSJF

1/ Kp
< X (17 +2Kp+ (2K —1)log(1 fp))

PROOF Using Lemma B.2 and Lemma A.5, we have:

E[R]SEPT 4 /000 %Jc(m)dag
T ms () p(x)
= /O <1—p(w) + (1— p(x ))2>f($)d$
1 K [ \zf(z)p(z 2
= *glog(lprX/O Wdz
2
B _i log(1 = p) + 5 <1— +2log(1 — p) +2p
i <1K_ +2KP+(2K—1)log(l—p)>
U
LEMMA B.5.

E[R]SEPT { op[WPSIF > E[RPSIF  and thus
E[W]PSJF > E[WQ}

PROOF Using Lemma B.3, we have:
o0
E[R]SRPT-"-QE[W]PSJF > / E[R(I)}PSJFf(LE)dCC
0
— E[R}PSJF
Further, combining the above with Lemma B.1, we have:

BW|PSTF > % (E[R]PSJF — E[R]SRPT) = E[Ws]

O

)



