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ABSTRACT
We define the class of SMART scheduling policies. These are poli-
cies that bias towards jobs with small remaining service times, jobs
with small original sizes, or both, with the motivation of mini-
mizing mean response time and/or mean slowdown. Examples of
SMART policies include PSJF, SRPT, and hybrid policies such as
RS (which biases according to the product of the remaining size
and the original size of a job).

For many policies in the SMART class, the mean response time
and mean slowdown are not known or have complex representa-
tions involving multiple nested integrals, making evaluation dif-
ficult. In this work, we prove three main results. First, for all
policies in the SMART class, we prove simple upper and lower
bounds on mean response time. Second, we show that all policies
in the SMART class, surprisingly, have very similar mean response
times. Third, we show that the response times of SMART policies
are largely insensitive to the variability of the job size distribution.
In particular, we focus on the SRPT and PSJF policies and prove
insensitive bounds in these cases.
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Scheduling; G.3 [Probability and Statistics]: Queueing Theory;
C.4 [Performance of Systems]: Performance Attributes
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1. INTRODUCTION
It is well known that policies that bias towards small job sizes

(service requirements) or jobs with small remaining service times
perform well with respect to mean response time and mean slow-
down. This idea has been fundamental in many system implemen-
tations including, for example, the case of Web servers, where it
has been shown that by giving priority to requests for small files, a
Web server can significantly reduce mean response time and mean
slowdown [9, 18]. This heuristic has also been applied to other
application areas; such as, scheduling in supercomputing centers.
Here too it is desirable to get small jobs out quickly to improve the
overall mean response time.

Two specific examples of policies that employ this powerful heuris-
tic are the Shortest-Remaining-Processing-Time (SRPT) policy, which
preemptively runs the job with shortest remaining processing re-
quirement and has been proven to be optimal with respect to mean
response time [19]; and the Preemptive-Shortest-Job-First (PSJF)
policy, which is easier to implement and preemptively runs the job
with shortest original size.

While formulas are known for the mean response time under
bothSRPT andPSJF, these formulas are complex, involving mul-
tiple nested integrals. The formulas can be evaluated numerically,
but the numerical calculations are quite time-consuming – in many
situations simulating the policy is faster than evaluating the formu-
las numerically in Mathematica – and are numerically imprecise
at high loads. Nosimpleclosed form formula is known for either
of these policies. The complexity of these formulas also makes it
difficult to understand how far the mean response time of a novel
policy is from optimal. Furthermore, one can imagine many other
scheduling policies that are hybrids of theSRPT andPSJF policies
for which response time has never been analyzed.

In the current work, we define theSMART policies: a classifica-
tion of all scheduling policies that “do the smart thing,” i.e. follow
the heuristic of biasing towards jobs that are originally short or have
small remaining service requirements (see Definition 3.1). We then
validate the heuristic of “biasing towards small job sizes” by deriv-
ing simple bounds on the mean response time of any policy in the
SMART class, as well as tighter bounds on two important policies in
the class:PSJF andSRPT. Our bounds illustrate thatall policies
in theSMART class have near optimal mean response times. In fact
all SMART policies have mean response time within a factor of 2 of
optimal across all loads and all service distributions. Further, since
our bounds are close, they allow us to predict this mean response
time quite accurately.

Our bounds also show the effect of the variability of the ser-
vice distribution on the overall mean response time. Surprisingly,
the mean response time is largely insensitive to the variability of
the service distribution, provided that the service distribution has



at least the variability of an exponential distribution. This has es-
caped prior investigation due to the complexity of the known rep-
resentations of mean response time and is contrary to intuition in
the literature, which suggests that the mean response time ofSRPT
significantly improves under highly variable service distributions.

Throughout the paper we will consider only a preempt-resume
M/GI/1 system with a differentiable service distribution having fi-
nite variance. We focus on work conserving scheduling policies.
We let T (x) be the steady-state response time for a job of size
x, where the response time is the time from when a job enters
the system until it completes service. Define the slowdown for

a job of sizex, S(x)
def
= T (x)/x. Let ρ < 1 be the system

load. That isρ
def
= λE[X], whereλ is the arrival rate of the

system andX is a random variable distributed according to the
service (job size) distributionF (x) having density functionf(x)

defined for allx ≥ 0. Let F (x)
def
= 1 − F (x). The expected

response time for a job of sizex under scheduling policyP is
E[T (x)]P , and the expected overall response time under schedul-

ing policyP isE[T ]P =
∫

∞

0
E[T (x)]P f(x)dx. Definemi(x)

def
=

∫ x

0
tif(t)dt andm̃i(x)

def
= i

∫ x

0
ti−1F (t)dt. Notice that equiva-

lently mi(x)/F (x) = E[Xi|X ≤ x] andm̃i(x) is the ith mo-

ment ofXx
def
= min(X, x). Further defineρ(x) = λm1(x) and

ρ̃(x) = λm̃1(x). Finally, defineC2[X]
def
= E[X2]/E[X]2 − 1 to

be the squared coefficient of variation ofX.

2. BACKGROUND
There have been countless papers written on the analysis and

implementation of individual scheduling policies. The “smarter”
policies, such asSRPT dominate this literature [5, 14, 15, 20, 21].
Many individual “smart” policies have been analyzed for mean re-
sponse time; two particularly important examples areSRPT and
PSJF .

Before introducing the known results aboutPSJF andSRPT, it
is important to point out that, although formulas have been derived
for the mean performance of bothSRPT andPSJF, these formulas
are not closed form. For many service distributions these formulas
must be evaluated numerically. Further, the complicated nature of
these formulas hide any information about how properties of the
service distribution affect the mean response time.

Under theSRPT policy, the server is processing the job with the
shortest remaining processing time at every moment of time. The
SRPT policy is well known to minimize overall mean response time
[19]. The mean response time for a job of sizex is as follows [20]:

E[T (x)]SRPT = E[R(x)]SRPT + E[W (x)]SRPT

whereE[R(x)]P (a.k.a the expected residence time for a job of size
x under policyP ) is the time for a job of sizex to complete once it
begins execution, andE[W (x)]P (a.k.a the expected waiting time
for a job of sizex under policyP ) is the time between when a job
of sizex arrives and when it begins to receive service.

E[R(x)]SRPT =

∫ x

0

dt

1 − ρ(t)

E[W (x)]SRPT =
λm2(x) + λx2F (x)

2(1 − ρ(x))2
=

λm̃2(x)

2(1 − ρ(x))2

We will further use the notationE[R]P
def
=

∫
∞

0
E[R(x)]P f(x)dx

andE[W ]P
def
=

∫
∞

0
E[W (x)]P f(x)dx.

Under thePSJF policy, at every moment of time, the server is
processing the job with the shortest original size. The mean re-

sponse time for a job of sizex is [11]:

E[T (x)]PSJF = E[R(x)]PSJF + E[W (x)]PSJF

E[R(x)]PSJF =
x

1 − ρ(x)

E[W (x)]PSJF =
λm2(x)

2(1 − ρ(x))2

Not only have countless papers been written analyzing individ-
ual scheduling policies; many others have been written comparing
the response times of pairs of policies. Mean response time com-
parisons forSRPT andPS are made in [2, 8]; the mean response
times forFB andPS are compared in [7, 22], and all three policies
are compared in [17].

Recently however, there has been a trend in scheduling research
towards grouping policies and proving results about policies with
certain characteristics or structure. For example, the recent work
of Borst, Boxma and Nunez-Queija groups policies with respect to
their tail behavior [4, 13]. These authors have discovered that the
tail of response time underSRPT, FB, andPS is the same as the
tail of the service time distribution; however all non-preemptive
policies, such asFCFS, have response time distributions with tails
equivalent to the integrated service distribution. Another example
of a classification of scheduling policies is with respect to their
“fairness” properties [10, 23].

All this work has had a large impact on the implementation of
scheduling policies. Across domains, scheduling policies that bias
towards small job sizes are beginning to be adopted [7, 9, 17]. This
paper continues the trend towards classifying scheduling policies
by defining a particular class of scheduling policies that all have
similar, near optimal mean response time; thus placing additional
structure on the vast domain of scheduling policies.

3. DEFINING THE SMART CLASS
We will need the following notation throughout. Jobs will typi-

cally be denoted bya, b, or c. Joba will have remaining sizera,
original sizesa, and arrival timeta. The original sizes, remaining
sizes, and arrival times ofb andc are defined similarly.

Throughout this paper, we definejob a to have priority over job
b if job b can never run while joba is in the system.

We now defineSMART as follows.

DEFINITION 3.1. Every work conserving policyP ∈ SMART

must obey the following properties.

Bias Property: If rb > sa, then joba has priority over jobb.

Consistency Property: If job a ever receives service while jobb
is in the system, thereafter joba has priority over jobb.

Transitivity Property: If an arriving job b preempts jobc; there-
after, until jobc receives service, every arrival,a, with size
sa < sb is given priority over jobc.1

This definition has been crafted to mimic the heuristic of biasing
towards jobs that are (originally) short or have small remaining ser-
vice requirements. Each of the Properties that make up the defini-
tion formalizes a notion of “smart” scheduling. The Bias Property
guarantees that the job being run at the server will have remaining
size smaller than the original size of all jobs in the system. In par-
ticular, this implies that ifP ∈ SMART, P will never work on anew

1Note that every such joba would have had priority over jobb at
time t due to the Bias Property sincera = sa < sb = rb(t), where
rb(t) is the remaining size ofb at timet.



Figure 1: This example illustrates that theSMART definition only enforces a partial ordering on the priorities of jobs in the system.
Thus a SMART policy may change its priority rule over time, e.g. fromPSJF to SRPT at time 9 in the example. In the diagram, an
arrow from a to b indicates thata has priority over b. Up until time 9, jobs have been scheduled according toPSJF . However, after
time 9, if PSJF scheduling is continued, jobd will receive service before joba, and if SRPT is used instead, joba will receive service
before job d. Both of these choices are possible regardless of the priority rule used up to time 9.

arrival of size greater thanx while a previous arrival of original
sizex remains in the system. The Consistency Property prevents
time-sharing by guaranteeing that after joba is chosen to run ahead
of b, job b will never run ahead of joba. The Transitivity Property
guarantees thatSMART policies do not second guess themselves: if
an arrivala is determined to be “better” than jobb, future arrivals
that are smaller thana must also be considered “better” thanb until
b receives service.

The first thing to notice about the class ofSMART policies is that
many common policies areSMART. TheSMART class includes the
SRPT andPSJF policies. Further, it is easy to prove that theSMART

class includes theRS policy, which assigns to each job the product
of its remaining size and its original size and then gives highest pri-
ority to the job with lowest product. Likewise, theSMART class in-
cludes many generalizations of these policies. Specifically,SMART

includes all policies of the formRiSj , wherei, j > 0 and a job is
assigned the product of its remaining size raised to theith power
and its original size raised to thejth power (where again the job
with highest priority is the one with lowest product). TheSMART
class also includes a range of policies having more complicated
priority schemes. We now introduce theSMART∗ classification, a
subset ofSMART, in order to illustrate the breadth of the static prior-
ity schemes that are allowed in theSMART class. Note thatSMART∗
includes all commonSMART policies (e.g.SRPT, PSJF, andRS).

DEFINITION 3.2. A policyP ∈ SMART∗ if, at any given time,
P schedules the job with the highest priority and gives each job of
sizes and remaining sizer a priority using a fixed priority function
p(s, r) such that fors1 ≤ s2 andr1 < r2, p(s1, r1) > p(s2, r2).

THEOREM 3.1. SMART∗ ( SMART

PROOF. Suppose policyP ∈ SMART∗. To see that the Bias
Property is maintained, lets1 andr1 be the original size and cur-
rent remaining size of a tagged job in the queue. Supposes2 and
r2 correspond to the the original size and current remaining size
of another job in the queue such thatr2 > s1. It follows that
s2 > r2 > s1 > r1. Thus,p(s2, r2) < p(s1, r1), so job 2 will not
be served.

To see thatSMART∗ policies obey the Consistency Property ob-
serve thatp(s, r1) > p(s, r2) for r1 < r2 under allSMART∗ poli-

cies. Thus, while serving, a job can only increase its priority, which
is already the highest in the system.

To see thatSMART∗ policies obey the Transitivity Property, as-
sume that an arrival with sizes2 preempts a job in service with
sizes1 and remaining sizer1. Thusp(s1, r1) < p(s2, s2). Un-
der anySMART∗ policy, a future arrival of sizes3 < s2, must have
p(s3, s3) > p(s2, s2) > p(s1, r1), which completes the argument.

Finally, notice thatSMART is strictly larger thanSMART∗. We can
see this by giving an example of a policy inSMART that is not in
SMART∗. One such example is a policyP that simply alternates
the priority function across busy periods, i.e. uses priority func-
tion p1(s, r) for odd numbered busy periods and priority function
p2(s, r) for even numbered busy periods wherep1 6= p2 are both
in SMART∗.

Beyond the static priority policies ofSMART∗, SMART policies can
also change how they make decisions based on system state infor-
mation, randomization, or even arbitrarily as long as the Bias, Con-
sistency, and Transitivity Properties are maintained. These gener-
alizations are possible because theSMART definition does not force
a total ordering on the priorities of jobs in the system. Instead,
only apartial ordering is forced, and thusSMART policies can, for
instance, change how the policy makes decisions at arrival and de-
parture instants. See Figure 1 for an example. Traditional analysis
of scheduling policies assumes that policies obey one fixed rule.
In analyzingSMART policies, we are analyzing policies that may
change their prioritization rule over time.

The power of theSMART classification is that we can show that all
SMART policies have near optimalE[T ]. Think of SMART policies
as policies that provide “SMAll Response Times”2 by “doing the
smart thing.” However,SMART policies can differ significantly in
their performance on other metrics. For instance, by incorporating
the original size and the remaining size into the priority scheme,
theRS policy and its variations are able to improve mean slowdown
overSRPT when the service distribution is highly variable. Thus,
theSMART class provides a starting point for picking a scheduling
policy when an application wants to optimize for bothE[T ] and
some other metric of interest.

2We thank Hanoch Levy for his suggestion of this acronym.



Despite its breadth, many policies are excluded fromSMART. The
class ofSMART policies does not include any non-preemptive poli-
cies, not even Shortest-Job-First (SJF); nor does it include any
age based policies, not even Least-Attained-Service (LAS). This
restrictiveness is necessary in order to show thatSMART policies
provide near optimalE[T ] across all service distributions and all
loads. For example, thoughLAS can provide near optimalE[T ]
under service distributions having decreasing failure rates, when
the service distribution has an increasing failure rateLAS is far
from optimal.

4. BOUNDING THE PER-SIZE RESPONSE
TIME UNDER SMART POLICIES

In this section, we present an upper bound on the mean response
time for a job of sizex under policies inSMART. The purpose of
this bound is solely in its use towards deriving an upper bound on
E[T ] underSMART policies in Section 5.

DefineV SRPT
x to be the steady state work in the system with

remaining size less thanx underSRPT. Further, defineBx(y) to
be the length of a busy period started by a job of sizey and made
up of only arrivals having size less thanx.

THEOREM 4.1. The mean response time for a job of sizex un-
der any policyP ∈ SMART satisfies:

E[T (x)]P ≤
x

1 − ρ(x)
+

λm̃2(x)

2(1 − ρ(x))2

Further,

T (x)P ≤st Bx

(
x + V SRPT

x

)

Observe that the upper bound onE[T (x)]P for P ∈ SMART

in Theorem 4.1 is a combination of the residence time ofPSJF,
x/(1− ρ(x)), and the waiting time ofSRPT. Intuitively, this is not
surprising. PSJF maximizes residence time amongSMART poli-
cies because it allows the greatest number of arrivals to preempt
service.SRPT maximizes waiting time amongSMART policies be-
cause it allows the greatest amount of work already in the system to
finish before an arriving job. This observation illustrates the tight-
ness of the upper bound and the proof of the theorem formalizes of
these ideas. Note that, though the following proof of Theorem 4.1
for SMART is quite involved, a simpler proof is possible if Theo-
rem 4.1 is proven instead only forP ∈ SMART∗. The fixed priority
structure used inSMART∗ policies significantly simplifies the proof.

PROOF. We break up the mean response time for a tagged job
jx of sizex arriving to the steady state system at timetjx

into: (i)
V P

x , the portion of the work in the system whenjx arrives that will
complete underP beforejx completes, (ii)x work made up byjx,
and (iii) the work done byP on jobs that arrive afterjx arrives.

Notice that the Bias Property guarantees that (iii) includes, at
most, all arriving jobs of size less thanx. Thus, we can stochasti-
cally upper boundT (x)P with the length of a busy period started
by x + V P

x work and made up of only arrivals having size< x:

T (x)P ≤st Bx(x + V P
x )

for P ∈ SMART. In expectation, this gives:

E[T (x)]P ≤
x + E[V P

x ]

1 − ρ(x)

It remains to boundV P
x . We will show thatV P

x ≤st V SRPT
x for

anyP ∈ SMART. Noting that [20]:

E[V SRPT
x ] =

λm̃2(x)

2(1 − ρ(x))

this will complete the proof.
In the remainder of the proof, in order to analyzeV P

x , we track
“contributing” work. At timetjx

, the “contributing” work will be
equal toV P

x .
We define “Small Contributors” as all jobs of original size< x.

ForSMART policies, all Small Contributors in the system at timetjx

serve ahead ofjx and thus add their remaining size at timetjx
to the

response time of jobjx. We say a Small Contributor is “contribut-
ing” the whole time that it is in the system and its “contribution” at
any time is its remaining size. Thus, at timetjx

every Small Con-
tributor in the system is “contributing” the amount of work it adds
to the response time ofjx.

We define “Large Jobs” as all jobs of original size≥ x. For
all SMART policies, at mostoneLarge Job,c, in the system at time
tjx

can add to the response time of jobjx; call job c a “Large
Contributor.” The uniqueness ofc is proven in Lemma 4.1. We say
that Large Jobc becomes a Large Contributor whenrc becomesx.
The amount jobc adds to the response time ofjx is the remaining
size ofc at timetjx

, which can be at mostx. We considerc to be
“contributing” rc at all times whenrc ≤ x. Thus, at timetjx

, c is
“contributing” the amount it adds to the response time ofjx.

We now limit our discussion to timest ∈ [t0, tjx
] wheret0 is

the last moment beforejx arrives that no job is “contributing.” So,
at t0 either a Large Job becomes a Large Contributor, a Small Con-
tributor arrives, orjx arrives (t0 = tjx

). Further, fort ∈ (t0, tjx
),

there is always either a Large or Small Contributor in the system.
We refer tot0 as the beginning of the “contribution period” into
which jx arrives.

We defineV P
x (t) as the total work being contributed by Small

and Large Contributors in the system at timet underP , where, as
usual, the definition of Contributors is relative to jobjx arriving
at timetjx

. It is important to point out thatV P
x (tjx

) = V P
x , i.e.

the work contributing whenjx arrives is exactly the work that will
serve ahead ofjx.

There are three types of periods into whichjx can arrive:

Type (a) A period idle of contributing jobs (i.e.tjx
= t0). Thus,

job jx seesV P
x (t0) = 0 for all P ∈ SMART.

Type (b) A contribution period started by a Small Contributorb
arriving and contributingsb < x. Thus,V P

x (t0) = sb under
all P ∈ SMART.

Type (c) A contribution period started by a Large Jobc becoming
a Large Contributor and contributingx, i.e. rc becomesx at
time t0. Thus,V P

x (t0) = x under allP ∈ SMART.

LetpP
a , pP

b , andpP
c be the time-average probability ofjx arriving

into a contribution period of type (a), (b), and (c) respectively under
policy P ∈ SMART. Recall thatjx is a Poisson arrival, so PASTA
applies. Notice that these are the only legal possibilities for what
can occur at timet0 and that there is zero probability of more than
one event happening.

Claim (1) pP
a ≥ pSRPT

a , pP
b ≥ pSRPT

b , and thuspP
c ≤ pSRPT

c .

CLAIM (1): We divide the proof of claim (1) into two parts.
Part (a): We will first show thatpP

a is minimized underSRPT.
UnderSRPT, the system is idle of Small and Large Contributors
exactly when there are no jobs in the system having remaining size
< x. Using PASTA and the fact thatjx is a Poisson arrival, this
gives thatpSRPT

a = 1 − ρ̃(x), i.e. the time-average idle time in
a system having arrival rateλ and job sizesXx = min(x, X).
All P ∈ SMART are also guaranteed to be idle of Small and Large
Contributors when there are no jobs in the system with remaining



size< x; however they may also be idle of Contributors when there
exist jobs in the system with remaining size< x if these jobs will
not receive priority overjx whenjx arrives. Thus,pP

a ≥ pSRPT
a .

Part (b): We now prove thatpP
b ≥ pSRPT

b . A type (b) period is
started when a Small Contributor arrives into a system idle of con-
tributors. Small Contributors arrive independently ofP according
to a Poisson process with rateλF (x). Thus,pP

b ≥ pSRPT
b because

SRPT is the least likelyP ∈ SMART to be idle of contributing jobs
(from part (a)). It follows thatpP

c ≤ pSRPT
c sincepP

a ≥ pSRPT
a

andpP
b ≥ pSRPT

b . We can also see thatpP
c ≤ pSRPT

c directly by
noting thatall Large Jobs can become Large Contributors and thus
start type (c) periods underSRPT. We are now finished with the
proof of claim (1).

Consider whatjx sees when it arrives into the system. With
probabilitypP

a ≥ pSRPT
a , jx sees a type (a) period, and with prob-

ability pP
b + pP

c = 1 − pP
a ≤ 1 − pSRPT

a = pSRPT
b + pSRPT

c ,
jx sees a contribution period. Thus, in provingV P

x ≤st V SRPT
x it

suffices analyze theV P
x (tjx

) in a contribution period, i.e. givenjx

arrives into a type (a) or (b) period.
We will complete the proof of the theorem by showing that

Claim (2) V P
x (t0) ≤st V SRPT

x (t0), i.e. the initial jump of the
contribution period is smaller underP than underSRPT.

Claim (3) For t ∈ (t0, tjx
), V P

x (t) is always reduced at the full
service rate and increases only at the Poisson arrivals of Small
Contributors under allP ∈ SMART.

Claim (4) V P
x (tjx

) ≤st V SRPT
x (tjx

) for Poisson arrivaljx dur-
ing a contribution period.

CLAIM (2): Note that the initial contribution in a type (b) period
is at most the initial contribution in a type (c) period. The claim
then follows becausepP

b ≥ pSRPT
b andpP

c ≤ pSRPT
c .

CLAIM (3): To prove claim (3), notice that, under allP ∈
SMART, Large Jobs that are not Large Contributors cannot receive
service givent ∈ (t0, tjx

) (Lemma 4.1). Thus, allP ∈ SMART

reduceV P
x (t) at the maximal rate for allt, i.e. the full service rate

is devoted to contributing jobs. Further, under allP ∈ SMART, ar-
riving Large Jobs cannot become Large Contributors after timet0
(Lemma 4.1). Thus, the only arrivals that affectV P

x (t) are Small
Contributors, which arrive according to a Poisson process of rate
λF (x) under allP ∈ SMART, includingSRPT.

CLAIM (4): To prove claim (4) we will analyze the contributing
work thatjx sees upon arrival into a contribution period underP ∈
SMART andSRPT . Note thatjx arriving into a contribution period
underP seesV P

x |(V P
x > 0) contributing work. By claim (2),

V P
x (t0) ≤st V SRPT

x (t0). Thus, there is some random timet∗ >

t0 whenV P
x (t0)

d
= V SRPT

x (t∗) for the first time. Iftjx
≥ t∗ ≥ t0

underSRPT thenV P
x (tjx

)
def
= V SRPT

x (tjx
) (by claim (3) and the

definition of t∗). If t0 < tjx
< t∗, thenjx sees a stochastically

larger amount of contributing work (by the definition oft∗). So,
V P

x (tjx
) ≤st V SRPT

x (tjx
).

We now prove the Lemma used in the proof of Theorem 4.1.

LEMMA 4.1. There is at most one Large Contributor in the sys-
tem at any time, where a Large Contributor is defined with respect
to job jx. Further, no Large Jobs that are not Large Contributors
can receive service while a Large or Small Contributor is in the
system.

PROOF. Supposeb becomes a Large Contributor at timet1 and
is the only Large Contributor in the system att1. We will show that
no other Large Jobs can become Large Contributors whileb is in
the system.

Note that a Large Job must be receiving service when it becomes
a Large Contributor, and thus a Large Job can only become a Large
Contributor when the system is idle of Small Contributors due to
the Bias Property.

We first show that a Large Jobc 6= b, in the system at timet1,
cannot become a Large Contributor. Note thatc is, by definition,
not a Large Contributor att1, and thus must receive service in order
to become a Large Contributor. Further,c is in the queue att1 and
b is at the server. Soc can never receive service whileb is in the
system because of the Consistency Property.

To complete the proof, we will show that a Large Jobc that ar-
rives aftert1 cannot become a Large Contributor. Again,c must
receive service before timetjx

in order to become a Large Con-
tributor. Further,c must be in the system at timetjx

to be a Large
Contributor. However, upon arrivalsc = rc > x, so if job c runs
ahead of jobb, the Consistency Property gives jobc priority over
job b. Further, sincec is in the system at timetjx

, b cannot receive
service until then, and thus the Transitivity Property will givejx

priority over b whenjx arrives. This contradicts the fact thatb is
a Large Contributor. Thusc can never run ahead ofb, andc can
never become a Large Contributor.

5. BOUNDING MEAN RESPONSE TIME
UNDER SMART POLICIES

In this section we derive bounds on the overall mean response
time of policies inSMART. To do this, it will be helpful to start
by deriving bounds on thePSJF policy, then use those bounds to
derive bounds on theSRPT policy, and finally use those bounds to
bound the entireSMART class.

We derive two types of bounds. The first type illustrates that all
SMART policies are near optimal in a very strong sense: they all
haveE[T ] within a factor of 2 of optimal.

THEOREM 5.1. For P ∈ SMART:

E[T ]SRPT ≤ E[T ]P ≤ 2E[T ]SRPT

E[T ]SRPT ≤ E[T ]PSJF ≤
3

2
E[T ]SRPT

We prove these bounds in Section 5.3. These bounds serve to
validate the heuristic of “biasing towards small job sizes,” but they
do not provide any simpler representation ofE[T ] underSMART
policies. The second type of result in this section provides com-
putationally simple bounds onE[T ] that are insensitive to the vari-
ability of the service distribution. The bounds do not involve nested
integrals; yet we will see in Section 6 that they are nevertheless ac-
curate. All of these bounds will be stated in terms of the mean
response time of Processor-Sharing (PS), a very common schedul-
ing policy that serves as a convenient benchmark for mean response
time. Under thePS policy, at any point in time, the service rate is
shared evenly among all jobs in the system. Recall that the overall
mean response time underPS is [11]: E[T ]PS = E[X]

1−ρ
. Recall

thatC2[X] is the square coefficient of variation ofX.

THEOREM 5.2. Letf(x) be decreasing and define

h(ρ) =

(
1 − ρ

ρ

)
log

(
1

1 − ρ

)



Then forP ∈ SMART:

h(ρ)E[T ]PS ≤ E[T ]SRPT ≤

(
2

3
−

ρ

3
+

1

3
h(ρ)

)
E[T ]PS

E[T ]PSJF ≤

(
1

3
+

2

3
h(ρ)

)
E[T ]PS

E[T ]P ≤

(
−

1

6
+

ρ(1 − ρ)

4

(
2 + C2[X]

)
+

7

6
h(ρ)

)
E[T ]PS

The above bounds are tighter than those previously known relating
mean response time underSRPT andPS [2, 8].

An important point to notice is that the bounds forSRPT and
PSJF are insensitive to the variability of the service distribution.
Although, as discussed in Section 2, there are known formulas
for the mean response times ofSRPT andPSJF, the complicated
nature of these formulas hid this fact from prior research. The
simplicity of the bounds in 5.2 illuminate this practical property.
We will see later that these bounds are in facttight in the sense
that there are distributions with low variability for which the upper
bounds are exact and there are distributions with high variability
for which the lower bounds are exact.

A second important point about Theorem 5.2 is that it provides a
lower bound on the mean response time of the optimal scheduling
policy,SRPT. Despite the fact that there is a known formula for the
mean performance ofSRPT, researchers have been forced to resort
to computational techniques when comparing the performance of
new scheduling policies to that ofSRPT. The lower bound in 5.2
provides asimplebenchmark that can be used to understand how
far the mean response times of other scheduling policies are from
optimal.

The results of Theorem 5.2 are presented in greater generality in
Theorems 5.4, 5.5, 5.7, 5.8, and 5.9 in this section, where they are
stated in terms of a parameterK. This K parameter is a constant
such thatλm2(x) ≤ Kxρ(x), which serves to bound theλm2(x)
term that arises in Theorem 4.1. Theorem 5.3 shows that the con-
stantK may be set at2

3
when the service distribution is decreasing,

as has been done in Theorem 5.2. But in more generality, it defines
K in a way that is highly tied to the tail properties off(x). Note
thatK ≤ 1 under all service distributions.

THEOREM 5.3. Let i be a positive integer. Definej such that
xjf(x) is decreasing andj < i + 1. Then,

mi+1(x) ≤

(
i − j + 1

i − j + 2

)
xmi(x)

We defer the proof of Theorem 5.3 to Section 5.4 and we will
first use this bound onλm2(x) to bound the performance ofPSJF,
SRPT, and allSMART policies. In reading this section, note that Ap-
pendix A contains a list of integrals that are useful in these calcula-
tions and that Appendix B contains some crucial technical lemmas.

5.1 Bounding mean response time under PSJF
In this section, we derive bounds on the overall mean response

time underPSJF, E[T ]PSJF . To accomplish this, we will first cal-
culate the residence time,E[R]PSJF , and then bound the waiting
time,E[W ]PSJF . Both of these preliminary bounds will be useful
in later sections as well. In all of the following proofs, observe that
d

dx
ρ(x) = λxf(x).

LEMMA 5.1.

E[R]PSJF = −
1

λ
log(1 − ρ)

PROOF. Follows immediately from the fact thatE[R]PSJF =∫
∞

0

xf(x)
1−ρ(x)

dx and d
dx

ρ(x) = λxf(x).

We now move to bounding the waiting time underPSJF.

LEMMA 5.2. LetK satisfyλm2(x) ≤ Kxρ(x). Then

E[W ]PSJF ≤
K

2λ

(
ρ

1 − ρ
+ log(1 − ρ)

)

PROOF. Using Lemma A.3, we have:

E[W ]PSJF ≤
K

2λ

∫
∞

0

λxf(x)ρ(x)

(1 − ρ(x))2
dx

=
K

2λ

(
ρ

1 − ρ
+ log(1 − ρ)

)

LEMMA 5.3.

E[W ]PSJF ≥
λ

4
E[min(X1, X2)

2]

whereX1 andX2 are independent random variables from the ser-
vice distribution on an M/GI/1.

PROOF. Recall that the p.d.f. ofmin(X1, X2) is fmin(x) =
2f(x)F (x). Thus

E[W ]PSJF ≥
λ

2

∫
∞

0

f(x)

∫ x

0

t2f(t)dtdx

=
λ

4

∫
∞

0

2t2f(t)F (t)dt

Using our bounds on the waiting time underPSJF, we can now
derive bounds on the overall mean response time underPSJF.

THEOREM 5.4. LetK satisfyλm2(x) ≤ Kxρ(x). Then

E[T ]PSJF ≤

(
K

2
+

(
K

2
− 1

) (
1 − ρ

ρ

)
log(1 − ρ)

)
E[T ]PS

PROOF. The result follows from Lemmas 5.1 and 5.2.

THEOREM 5.5.

E[T ]PSJF ≥

(
λE[min(X1, X2)

2]

4E[X]
(1 − ρ)

−
1 − ρ

ρ
log(1 − ρ)

)
E[T ]PS

PROOF. The result follows from Lemmas 5.1 and 5.3.

5.2 Bounding mean response time under SRPT
Using the results from the previous section and the technical lem-

mas in Appendix B, we can now derive bounds onE[T ]SRPT .
Similar bounds have been derived in the case of the M/M/1/SRPT
queue with the focus of understanding the performance of SRPT
asρ → 1 [1]. Our goal is to obtain bounds on the M/GI/1/SRPT
queue that are tight acrossρ andG. To do this, we first bound the
mean residence time,E[R]SRPT .

LEMMA 5.4.

E[R]SRPT ≥ E[X] +
ρ2

2λ
−

λ

2
E[min(X1, X2)

2]

whereX1 andX2 are independent random variables from the ser-
vice distribution on an M/GI/1.



PROOF. Recall that the p.d.f. ofmin(X1, X2) is fmin(x) =

2f(x)F (x). Thus

E[R]SRPT =

∫
∞

0
f(x)

(
x +

∫ x

0

ρ(t)

1 − ρ(t)
dt

)
dx

≥

∫
∞

0
f(x)

(
x +

∫ x

0
ρ(t)dt

)
dx

= E[X] +
1

λ

∫
∞

0
ρ′(x)ρ(x)dx − λ

∫
∞

0
t2f(t)F (t)dt

Interestingly, we can exactly characterize the improvementSRPT
makes overPSJF. Define

E[W2]
def
=

∫
∞

0

λx2f(x)F (x)

2(1 − ρ(x))2
dx

Although we cannot evaluateE[W2] exactly, we can show that the
mean response time ofPSJF is exactlyE[W2] away from optimal.

THEOREM 5.6.

E[T ]SRPT = E[T ]PSJF − E[W2]

PROOF. Using Lemma B.1, we have:

E[T ]SRPT = E[R]SRPT + E[W ]PSJF + E[W2]

=
1

2
E[R]PSJF +

1

2
E[R]SRPT + E[W ]PSJF

= E[T ]PSJF −
1

2
E[R]PSJF +

1

2
E[R]SRPT

= E[T ]PSJF − E[W2]

We are now ready to boundE[T ]SRPT .

THEOREM 5.7. LetK satisfyλm2(x) ≤ Kxρ(x). Then

E[T ]SRPT ≤

(
K −

Kρ

2
+ (K − 1)

(
1 − ρ

ρ

)
log(1 − ρ)

)
E[T ]PS

PROOF. Using Lemmas B.1 and B.4, we have:

E[T ]SRPT = −
1

2λ
log(1 − ρ) −

1

2
E[R]SRPT

+E[W ]PSJF + E[R]SRPT

≤ −
1

2λ
log(1 − ρ)

+
1

2λ

(
Kρ2

(1 − ρ)
+ 2Kρ + (2K − 1) log(1 − ρ)

)

=

(
K −

Kρ

2
+ (K − 1)

(
1 − ρ

ρ

)
log(1 − ρ)

)
E[T ]PS

THEOREM 5.8.

E[T ]SRPT ≥ −

(
1 − ρ

ρ

)
log(1 − ρ)E[T ]PS

PROOF. Using Lemma B.5, we have:

E[T ]SRPT = −
1

2λ
log(1 − ρ) −

1

2
E[R]SRPT

+E[W ]PSJF + E[R]SRPT

≥ −
1

2λ
log(1 − ρ) −

1

2λ
log(1 − ρ)

An interesting observation about Theorem 5.8 is that the lower
bound we have proven is exactly the mean residence time under
PSJF. Further, Theorem 5.8 is perhaps the most important result
of this section because it provides asimple lower bound on the
optimal mean response time. Thus, it provides a simple benchmark
that can be used in evaluating the mean response times of other
scheduling policies.

5.3 Bounding the mean response time under
all SMART policies

In this section, we derive an upper bound on the overall mean
response time under any policy in theSMART class. Note that the
lower bound onSRPT serves as a lower bound on the mean re-
sponse time of any policy in theSMART class sinceSRPT is known
to be optimal with respect to overall mean response time.

To derive an upper bound on the response time ofSMART poli-
cies, we start by integrating the expression forE[T (x)] from The-
orem 4.1. The result is shown in Theorem 5.9. Before we present
this result, we make another interesting observation: the mean re-
sponse time of anySMART policy is at most2E[W2] away from
optimal, where (by Theorem 5.6) we can think ofE[W2] as be-
ing the difference in mean mean response time betweenSRPT and
PSJF. Another way to think aboutE[W2] is stated in Lemma B.1:
2E[W2] = E[R]PSJF − E[R]SRPT .

LEMMA 5.5. For P ∈ SMART:

E[T ]P ≤ E[T ]SRPT + 2E[W2]

Using the previous lemma, we can prove Theorem 5.1.

PROOF. (of Theorem 5.1)
We will prove the first statement only, since the second statement

follows using the same technique.
It is clear thatE[T ]SRPT ≤ E[T ]P becauseSRPT is optimal

with respect to mean response time. Thus we need only show the
upper bound. Using Lemmas 5.5 and B.5, we have

E[T ]P ≤ E[T ]SRPT + 2E[W2]

= E[T ]SRPT

(
1 + 2

1
2
E[W2] + 1

2
E[W2]

E[T ]SRPT

)

≤ E[T ]SRPT

(
1 +

E[W ]PSJF + E[W2]

E[T ]SRPT

)

≤ 2E[T ]SRPT

We are now ready to upper bound the mean response time of
policies inSMART.

THEOREM 5.9. Let K satisfyλm2(x) ≤ Kxρ(x). Then for
P ∈ SMART:

E[T ]P ≤

(
ρ

4
+

K − 1

2
−

ρ2

4
+ (1 − ρ)

λE[min(X1, X2)2]

4E[X]

+

(
K − 3

2

) (
1 − ρ

ρ

)
log(1 − ρ)

)
E[T ]PS

PROOF. Using Theorem 5.4, Lemma B.1, and Lemma 5.4, we
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Figure 2: These plots show our analytic upper and lower bounds on the mean response time ofSMART policies (shown in solid lines).
The metric shown,E[T ](1 − ρ), depicts the improvement made bySMART policies overPS. Between the solid lines are dashed lines
showing our tighter bounds for PSJF and SRPT. The service distribution in these plots is Weibull with mean 1 and (a)C2[X] = 1,
(b) C2[X] = 10.865, respectively.

have:

E[T ]P ≤ E[T ]PSJF + E[W2]

≤
K − 3

2λ
log(1 − ρ) +

K

2
E[T ]PS −

1

2
E[R]SRPT

≤
K − 3

2λ
log(1 − ρ) +

K

2
E[T ]PS

−
1

2

(
E[X] +

ρ2

2λ
−

λ

2
E[min(X1, X2)2]

)

=

(
ρ

4
+

K − 1

2
−

ρ2

4
+ (1 − ρ)

λE[min(X1, X2)2]

4E[X]

+

(
K − 3

2

) (
1 − ρ

ρ

)
log(1 − ρ)

)
E[T ]PS

Theorems 5.9 and 5.8 give simple benchmarks that provide upper
and lower bounds on the mean response times of “smart” schedul-
ing policies. These bounds will hopefully facilitate the evaluation
of policies that are notSMART but still claim to provide good mean
response time.

5.4 A proof of Theorem 5.3
The upper bounds for allSMART policies are expressed in terms

of a constantK, which is the smallest constant satisfying:λm2(x) ≤
Kxρ(x), wheremi(x) =

∫ x

0
tif(t)dt. In this section we derive

this constantK.

PROOF. (of Theorem 5.3)
First, we observe the following equality:

∫ x

t=0

mi(t)dt =

∫ x

t=0

∫ t

s=0

sif(s)dsdt

=

∫ x

s=0

sif(s)

∫ x

t=s

dtds

=

∫ x

s=0

(x − s)sif(s)ds

= xmi(x) − mi+1(x) (1)

We will now use this relation to boundmi+1(x) in terms of
mi(x) by first bounding

∫ x

0
mi(t)dt. Remember, by assumption

we know thatsjf(s) is decreasing for somej such thatj < i + 1.
∫ x

t=0

mi(t)dt =

∫ x

t=0

∫ t

s=0

sif(s)dsdt

≥

∫ x

t=0

tjf(t)

∫ t

s=0

si−jdsdt

=
1

i − j + 1

∫ x

t=0

tjf(t)ti−j+1dt

=
1

i − j + 1
mi+1(x) (2)

In this chain of equalities, the inequality follows directly from the
assumption thatsjf(s) is decreasing.

Finally, combining Equation 1 and Equation 2, we can complete
the proof.

xmi(x) − mi+1(x) ≥
1

i − j + 1
mi+1(x)

(
i − j + 1

i − j + 2

)
xmi(x) ≥ mi+1(x)

A few comments are in order about this theorem. First, notice
that in this work we only apply the lemma in the case wherei = 1,
but the more general form is useful for investigating higher mo-
ments. Second, notice that becauseK is defined in terms ofj,
wherej is such thatxjf(x) is decreasing inx, K is related to the
variability of the service distribution. Third, notice that for any
service distribution,K ≤ 1.

6. EVALUATING THE BOUNDS
In order to better understand the bounds derived in the previous

section, we investigate how the bounds perform for specific service
distributions.

The Weibull and Erlang distributions are convenient ways to eval-
uate the effects of variability in the service distribution because they
allow a wide range of variability and tail behavior. Investigating the
effect of the weight of the tail of the service distribution is impor-
tant in light of many recent measurements that have observed job
size distributions that are well-modeled by heavy tailed distribu-
tions such as the Weibull distribution [3, 6, 12, 16].

The goal in investigating how the bounds perform under these
service distributions is twofold. Our first goal is to illustrate the
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Figure 3: These plots show a comparison of the bounds proven for (a) SRPT and (b) PSJF with simulation results. The service
distribution in these plots is a Weibull with mean 1, and varying coefficient of variation. System loads are 0.5, 0.7, and 0.9 in the first,
second, and third rows respectively. These plots illustrate that the lower bounds on bothPSJF and SRPT are tight.
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Figure 4: These plots show a comparison of our analytic bounds proven for (a) SRPT and (b) PSJF with exact results. The service
distribution in these plots is an Erlang with mean 1, and varying coefficient of variation. The system loads are 0.7 and 0.9 in the first
and second rows respectively. These plots illustrate that the upper bounds on bothPSJF and SRPT are tight.



similar mean response time attained by all policies inSMART, and in
particularPSJF andSRPT. It is well known thatSRPT is optimal,
but it is quite surprising to the authors of this paper how close to
optimal the mean response time ofPSJF is — and further, how
close to optimal the mean response time of anySMART policy is.

Second, our bounds on the mean response time ofPSJF and
SRPT are insensitive to the variability of the service distribution.
Thus, it is difficult to tell how tight they are without investigating
the mean response time of these two policies under a wide range
of service distributions. This section will illustrate that the bounds
are tight in the sense that there are low variability service distri-
butions under which the mean response time of these two policies
match our upper bounds, and high variability service distributions
under which the mean response times of these two policies match
our lower bounds. Thus, no insensitive bounds can improve signif-
icantly on the bounds presented in this work.

6.1 The Weibull distribution
We will first investigate the Weibull distribution. The Weibull

distribution is defined byF (x; b, c) = e−( x

b
)c

.
We will be concerned with the case wherec ≤ 1, which corre-

sponds to the case where the distribution is at least as variable as
an exponential. To get a feeling for the variability of this distribu-
tion notice that forc = 1/l wherel is limited to positive integer
values, we have thatC2[X] =

(
2l

l

)
− 1. Thus, asc decreases the

distribution becomes more variable very quickly.
First, in Figure 2, the bounds in Theorem 5.2 onSRPT, PSJF,

and SMART are pictured as a function ofρ both in the case of a
service distribution with low variability and high variability. These
plots illustrate the huge performance gains (a factor of2 – 3 under
high load) made bySRPT andPSJF overPS. We also see that any
SMART policy will have a huge performance gain overPS – also a
factor of 2 – 3 under high load. Further, the mean response time
of any of theSMART policies cannot differ too much from the mean
response time of the optimal policy,SRPT.

Second, in Figure 3, the bounds forSRPT andPSJF in Theorem
5.2 are compared with the exact mean response time of these poli-
cies under a Weibull service distribution. It is important to point
out that the “exact results” for the points in these plots are often
obtained via simulation, and then spot-checked via analysis. This
is because simulations, despite being slow, are still orders of mag-
nitude faster than Mathematica in evaluating the expressions for the
exact mean response time. Thus, the methodology used in creating
all the plots in this paper was to pick a mesh of points on the plot
and calculate the exact mean response time of these points. Then,
using these points to judge the accuracy of simulations, determine
how many iterations of simulations are necessary to attain the de-
sired accuracy, and fill in the plot using simulated values.The fact
that simulations are used to generate these plots underscores the
importance of the results in this paper, which provide simple, back-
of-the-envelope calculations for the mean response time.

Throughout the plots in Figure 3, the mean of the service distri-
bution is fixed at 1, andC2[X] is allowed to vary. The values ofc
range between1 and2/9, which corresponds toC2[X] between1
and more than100. Thus, the plots show the effect variability has
onE[T ] underSRPT andPSJF.

Note that the lower bound becomes extremely accurate when the
service distribution has high variability, but that the upper bound is
loose throughout these plots. The reason the upper bound appears
loose in this figure is that we keep the parameterc ≤ 1, so the
Weibull cannot haveC2[X] < 1. Thus, since the upper bound
applies for all distributions, it is tight for distributions with much
lowerC2[X]. We will illustrate this in the next section.

An important point that Figure 3 illustrates is the surprisingly
small effect of variability on the overall mean response time. The
fact thatPS is insensitive to variability in the service distribution
is usually thought of as a very special property. However, these
plots illustrate that bothSRPT andPSJF are almost insensitive to
the variability of the service distribution onceC2[X] > 1 under
moderateρ. This is in contrast to the common intuition that as the
variability of the service distribution increases there will be a larger
separation between the large and small job sizes and thusSRPTwill
perform significantly better.

6.2 The Erlang distribution
When looking at the Weibull distribution in the previous section,

we were able to illustrate that our lower bounds are tight as the
variability of the service distribution increases. Our goal in this
section is to show that our upper bounds are tight as the variability
decreases. Thus, we investigate how our bounds perform under
the Erlang service distribution. TheErl(n, µ) distribution is the
convolution ofn exponential distributions each having rateµ.

The key differences between the Erlang and Weibull distribu-
tions are (1) the Erlang distribution is limited to havingC2[X] ≤ 1
and (2) under the Erlang distribution, asn grows smaller, smallerj
are necessary in order to guarantee thatxjf(x) is decreasing. This
second point means that, for Erlang distributions, we must weaken
the bounds by settingK = 1 (as discussed in Section 5.4).

In Figure 4, the bounds derived forSRPT andPSJF are com-
pared with the exact values for these policies under an Erlang ser-
vice distribution. We follow the same methodology for generating
these plots as described in the previous section. Throughout these
plots, the mean of the service distribution is fixed at 1, andC2[X]
is allowed to vary.

Figure 4 illustrates that the upper bounds onSRPT andPSJF are
tight for distributions with low variability.

7. CONCLUSION
The heuristic of “biasing towards small job sizes” is commonly

accepted as a way of providing good mean response times. How-
ever, some practical roadblocks remain.

First, the mean response time for policies that bias towards small
jobs is often not known; and even in the cases where the policy has
been analyzed, the resulting formula is typically complex, involv-
ing multiple nested integrals. Consequently, evaluating the mean
response times of such policies via lengthy simulation is actually
faster than evaluating the known complex analytical expressions
using Mathematica.

Second, there is the question of how such policies that bias to-
wards small jobs compare to each other with respect to mean re-
sponse time. There are many possible variants of such policies,
each with their own benefits and weaknesses. Some, likePSJF,
are relatively easy to implement, because priority is never updated.
Others, likeSRPT, are more complex to implement because they
require updating priorities as jobs run, but have superior fairness
properties. Yet others, likeRS improve mean slowdown. How-
ever, when choosing among these policies, it is not clear how much
one sacrifices with respect to mean response time in order to attain
these other benefits. The little work that exists on comparing mean
response time among policies compares specific, individual poli-
cies and leads to bounds that are not as tight as the ones provided
in this work.

This paper fills both gaps above. We begin by formalizing the
heuristic of biasing towards short jobs by defining theSMART class,
which is very broadly defined to include all policies that “do the
smart thing,” i.e. bias towards jobs that are originally short or have



small remaining service requirements (see Definition 3.1). Interest-
ingly, SMART policies do not necessarily obey a static priority rule,
but may also switch between different priority rules (e.g. changing
betweenSRPT andPSJF over time). We provesimpleupper and
lower bounds on the mean response of anySMART policy. These
bounds show that allSMART policies haveE[T ] within a factor of 2
of optimal. This result theoretically validates the heuristic of “bias-
ing towards small job sizes” that many system designers apply. We
then go on to prove even tighter bounds on two particularSMART

policies:SRPT andPSJF .
An unanticipated discovery of this work is the near insensitiv-

ity of SMART policies to the variability of the job size distribution
(particularly whenC2[X] > 1). It is well known that the mean
response time ofPS is insensitive to the service distribution’s vari-
ability, but the fact that mean response time for policies likeSRPT
andPSJF is nearly insensitive of the service distribution’s variabil-
ity is counter the folklore of the community.

Beyond the definition of theSMART class, we believe some of the
observations in this work can impact future scheduling research.
First, our results show that understanding the mean response time
of a SMART policy in the case of an M/M/1 queue may suffice to
reasonably predict its mean response time for an M/GI/1 queue.
Second, the simple bounds on mean response time forSMART poli-
cies provide a benchmark for showing that a policyP is “good”
even if its particular definition precludes it from belonging to the
SMART class.

This work is only the first step towards characterizingSMART
policies. Many interesting questions remain. Can the definition
of SMART be loosened to include other policies withE[T ]P ≤
2E[T ]SRPT ? If only a limited class of service distributions are
considered (e.g. distributions with decreasing failure rates), how
canSMART be extended? AreSMART policies near optimal for mea-
sures other thanE[T ]?
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APPENDIX

A. USEFUL INTEGRALS
This section contains integrals that are useful in the calculations of Sec-

tion 5.

LEMMA A.1.∫ x

0
ρ(t)dt = λ

∫ x

0
(x − t)tf(t)dt = xρ(x) − λm2(x)

LEMMA A.2.

E[R]SRPT =

∫
∞

0
f(x)

∫ x

0

dt

1 − ρ(t)
dx =

∫
∞

0

F (t)

1 − ρ(t)
dt

LEMMA A.3.
∫

∞

0

λxf(x)ρ(x)

(1 − ρ(x))2
dx =

ρ

1 − ρ
+ log(1 − ρ)

PROOF.
∫

∞

0

ρ′(x)ρ(x)

(1 − ρ(x))2
dx =

ρ(x)

1 − ρ(x)

∣∣∣∣
∞

0

−

∫
∞

0

ρ′(x)

1 − ρ(x)
dx

=
ρ

1 − ρ
+ log(1 − ρ)



LEMMA A.4.

∫
∞

0

λxf(x)ρ(x)

1 − ρ(x)
dx = − log(1 − ρ) − ρ

PROOF.

∫
∞

0

ρ′(x)ρ(x)

1 − ρ(x)
dx = −ρ(x) log(1 − ρ(x))|∞0

−

∫
∞

0
−ρ′(x) log(1 − ρ(x))dx

= −ρ log(1 − ρ) − (1 − ρ) log(1 − ρ) − ρ

= − log(1 − ρ) − ρ

LEMMA A.5.

∫
∞

0

λxf(x)ρ(x)2

(1 − ρ(x))2
dx =

ρ2

1 − ρ
+ 2 log(1 − ρ) + 2ρ

PROOF.

∫
∞

0

ρ′(x)ρ(x)2

(1 − ρ(x))2
dx =

ρ(x)2

1 − ρ(x)

∣∣∣∣
∞

0

−

∫
∞

0

2ρ′(x)ρ(x)

1 − ρ(x)
dx

=
ρ2

1 − ρ
+ 2 log(1 − ρ) + 2ρ

B. SOME TECHNICAL LEMMATA
In performing the analyses ofSRPT andSMART, we need a few technical

lemmata. These lemmata relate the waiting time and residence timesunder
PSJF, SRPT, and our upper bound onSMART policies. Define

E[W2]
def
=

∫
∞

0

λx2f(x)F (x)

2(1 − ρ(x))2
dx

LEMMA B.1.

2E[W2] = E[R]PSJF − E[R]SRPT

PROOF. Using Lemmas 5.1 and A.2, we have:

2E[W2] =

∫
∞

0

λx2f(x)F (x)

(1 − ρ(x))2
dx

=

∫
∞

0
f(t)

∫ t

0

xρ′(x)

(1 − ρ(x))2
dxdt

=
1

λ

∫
∞

0

ρ′(t)

1 − ρ(t)
−

∫
∞

0
f(t)

∫ t

0

1

1 − ρ(x)
dxdt

= −
1

λ
log(1 − ρ) −

∫
∞

0

F (x)

1 − ρ(x)
dx

= E[R]PSJF − E[R]SRPT

LEMMA B.2.

E[R(x)]SRPT + 2E[W (x)]PSJF

≤ E[R(x)]PSJF +
λm2(x)ρ(x)

(1 − ρ(x))2

PROOF. Using Lemma A.1, we have:

E[R(x)]SRPT + 2E[W (x)]PSJF

=

∫ x

0

dt

1 − ρ(t)
+

λm2(x)

(1 − ρ(x))2

=
x

1 − ρ(x)
−

∫ x

0

ρ(x) − ρ(t)

(1 − ρ(x))(1 − ρ(t))
dt +

λm2(x)

(1 − ρ(x))2

≤
x

1 − ρ(x)
−

∫ x

0

ρ(x) − ρ(t)

(1 − ρ(x))
dt +

λm2(x)

(1 − ρ(x))2

=
x

1 − ρ(x)
−

xρ(x) − xρ(x) + λm2(x)

(1 − ρ(x))
+

λm2(x)

(1 − ρ(x))2

= E[R(x)]PSJF +
λm2(x)ρ(x)

(1 − ρ(x))2

LEMMA B.3.

E[R(x)]SRPT + 2E[W (x)]PSJF ≥ E[R(x)]PSJF

PROOF. Using Lemma A.1, we have:

E[R(x)]SRPT + 2E[W (x)]PSJF

=
x

1 − ρ(x)
−

∫ x

0

ρ(x) − ρ(t)

(1 − ρ(x))(1 − ρ(t))
dt +

λm2(x)

(1 − ρ(x))2

≥
x

1 − ρ(x)
−

∫ x

0

ρ(x) − ρ(t)

(1 − ρ(x))2
dt +

λm2(x)

(1 − ρ(x))2

=
x

1 − ρ(x)
−

xρ(x) − xρ(x) + λm2(x)

(1 − ρ(x))2
+

λm2(x)

(1 − ρ(x))2

= E[R(x)]PSJF

LEMMA B.4. LetK satisfyλm2(x) ≤ Kxρ(x).

E[R]SRPT + 2E[W ]PSJF

≤
1

λ

(
Kρ2

1 − ρ
+ 2Kρ + (2K − 1) log(1 − ρ)

)

PROOF. Using Lemma B.2 and Lemma A.5, we have:

E[R]SRPT +

∫
∞

0

λm2(x)

(1 − ρ(x))2
f(x)dx

≤

∫
∞

0

(
x

1 − ρ(x)
+

λm2(x)ρ(x)

(1 − ρ(x))2

)
f(x)dx

≤ −
1

λ
log(1 − ρ) +

K

λ

∫
∞

0

λxf(x)ρ(x)2

(1 − ρ(x))2
dx

= −
1

λ
log(1 − ρ) +

K

λ

(
ρ2

1 − ρ
+ 2 log(1 − ρ) + 2ρ

)

=
1

λ

(
Kρ2

1 − ρ
+ 2Kρ + (2K − 1) log(1 − ρ)

)

LEMMA B.5.

E[R]SRPT + 2E[W ]PSJF ≥ E[R]PSJF and thus

E[W ]PSJF ≥ E[W2]

PROOF. Using Lemma B.3, we have:

E[R]SRPT + 2E[W ]PSJF ≥

∫
∞

0
E[R(x)]PSJF f(x)dx

= E[R]PSJF

Further, combining the above with Lemma B.1, we have:

E[W ]PSJF ≥
1

2

(
E[R]PSJF − E[R]SRPT

)
= E[W2]


