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ABSTRACT 1. INTRODUCTION

In addition to providing small mean response times, modern ap- As size based policies have become prevalentin modern applica-
plications seek to provide users predictable service and, in sometions including routers [17, 18], web servers [9, 19], and transport
cases, Quality of Service (QoS) guarantees. In order to understanddrotocols [33], scheduling research has shifted to questioning the
the predictability of response times under a range of scheduling “fairness” of such policies [1, 5, 7, 10, 17, 20, 31]. For example,
policies, we study the conditional variance in response times seenis a policy that biases towards small job sizes as fair to large jobs
by jobs of different sizes. We define a metric and a criterion that as a policy without bias? To answer this question, researchers have
distinguish between contrasting functional behaviors of conditional Studied the mean conditional response time experienced by a job of
variance, and we then classify large groups of scheduling policies. Sizex under a policyP, E[T'(z)]”. The typical setting for these

In addition to studying the conditional variance of response times, studies is an M/GI/1 queue with logd= AE[X] < 1, where)
we also derive metrics appropriate for comparing higher condi- is the mean arrival rate andl is a random variable distributed ac-
tional moments of response time across job sizes. We illustrate cording to the service (job size) distribution. One popular criterion
that common statistics such as raw and central moments are not apfor fairness that has emerged is:
propriate when comparing higher conditional moments of response

time. Instead, we find that cumulant moments should be used. DEFINITION 1.1. A scheduling policyP, is fair under service

distribution X and loadp if for all =, E[T(z)]* /= < 1/(1 — p).

Categories and Subject Descriptors OtherwiseP is unfair.

F.2.2 Nonnumerical Algorithms and Problemg: Sequencing and Definition 1.1was introduced in [1], and hfas. _served as the basis
Scheduling; G.3Rrobability and Statistics]: Queueing Theory; ~ for the work in [5, 7, 10, 17, 31]. The definition compares the
C.4 [Performance of Systemp Performance Attributes mean response time of jobs with different sizes usingrtiegric

E[T(x)]" /x and then uses theriterion 1/(1 — p) to distinguish
between fundamentally different fairness behaviors.

General Terms In this paper, we extend the approach used to stEfly(z)]

Performance, Algorithms in order to investigate the conditional variance in response time
seen by a job of size under policyP, Var[T(z)]”, and higher
Keywords conditional moments of response time acressder a wide range

of scheduling policies. There has been a significant amount of prior

Scheduling; response time; predictability; variancg; cumulapts; M/G{i}eraturederiving Var[T(z)] under many common policies [26,
FB; LAS; SET,; foreground-background; least attained service; PS 35, 12, 13]. However, possibly due to the complicated nature of

processor sharing; SRPT; shortest remaining processing time; PSR oo formulas, little work has studied thehaviorof Var[T(z)]

preemptive shortest job first acrossz. Recently,Var[T'(z)] has been investigated under a few
common policies using simulation techniques [7]; however prior
to that, investigations focused on providing customers estimates of
response time as a function of thél system statat arrival under
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guarantees are of the form “90% of the time a job of sizéll have / ------------------- N
response time< g(x),” for some functiong(+). Such guarantees Always Remaining| size based | AlWays
can be phrased as boundiig:r[T(x)] by applying Chebyshev's Predictable S§ET LRPT } Unpredictable
Inequality (see Section 2). T S e

We define a notion of “predictability” by scalingar[T'(x)] as i dAgebased [ ;
follows. P > LS i i PSIE !

PLCFS Voo s B SRR o ¢

DEFINITION 1.2. Ajob sizex is treatedpredictably under pol- i N e

icy P, service distributionX, and loadp if Sometimes | osw  |LEN |
Var[T(@))” _ AB[X? Predictable | Nonpreemduprive " ooooooos )
T T (1-p?

Otherwise a job size is treatedunpredictably. A scheduling pol-  Figure 1: A diagram of the main results proved about the clas-
icy P is predictable if every job size is treated predictably. Other-  sification of predictability. A few examples of common policies
wise P’ is unpredictable. in each class are shown.

It may not be immediately obvious why the appropriatetric

for our definition isVar[T'(x)]/z or why the appropriateriterion ) ) ) )
is \E[X?2]/(1 — p)®. We will discuss this in detail in Section 2. Throughout this paper we will consider a work conserving, preempt-

We will show that scheduling policies have many different pat- "eésume M/GI/;L system with a continuous service distribution hav-
terns of predictability. While some policies have monotonically N9 @ finite third moment. We lef'(x) be the steady-state re-
increasing, but bounded/ar[T(z)]/z under all loads and ser- ~ SPonsetime f_or a job of size where the response time is th_e time
vice distributions; others exhibit non-monotonic behavior where rom when a job enters the system until it completes service. Let
some range of sizes is overly penalized under some or all loads ang? < 1 be the system load. That js = AE[X], where\ is the
service distributions. We introduce the following three classes of arrival rate of the system and is a random variable distributed
scheduling policies in order to distinguish between these patterns@ccording to the service (job size) distributiét{x) having den-

of predictability. sity function f(z) defined for allz > 0. Let F(z) = 1 — F(z).
Define the slowdown for a job of size, S(z) = T(x)/x. De-
DEFINITION 1.3. A scheduling policyP is: (i) Always Pre- fine m(z) = [ t'f(t)dt andmi(z) = i [ t'"""F(t)dt. No-

dictable if P is predictable under all loads and service distribu-  tice thatm;(z)/F(z) = E[X'|X < z] andm;(z) is theith
tions; (ii) Sometimes Predictable if P is predictable under some  moment ofX, = min(X,z). Further, defingo(z) = Ami(z)
loads and service distributions; and unpredictable under other loads gnd p(z) = Ama(x). As introduced in [16], define the normal-

and service distributions or (|||)\Iway_s Unpre_dlctgblelf Pisun- ized k-th moment fork = 2,3 of X to be Ma[X] = gg;} and
predictable under all loads and service distributions. 5
M;[X] = 51 Notice thatMz[X] = C? + 1 whereC is

E[X?]E[X]"
coefficient of variation and/3;[X] is closely related to skew-
ness. Finally, we leB be the duration of a busy period, aft{z)
be the duration of a busy period started by a job of size

Introducing these three classes allows us to analyze large groupshe
of policies with respect to predictability instead of focusing on any
particular individual policy. This focus provides an understand-
ing of the effects oscheduling n}jechanisms and heuristicsthe
functional behavior oV ar[T'(z)]" and thus is useful beyond the
scope of common idealized policies. For example, we find that non- 2. DEFINING PREDICTABILITY
preemptive policies can be either Sometimes Predictable or Always It is clear thatV ar[T'(z)]” is related to the “predictability” of
Unpredictable; whereas preemptive policies can fall into any of the a scheduling policy”; however the motivations for the metric and
three classes (see Figure 1). We show B&and Preemptive-Last-  criteria in Definition 1.2 are not obvious. We will first illustrate that
Come-First-ServedRLCFS) are Always Predictable. Further, we Definition 1.2 is mathematically grounded and that it parallels Def-
concentrate on various forms of prioritization: (a) size based, (b) inition 1.1. We will then show that Definition 1.2 is also motivated
age based, and (c) remaining size based. We show that all policiesdy the goal of providing QoS guarantees.
in (a) are Always Unpredictable, while policies in (b) and (c) may . . - .
be Sometimes Predictable or Always Unpredictable. Relating predictability and fairess

After developing a classification féfar[T'(z)]/x, we then pose Recall that Definition 1.1 fofairnessstems from two motivations.
the question of whether similar classifications exist for higher con- First, intuitively, E[T(z)]” should be proportional to since small
ditional moments of response time. The difficulty is that for higher jobs should have small response times and large jobs should have
moments the appropriate metric and criterion are even more un-large response timesPS accomplishes this sincg[T'(z)]"*
clear. For theth moment, we will find that many common statis- x/(1 — p). Further,PS is typically thought of as a fair policy be-
tics such as raw moments, central moments, and moments of slow-cause at every instant every job in the system receives an equal
down, S(z) = T'(z)/z, donot provide appropriate metrics. In-  share of the server. Thus, a scheduling politycan be viewed
stead, we discover that little usedmulant momentt&cilitate the as unfair if jobs of some size have E[T'(z)]” > E[T(x)]"° =
comparison of higher conditional moments of response time. This z/(1 — p).
allows us to generalize Definitions 1.1 and 1.2 and define a metric  Second, more formally, when compariff’(z)]" acrossc, we
with which to compare the higher moments of conditional response want ametricthat scalesz[T'(x)]” appropriately to allow for com-
time across job sizes. Further, we motivate a conjecture that the parison of E[T'(z)]” between small and large For E[T'(z)]", it
constant\ E[B‘], whereB is an M/GI/1 busy period, will provide is clear thatl /= is an appropriate scaling factor becal&{é (z)]” =
a criterion for theith cumulant that distinguishes between funda- ©(x) under all work conserving scheduling policies [10], and thus
mentally different functional behaviors. we need to normalize by the growth rate. The criterighfl —

]P



p) stems from two formal motivations [31]. First, it provides a we can immediately rule out> 1 becausd’(z)” and E[T(z)]”
min-max notion of fairnessmin p max, E[T(x)]"/z = 1/(1 — grow linearly inz for all P; thus it does not make sense to bound
p). Second,1/(1 — p) provides a criterion that distinguishes be- T'(z)” — E[T'(x)]" by something growing superlinearly. We can
tween patterns of behavior of policies with respect to the metric also rule out < 1/2 because for such Var[T(z)]F /2% — oo
E[T(x)]F /x. The defined metric and criterion for fairness together asz — oo under allP. This leavesi € [1/2,1], wherei =
allow a classification of scheduling policies as one of Always Fair, 1/2 is the most desirable because it provides the tightest bound on
Sometimes Fair, or Always Unfair [31]. T(z) — E[T(x)] asz grows.

In defining predictability, Definition 1.2, while not related to the Definition 1.2 uses the metricar[T'(z)]” /2, which corresponds
performance oPS (as was the case with Definition 1.1 for fair- to choosing = 1/2. This choice makes sense because
ness), does have other properties that parallel Definition 1.1. The Var[T(2)]” /= is O(1) under all work conserving policieR. Thus,
scaling factor forVar[T(z)]” in our definition of predictability any policy that is predictable will allow a QoS bound that is con-
is still 1/z. This is motivated by the growth rate &far[T'(z)]", stant acrosg. Note that choosing € (1/2, 1] is also reasonable;
which is ©(z) for common preemptive policies ar@(x) for all however the results are less interesfing.
work conserving policies (see Theorem 2.1). Hence, scaling by

1/z makes sense; whereas using a stronger scaling sutfuds 3. ALWAYS PREDICTABLE

would cause/ar[T(2)]" /a* — 0 asz — oc. We start to develop a classification of predictability by studying
the class of Always Predictable policies, policies where every job
size is treated predictably under all service distributions and sys-
tem loads. Two well known policies that are Always Predictable
arePLCFS andPS. It is immediate to see th&LCFS is Always

H H PLCFS __
This result is a special case of Theorem 6.2. Predictable sincé'(x) = B(z), and thus

The criterion AE[X?]/(1 — p)® in Definition 1.2 is also moti- PLOFS _ _ \zE[X?Y
vated by Theorem 2.1. Just as the criterlgiil — p) used in Defi- Var[T (z)] = Var[B(z)] = a—p3
nition 1.1 has the property thitn,, ... E[T(z)]7/z = 1/(1—p) . i . -,
under many common policies, Theorem 2.1 iilustrates that the crite- HOWever, understanding the variance R is more difficult.
rion in Definition 1.2 also serves as the limit four[T(z)] 7 /2 un- Worklng_from the transfo;rg, [35] presents the following useful rep-
der many common scheduling policies. Further, the results in this feésentation fol”ar [T ()]~
paper will illustrate that the criterion proves to be empirically useful Ps 2 @ —
because it differentiates between contrasfifgr[T(z)]” /z be- Var([T(z)] = W/ (x —)R(t)dt
haviors. Specifically, when size based policies are unpredictable o 0
it is becausé/ar[T'(z)]” /= has a non-monotonic “hump” behav- ~ whereR(t) = 1— R(t) andR(t) = (1—p) > >, p" F*"(t) with
ior — where some mid-range job sizes are treated the most unpre-F*"(t) = [~ Fm=D (¢ — §)dF*i(s),

THEOREM 2.1. Under all work conserving scheduling policies
P, limy oo Var[T(z)]F Jz < AE[X?]/(1 — p)3. Equality holds for
P e {PSJF,LAS,SRPT,PLCFS, PS}.

dictably. On the other hand, when policies behave predictably itis _ | - 0 1, >0
becausé ar[T' ()] /z is monotonically increasing. FH(t) = gix7 Jo (1= F(s))ds, and (1) = 0, z<0 "

It is important to observe that the criteria for fairness and pre-  The complexity of this formula has led to mainly asymptotic
dictability both derive from dusy periodthey areE[B(z)]/z and analysis of the conditional variance BS. However, we will be

Var[B(z)]/x respectively. In Section 6, we use this observation to aple to exploit this asymptotic information in order to show P&t
present metrics and criteria for all higher moments that generalize js predictable for all.

fairness and predictability.
THEOREM 3.1. PSis Always Predictable. Further,

Relating predictability and QoS Var|[T(x)]" /x is strictly monotonically increasing in.
Intuitively, the notion of “predictability” conveys the idea that PrRoOOF We will prove the result by showing that
T(z)” — E[T(x)]" is never too large. Many QoS guarantees take -- (Var[T(x)]PS/x) > 0 for all z. In combination with Theo-
the form “90% of the timel'(z) — E[T'(z)] < g(z),” or equiva- rem 2.1 this will con;glete the proof.
lently P(T(z) — E[T(z)] > g(z)) < 10%. Chebyshev’s Inequal- dVarll@]™ 2 d ( / "Ry — L / ’tﬁ(t)dt>
ity [22] gives us a bound of the form dx x (1—p)2dz \Jo z Jo
2 — — 1 [
P = R(z) — R +—/thdt>>0
PT@" - @) 2 o) < “UEEL T (0 R+ 5 [
gl\r
Thus, we can provide the desired QoS guarantee by ensuring that o ) _ _ _
Var[T(z)]/g(z)? is not too large. Looking more closely at Equa- It is interesting thal/ar[T(z)]”® /x is monotonically increas-
tion 1, we need to ask “what is the smallest valug(af) that allows ing in z under all service distributions. This is different than
Var|T(z)]/g(z)? to be bounded by a constant (10% in the above E[T'(z)]"®/z = 1/(1 — p), which is constant across, and il-
example) for alkz?” lustrates why ar[T'(z)]F* /2 is not an appropriate criterion for a
Suppose thay(z) = k«* for somek independent of: and definition of predictability.

some constant Then, we need to choose the smallettat al- 2Fori € (1/2,1], Var[T(z)]F /a* — 0 asz — oo under all

lows Var[T'(z)]/g(x)* to be bounded by a constant. Notice that p. As a result, it can quickly be seen that policies fall into one

. o X
INote that a more complex bound including other information ©f tWO classes based the Eevg;or‘é&r[T(x)]. asz — 0, 1e
about the distribution of () could be used to provide QoS guar- Whetherlim, .o Vaar[T'(z)]” /=™ < oo. This makes intuitive
antees in practice. However, the simple calculation of Equation 1 sense because the bound Btw)” — E[T'(x)]” is much looser
provides intuition for an appropriate metric with which to study asz grows and thus the performance of the small jobs dominates
Var[T(z)]. the QoS bound.




It is important to point out that the predictability BS has been our goal reduces to showing thatas— oo
studied in much more detail by Ward and Whitt [28]. While we

d

assume no knowledge of the system state in order to study how well v Var[T(z)]"%F — Var[T(z))757F <0 (2)
response times will match with prior user experience, Ward and ) ) o o )
Whitt study how wellT'(z)” can be predicted given knowledge C(%mputatlon yields that for any distribution with finite third mo-
of the system state (e.g. the number of jobs in the system upon nt 4
arrival, N). They look at the question analytically 456 — oo and ;cd—var[T(x)}PS” — Var[T(x)] 75T
x — oo and prove that predictions can be made quite accurately v

. . Azma(z) 4 PSJF
when eitherr or N is large. = T L Oz f(=)) — Var[T(z)] < 0asz — oo

(1 —p(x))3
Thus,PSJF is unpredictable for all loads and all unbounded ser-

4. ALWAYS UNPREDICTABLE vice distributions. [

In this section we show that a large number of preemptive poli-  ajthough there are always some sizes that are treated unpre-

cies are Always Unpredictable, i.e. guaranteed under all system gictaply undePSJIF, most sizes receive predictable response times.
loads and all service distributions to treat some job size unpre-

dictably. The policies in the Always Unpredictable class exhibit _ THEOREM 4}-325;J|}etK1 be a constant sggg;h&ts(z) < Kizma().
fundamentally different behavior with respectitar[T'(x)] /= than ThenVar(T'(z)] < Var[B(z)]h1(p, z) where

those in the Always Predictable class. While the policies in the Al- PSIE (1—p)? K 5K,

ways Predictable class haVeur[T'(z)]/z that is either monotoni-  h1(p; =) = A= p@)? =)+l ! p(x)
cally increasing or constant in, the policies we study here all ex-

3
whereF_a smazll range af has highe# ar[T'(z)]/z than all otherx thathi (p,z) < G55 {5 — ()}
(see Figure 2). The proof of this result follows from direct calculation.
4.1 PSJF Notice that this bound guarantees that a large percentage of job

Preemptive-Shortest-Job-FirRGJ F) is the canonical example sizes will be treated predictably. In particular, all job sizes such that

4 3\1/4 . . .
of a policy that prioritizes based on size, and it will serve as the plz) <1— (5(1—p)°)"". For example, if the load is 0.8, all job
building block for the analysis of all size based policies. Under SizeSz such thap(z) < 0.678 will be treated predictably. If the
PSJF at every moment in time, the server is processing the job job size distribution is highly varla_ble, this is nearly all jobs (since
with the smallest initial sizePSJF significantly improves on the & Small percentage of the largest jobs make up half the load).
mean response time 8%, and has recently been shown to be near ~ ExampLE 4.1. ConsiderX ~ Exp(1). Thus,f(z) = e °.
optimal with respect to mean response time in a very_strc_mg SeNSeThen p(z) = p (1 et _ w-x)_ Sop(z) < 1_(%(1 _ p)3)1/4
[32]. Further,PSJF has the practical property that priorities can
be set upon arrival and then do not need to be updated; thus imple-whene™® + ze™* > 1 —

(4.1 \3)\1/4
=EOY) T 1his says that when

mentation ofPSJF is simple. The variance for a job of sizeis p = 0.8, PSIF will be predictable for at least jobs of size< 3.3.
[26]: Thus,PSJIF will be predictable for at least 96.3% of the jobs.
) Further, an even larger percentage of job sizes can be shown to
Var[T(z))PS7F = 2em2(@) Ams () 3 ( Ama (@) ) be treated predictably i is bounded below {.
(1=p@@)® 31 =p@)® 4\ (1-p()? Theorem 4.2 shows that small (and in fact most) job sizes receive

predictable service, but the question still remains as to how unpre-
In this section, we will first prove th&SJF exhibits dictably the large jobs can be treated. The dependence of Theorem
non-monotonic behavior itV ar[T'(z)]”*’* /z, where mid-range 4.2 on the bounehs(z) < K1xma(z) leads to an overestimate of
job sizes are treated the most unpredictably. Then, we will bound V ar[T'(2)]7%7F for large job sizes. Thus, we must take a different
the position and size of this “hump.” approach in order to obtain a tighter bound for the large jobs.

THEOREM 4.3. For jobs of size: > Ko E[X], Var[T(z)]PS7F <

Var[B(a)]ha(p) wherehs (p) = (1+ M) 4 2oMalX]

THEOREM 4.1. PSJFis Always Unpredictable. Further, under
all service distributions and all loads there exists sainguch that

all z > L are treated unpredictably. The proof of this Theorem follows from direct calculation.

The combination of the Theorems 4.2 and 4.3 provides a tech-
nique for determining both (i) which job sizes are treated unpre-
dictably and (ii) how unpredictably they can be treated. We illus-
trate this process in the next example.

PROOF We separate this result into two cases. First, when the
service distribution has an upper bouhd and second when the
service distribution has no such upper bound. In the case of a
bounded service distribution, it is straightforward to see that jobs
of size L will be treated unpredictably. The case of unbounded EXAMPLE 4.2. Returning to the case of ~ Exzp(1) we can
service distributions is more complicated however. Observe that use our prior calculation to sek> = 3.3 in the case wherg =
Var[T(x)]"5'F /2 is increasing in: for smallz. Also, recall that 0.8 in our PSJF system. Now, noting that/s[X] = 3 andM;[X] =
from Theorem 2.1 thalt ar[T'(z)]757F /2 — Az E[X?]/(1 - p)® 2 in the case of the exponential, we haver [T (z)]7%/F <
asz — oo. Hence, if we can show that the limitis approached from 3.1Var[B(z)]. Thus, althoughPSJF is Always Unpredictable,
above, rather than below, we will have exhibited non-monotonic even in the case of an exponential service distribution with 0.8,
behavior. We accomplish this by showing that(Var[T'(z)]”®/* /z) PSJIF is only unpredictable for at mogi% of jobs and this small
approaches 0 from below as— oco. By observing that fraction of jobs only receives a factor of 3.1 higher variance. This

agrees with the behavior shown in Figure 2.
d Var[T(2)|P5F 2 Var[T(2)]"" = Var[T ()] 77" g g

dz . = 22 3For instance, iff () is decreasingk’; can be set to 3/4.




4.2 Preemptive size based policies 4.3 LAS

In this section we build on the analysis B8JF and show that The Least-Attained-Servicd AS) policy* is the canonical ex-
all size based policies are Always Unpredictable. ample of a policy that prioritizes based on age. Ud&$, the job
. . ) with the least attained service gets the processor to itself. If several
DEFINITION 4.1. Under apreemptive size based policy, the jobs all have the least attained service they timeshare the server via

priority of a job is assigned based on a fixed priority function that pg This is a practical policy since a job’s age is always known,

is a bounded bijection from job sizes to priorities. Priorities are though its size may not be knowhAS improves uporPS with re-
assigned upon arrival and cannot be adjusted. The job with the gpect 1o mean response time and mean slowdown when the job size
highest priority is run at all instants, and if two jobs of the same isripution has a decreasing failure rate (DFR) [21] and closely
;lze_(an_d thusf prlorlty_) are in the system, then the job that arrived approximates the optimal policy for mean response tiSRPT,
firstis given higher priority. under DFR distributions. Recently a stream of research has sug-
gested that. AS can provide significant improvements for routers

Notice the generality of the definition of preemptive size based
g y P b [17, 18]. We have [34]:

policies. The definition includeBSJF, but it also includes

Preemptive-Longest-Job-Firgl(JF) and many hybrid policies that

bias towards small jobs but also give high priority towards some Var[T(x)]"45 = Az (w) Az (x) 3 ( A (2) )2

larger jobs to curb unfairness. A =p())* 301 —-p)® 4\ 1A-7p)?
Although this group of policies is quite broad, there are some

limitations to the definition of preemptive size based policies that  In this section, we will first prove th&atAS exhibits non-monotonic

hopefully can be addressed in future research. The class of preempbehavior inV ar[T(x)]““S /2, where large, but not the largest, job

tive size based policies does not include policies where jobs of dif- sizes are treated the most unpredictably. We will then bound the po-

ferent sizes all have equivalent priorities. Further, the results in this sition and size of this “hump” through bounds Blar[T'(z)] X4,

section do not include randomized policies. Thus, there may be a

randomized size based policy from being that is predictable under [ gmma 4.1. For all z, Va,«[T(x)]PSJF < Var[T(x)]LAS

all service distributions and all loads — though the randomization

procedure will likely need to depend on the service distribution. Combining Lemma 4.1 with Theorem 4.1, we have:

THEOREM 4.4. All preemptive size based policies are Always

Unpredictable. COROLLARY 4.1. LAS is Always Unpredictable. Further, un-

der all service distributions and all loads there exists sabreuch
PROOF We separate the proof into two cases. First, the case that allz > L are treated unpredictably.

where a finite job size receives the lowest priority; and second the

case where no finite job size receives the lowest priority. There are always some job sizes that are treated unpredictably
First, let P be a preemptive size based policy where a finite size underLAS, however most job sizes receive predictable response

s has the lowest priority. L be the work in the system seen by  times.

an arrival. Then

P AsE[X?] THEOREM 4.5. Let K be a constant such thats(z) < Kizma(z).
Var[T(s)]” = Var[B(s+W)] > Var[B(s)] = a=pp ThenVar[T ()24 < Var[B(z)]h1 (p, )24S5 where
Sos is always treated unpredictably under such a policy. 3
Ca ; T AS 1-=p) K, 2K ~
Next, let P be a preemptive size based policy where no finite job 2)EAS = T 1+ — -1 x

. . . . 1(p7 ) ~ 4 + + p( )
sizes has the lowest priority. In this case there must be a sequence (1—p(z)) 3 3
Of_Sl_ZteS \;V'th_d?Cfe&;rS]'ngtFr)]r'O”t_'e{?ii} ?UCh t;af{ fo}t Sl?lmté, ttr:let Further, noting thatk; < 1 for all service distributions we have
priority of s; is less than the priority of any s;}. Note tha LAS -~ _(1=p)® (a4 1>
asN — oo, y .y p(si) — 0 because our service distribution thatha(p, z) < Aoy 15~ 3P0}
is continuous. Now there are three cases to deal with. The limit of )
this sequence could be 0, some finit@r infinity. (If the limit does The proof follows using Lemmas A.land A.2. .
not exist, we can apply the same arguments to any of the points it  1his bound guarantees that a large percentage of job sizes will be
oscillates between.) treated predictably. In particular, all job sizes such fifat) < 1—

First consider the subcase where the limit of the sequence is zero.(3 (1 — p)*) Y% Thus, ifp = 0.8, all jobs such thap(x) < 0.678
Then there exists an infinite decreasing sequends.gfsuch that will be treated predictably. However, the question still remains as
for all z > s;, x has priority overs;. Asi — oo we see that to how unpredictably the large jobs can be treated.

Var[i;‘isnlp — YerlBUDL = oo, which completes this case. _ '

The subcase where the limit approaches some finiten be re- THEOREM 4.6. For jobs of sizex > K E[X], Var[T(z)] %45 <
duc_ed to the earlle_r case of a finite sizkaving th(_a Igwest priority. E[B(x)]h2(p), Whereha (p) = <1 4 Agg;]) n 43;?]2%[7)?)'

Finally, we consider the subcase where the limit of the sequence
is infinity. Pick ans; such that jobs of size; are treated unpre-
dictably underPSJF, and jobs of sizes; have lower priority than
Jli):rsthogrs';ﬁggr.gg;;Sﬁ;é’\iOt? E:Zt V;Egilegvrﬁyshg:]drisgr?th?ﬁan the position of the hump is in terms pfz) underLAS instead of

' J simay gher p y p(z) as undePSJF, so K, will be smaller. We illustrate this using

. 2
S; We haVeVa’l‘[T(Si)}P > V(LT[T(Si)]PSJF > Aaff[)))(g, ] .o our running example.

Note that this is the same bound on the hump size as [R&IHF.
The difference will come in the application because the bound on

“Note thatLAS is sometimes referred to by two other names:
Foreground-backgroundrB) and Shortest-Elapsed-Tim8KT).
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Figure 2: The conditional variance of PLCFS, SRPT, PSJF, and
LAS are shown. The service distribution is exponential with
mean 1. The dotted line shows the criterion for predictability.
Notice that when load is low (left column),SRPT is predictable,
but when load is high (right column) SRPT is unpredictable. In
contrast PSJF and LAS are Always Unpredictable. However, as
seen in the bottom row, they are only unpredictable to a small
percentage of the large jobs.

EXAMPLE 4.3. Again considerX ~ Ezp(1). Then,p(x) =
p(1—e®). So,p(x) < 1— (4(1—p)*)""* whene ™ > 1 —
1-(41-p)3)"/* Thi B .
—*————. This says that whep = 0.8, LAS will be pre-
dictable for at least jobs of size < 1.8. Thus,LAS will be pre-
dictable for at least 83.4% of the jobs.

We can use this result to skt = 1.8 in the case wherg = 0.8,
which givesVar[T(z)]7%7F < 4.9Var[B(z)]. Thus, although
LAS is Always Unpredictable, whem = 0.8, LAS is only unpre-
dictable for at mosti 7% of jobs and this fraction of jobs only re-
ceives at most a factor of 5 higher variance. Note that although this
is not nearly as good as what we saw un8&JF, LAS is operat-
ing without knowledge of job sizes. This agrees with the behavior
shown in Figure 2.

5. SOMETIMES PREDICTABLE
In this section we show that many policies (eSRPT, FCFS)

Non-preemptive Policies
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(a) Low load p = 0.5) (b) High load p = 0.8)
Figure 3: The conditional variance of PLCFS, FCFS, and SJF
are shown. The service distribution is exponential with mean
1. The dotted line shows the criterion for predictability. Notice
that when load is low, the hump in SJF stays below the cri-
terion for predictability, but when load is high the jobs in the
hump of Var[T(z)]*’F /x are treated unpredictably. In con-
trast, Var|[T(x)]"“F /x is always monotonically decreasing.
However, as seen in the bottom rowfCFS treats a significant
percentage of small jobs unpredictably; whereas, especially un-
der high load, SJF only treats a small percentage of jobs unpre-
dictably.

5.1 Preemptive age based policies

In this section we build on the analysisloAS and show that age
based policies are either Sometimes Predictable or Always Unpre-
dictable.

DEFINITION 5.1. Under a preemptive age based policy, the
priority of a job is assigned based on a fixed priority function that
is a bounded bijection from ages to priorities. The priority of a job
is updated as the age (attained service) of the job changes. The job
with the highest priority is preemptively given service, and if two
jobs have the same age (and thus priority), the job that attained
that age first is given higher priority.

Itis important to point out the generality of the definition of pre-
emptive age based policies. Not only does this definition include
LAS, but it also include§CFS and an array of hybrid policies that

fall into the Sometimes Predictable class. Thatis many policies can bias towards small ages but also give some larger ages high prior-
be predictable for all job sizes under some loads and service distri- ity in order to curb unfairness. As with the definition of size based
butions and unpredictable for some ]Ob size under other loads andpolicies in Section 42, there are some limitations to the definition
service distributions. The policies that are Sometimes Predictable Of age based policies that are left for future work.

have more complicated behavior with respecttaor[T'(x)] than

we observed in the cases of the Always Predictable and Always
Unpredictable classes. For instance, we show that under all ser-
vice distributions,SRPT maintains monotonid ar[T(x)]/x for

low loads similarly to policies in the Always Predictable class; but

THEOREM 5.1. All preemptive age based policies are either
Sometimes Predictable or Always Unpredictable. Further, all age
based policies where no finite age receives the lowest priority are
Always Unpredictable.

under high enough loaRPT exhibits the same non-monotonic
behavior seen und&SJF andLAS. Interestingly, load has the op-

PROOF We again separate the proof into two cases. First, the
case where a finite age receives the lowest priority; and second, the

posite effect for non-size based non-preemptive policies such ascase where no finite age receives the lowest priority.

FCFS, which are predictable under high loads and unpredictable

under low loads. These behaviors are illustrated in Figures 2 and 3.

Let P be a preemptive age based policy where a finitecage0
has the lowest priority. Now, consider a jgb of sizes = a + ¢



wheree — 0. First notice that all of the jobs in the system whgn PROOF Most of the proof is purely algebraic calculation, so we
arrives will complete or achieve age at leasthile j, is in the sys- will only present the major steps. First, we upper bound

tem, sincej, will get stuck with agen. Further, all jobs that arrive ~ Var[T(z)]*#"” using Lemmas A.1 and A.3

while j is in the system will either complete or get worked on up ma(z)(5p(z) — 2

to at least age while j; is in the system. Notice thafar[T'(s)] in Var[T(@)]**7T < Var[B(a)]" (1 + m)

this system is larger thaviar[T'(s)]““ in a system having a dis-
tribution with finite support truncated at Further,Var[T (s)]“4%

in the system with finite support is worse theiar[T'(s)]77% in

the system with the same service distribution. Finally, note that we

From this, we see that ar[T(z)]*FFT < Var[B(x)] for all z
such thabp(z) — 2 < 0, i.e. p(z) < 0.4. Then, we apply Lemma
A.2 in the case whep(z) > 0.4 to finish the proof. [J

have already shown thatRSJF system where a finite sized job Using this theorem, we can see that most job sizes will be treated
receives the lowest priority is Always Unpredictable, thus we can predictably undelSRPT even under high load. Far such that
conclude thaf” is unpredictable in this case. p(x) > 0.4, Var[T(z)]5%FT < Var[B(z)] wheneverp(z) <

Note that this proof technique fails for the case where Obe- 1 _ (1 — )3/4, Notice that this gives a much better range than the
cause when we _trur!cate the service dls_trlbutlon we are left with a p(z) < 0.4 whenp is high. Whenp = 0.8, SRPT is predictable
degenerate distribution, for which our prior results®8J F do not for all job sizesz that havep(x) < 0.7 regardless of the service

apply. To handle the case af= 0, note that allP such that jobs distribution.

with zero age have the lowest priority are non-preemptive. Finally,  \we now show that, thougBRPT can provide predictable re-
we show in Theorem 5.5 that all non-preemptive pOliCieS are un- Sponse times for a" job sizes under IOW |OaBRPT will be un-
predictable under service distributions that are defined on a neigh-predictable for some job size under high enough load.
borhood around zero.

Next let P be a preemptive age based policy where no finite age
has lowest priority. This case can be dealt with symmetrically to
the argument used in Theorem 4.4.]

THEOREM 5.3. SRPT is Sometimes Predictable. For every ser-
vice distribution, there exists some,;: and L such that, for all
p > perit, SRPT is unpredictable for all jobs of size > L.

PrROOF We will prove the result only in the case of an un-
5.2 SRPT bounded service distribution. The proof of the bounded case is

. . _ o mo ()
SRPT is perhaps the most important of the remaining size based Similar. In what follows, definé, = Ama(z)/z = p(z) 725

policies due to the fact that it has been shown to be optimal with ~ We will prove the result by taking advantage of the Lemmas A.4
respect to mean response time [23]. UnBBPT, at every moment ~ and A.5. Defines, > 0 as

in time, the server is processing the job with the smallest remaining \E[X?)] Azma(z) 2227, () F(2)

processing time. Recent§RPT has received a lot of attention [1, €x = A—p? (—p@)? 1= p(x))*

15, 31, 17, 7] due to results showing that usBRPT in web servers ) ) ) )

can decrease user response times dramatically [9, 19]. However, in Jobs of sizer are treated unpredictably if the following formula

this stream of research the behaviorladr [T (x)]°*F7 has only is negative. Using Lemmas A.4 and A.5 we have:
been evaluated using trace-based simulation [7]. Thus, we believe shp
this paper represents the first analytic study of the behavioral prop- Var[B(z)] — Var[T ()"
erties of the conditional variance of response time usReT. The _ Jamg(z) /” Amea(t) &
variance of response time for a job of size&nderSRPT is [24]: T (A =p@)3d  Jo (1—p(t)3
_ amg(z) 3X\2ma (z)2
T Ama(t) Ning () 3(1—p(2))® 401 —p(a)t "
T SRPT _ /
VCLT‘[ (37)] o (1 — p(t))3 dt + 3(1 _ p(l‘))3 - < 3)\2m2(x)2 3 3/\2m2($)2 i >
L3 ( N (z )2  Na2ing (2)F(x) (1—p(x) + )31 — p(x))? 41 —p(x)* = °
4\ (1—p(z))? (1= p(x))* n < Amg(z)  Amg(z) > )
(1= p(@) +06:)°  3(1— p(x))?

We will start the section by showing th&RPT provides pre-
dictable response times for all job sizes at low load, regardless of
the service distribution. Then, we show that under any service
distribution, when the load is high enougBiRPT will be unpre-
dictable to some job size. Finally, we show that, even wBRRT
might not provide predictable response times for all job sizes, only
a tiny percentage of the jobs receive unpredictable response times
and this unpredictability is not too bad.

Now, we will show that ast — oo the above equation ap-
proaches 0 from below whenis higher than somg.;: < 1. This
will complete the proof because it will guarantee the existence of
a perse SUch that, for allb > peri¢, all x larger than somd. will
be treated unpredictably. THecomes from the fact that we show
the limit converges from below as— oo, so there must exist &
such that alle > L are treated unpredictably wher> pcri¢.

In what remains, the following notation will be used to simplify

the calculations. Let: = =(=2z)U-p@+3)’ - |t will be

THEOREM 5.2. Let K be a constant such that 3AZma(2)?
ms(z) < Kizma(z). Under all service distributionSRPT is pre- important thatre; — 0 asz — oo, so we show this in Lemma
dictable whenp < 0.4. Further, for z such thatp(z) > 0.4, A.6. We applye; in order to continue our main calculations from
Var[T(z)]SBPT < Var[B(z)]hi (p, z)SEPT where Equation 3. We will start by showing the first term approaches 0

from below, and then move to the second term.
hl(p7x)SRpT _ (1-p)3 {(1 B 2}(1) N (§K1 _ 1) p(m)} Working with the first term, we have
(1—p(z))* 3 3 372ma (2)? ~ 3N2ma (z)? o
Noting that for all distributionsns(z) < xma(x), we can set (1 —p(x) +62)3(1 — p(x))3 41 —px)*  °°
K7 =1 and obtainhi (p, z) < % {3+ 2p(x)}. 41 — p(x)) + e < (1 — p(x) + 6,)°




Noting thatd, = Ama(x)/z < p(z), and thug1—p(z)+d.) < 1, distribution withp = 0.8, SRPT is only unpredictable for at most

we can work with the simpler formula 3% of jobs and this fraction of jobs only receives at most a factor of
(@) 3 higher variance. Note both of these bounds are better than were
3(1—p(x) +e5 < p(x)% obtained for eithePSJF or LAS.
BlX] 32 + 26" 5.3 Preemptive remaining size based policies
(m1 @) ) <3 mZ(Z) ) < p In this section we build on the analysis$RPT and show that all
T+ mi(e) remaining size based policies are either Sometimes Unpredictable

xma (z) 3z + m2_§$; DEFINITION 5.2. Under apreemptiveremaining size based pol-
_ e _ icy, the priority of a job is assigned based on a fixed priority func-
We will now show that the Left Hand Side (LHS) approaches 1 tjon that is a bounded bijection from remaining sizes to priorities.

() dt 22(2) — xel or Always Unpredictable.
<1 + M) <1 _omae) T < p

from below asz — oo. And thus show that, for large enough The priority of a job is updated as the remaining size of the job
the first term in Equation 3 is negative. ~ changes, and the job with the highest priority is preemptively given
_ We can see that the LHS approaches :Lofr2om below by realiz- service. If two jobs have the same remaining size, the job that at-
ing that,lim, oo 2 [ tf(t)dt < lim, oo [ t°f(t) = O while tained that remaining size first is given higher priority.

. ma(x) « _ E[X?]

lima oo 73y — %€z = Tix] Again it is important to point out the breadth of this definition.

Thus, for large enough the LHS approaches 1 from below be-  Not only does this definition include policies such $8PT and
cause the first piece of the LHS converges to 1 from above with rate Longest-Remaining-Processing-TindPT), it also includes many
o(1/x) while the second piece converges to 1 from below with rate pypyig policies where small remaining sizes receive high priority
©(1/x). Thus, the limit of the product is 1 and it is approached ang some large remaining sizes also receive high priority in order

from below. _ _ to curb unfairness.
We now analyze the second term in Equation 3. ‘ o o
THEOREM 5.4. All preemptive remaining size based policies

Ams () - Ams(z) . <0 are Sometimes Predictable or Always Unpredictable.
(1= p(@) +0)7  3(1 - p(z)) PROOF We again separate the proof into two cases. First, the
331 — px)) < (1—p(x)+d) case where a finite remaining size receives the lowest priority. Let

P be a preemptive remaining size based policy such that a non-
zero remaining size receives the lowest priority. We will return
mo (x)p(x)) to the case where there is no suchWe will consider a service
(1) distribution having upper bound Consider a joby, of original
” 2 (@) sizelr. Then, While]",«.is in Fhe system, gt least all job; that arrived
(1 N acjo tf(t)dt) (1 @ > p earlier and have original size less thawill complete, sincg, will

xmi (z) z 4+ m2@) be stuck at remaining size Further, whery,. has remaining size
m1 (@) t at least all arrivals of size: ¢ will complete beforej,.. Thus, the
Thus, to complete the proof we need to show that the LHS ap- system has highdrar[T'(r)] than anSRPT system with a service
proaches 1 from below as— co. We again see that the first piece  distribution truncated at. Finally, we saw that there are situations

Noting that3'/® < 2, we can work with the simpler equation

2(1 - pla) < (1 pla) + 22K

of the LHS converges to 1 from above with ratd /=) while the whereSRPT will give jobs of sizer unpredictable service. Thus,

second piece converges to 1 from below with r@td /z). Thus, P is unpredictable in this case.

the limit of the product is 1 and it is approached from below. Second, the case where there is no finite job size that receives the
Putting the two calculations together, we see thatas> oo lowest priority can be dealt with in the same manner as in the proof

there exists @..;+ < 1 and anL such that for alp > p..;+ jobs of of Theorem 4.4. [

sizex > L are treated unpredictably.[] 54 Non-preemptive policies

The prior theorems give bounds on the position and existence of We now move to a discussion of the predictability under non-
the hump inVar[T'(z)]°F"T /z; to bound the height of the hump  preemptive policieS. Non-preemptive policies have very different
it turns out to be effective to use the same bound that we have usedbehavior than the preemptive policies we have considered in this

for PSJF andLAS. work so far. We will see in Section 6.3 that large job sizes see
nearly deterministic response times under non-preemptive policies,
LEmmA 5.1. Forall z, Var[T(z)]*"F" < Var[T(z)"** because once they begin service they cannot be interrupted. How-
) ) ever, one result of this bias towards large job sizes is that small job
Lemma 5.1 allows us to use the bound already derivedA&in sizes can receive extremely variable service because they may have

Theorem 4.6. As in the cases BSJF andLAS, the combination to wait behind the excess of a much larger job.
of the above theorems provides tight bounds on the position and | fact, whenever the service distribution includes arbitrarily small
size of the hump iV ar[T'(z)) /x. jobs, these small jobs will receive unpredictable response times un-

ExAamPLE 5.1. Again considerX ~ Ezp(l). p(z) < 1 — der non-preemptive policies.

(1-— p)3/4 whene™ + ze™® > 1 — M_ This says that THEOREM 5.5. Non-preemptive policies are either Sometimes

whenp = 0.8, SRPT will be predictable for at least jobs of size  Predictable or Always Unpredictable. All non-preemptive policies

z < 3.6, which is at least 97.2% of the jobs. are unpredictable for all loads if the service distribution includes
We can use this result to s&k = 3.6 in the case wherp = 0.8 arbitrarily small job sizes.

which givesVar[T'(z)]*#*" < 2.9Var[B(z)]. Thus, although  SNote that there is some overlap between non-preemptive policies
SRPT can be unpredictable, in the case of an exponential service and age based policies, eRCFS is in both groups.



PROOF Let P be a work conserving non-preemptive policy.
The response time of a jop. of sizex under P is the sum of
the work in the system that will serve aheadjof W;_, and all
arrivals whilej, is in the system that serve ahead;jof This sec-
ond piece can be viewed as a busy periéd, (W;,). We can
boundV;, from below by the excess of the job at the server upon
the arrival ofj,, £. Further, we can boun®ar[B;, (W;,)] >
Var|W;,] > Varl€]. Finally, we can complete the proof by ob-

serving thatim, .o YL <”> > limg—o L7 — 0o, [

However, in many real world cases there is some lower bound

[10]. Slowdown was considered because the focus was on unfair-
ness; however, in terms of understanding the distribution of the re-
sponse times of large jobs, we will illustrate that the scaling factor
in the slowdown metric is too heavy handed and hides all informa-
tion about the variability of the limiting distribution.

Our goal is to find a scaling factor that provides information
about the variability (and all higher moments) in the limiting distri-
bution of T'(z) asx — oo.

6.1 Busy periods

In order to illustrate the issues in finding the appropriate scaling

that can be placed on the size of a service request. In this case, nonfactor for the limit ast — oo, we will begin by looking at the

preemptive policiegan provide predictable service. We illustrate
this using the examples 6CFS and non-preemptive Shortest-Job-
First (SJF). Note that [26]

rcrs _ AE[X?]  NE[X?)P?
Var(T(z)] T 3(l—p)  4(1-p)?
sIF AE[X3] Nma(2)E[X?]  AE[X?)?
Varll @l = g s T U@yt A= pla)t

THEOREM 5.6. FCFSis Sometimes Predictable. (i) For all ser-
vice distributions with no non-zero lower bourfelCFS is unpre-
dictable. (ii) For all service distributions with lower bourfd £ 0,
there exists g+ such that for allp € (perit, 1) FCFS is pre-
dictable.

THEOREM 5.7. SJF is Sometimes Predictable. (i) For all ser-
vice distribution with no non-zero lower boursl] F is unpredictable.
(ii) For service distributions with Iower boundl # 0, SJF is pre-

dictable when"2X] 4 %ﬁ%ﬂ <5

X]

asymptotic behavior o3(z). Busy periods are fundamental to
the analysis of many size based scheduling policies, and we will
find that the correct scaling factor f@(x) will match the scaling
necessary for response times under many policies.

The Laplace transform dB(z), Lp () (s), is:

Lpa)(s) = e *TA=A8() where L (s) is the Laplace trans-
form of a standard M/GI/1 busy period. We can proceed to calculate
the moments oB(x) using thefollowing notationk(s) = —z(s+
A—ALp(s)). Thus,h/(0) = ,hD(0) = (=1)'AzE[B]. It

is important to notice that in eacﬁ of these termbas degree one
since E[B*] does not depend an. Usingh(s), we can derive the
moments ofB(z). E[B(z)] = h'(0) and E[B(z)?] = h”(0) +
R'(0)2. This illustrates the heavy handedness of the slowdown met-
ric because we can see tHatB(x)’ /o] = ZLE@ which leads

to a degenerate limiting distributionim, . Var[B(z)/x] =
limg—.c0 Var[B(z)]/2* = 0.

Instead of using slowdown, another natural suggestion is to try
to normalize the raw moments &f(z). However, as can be seen
through differentiation of the Laplace transforf{B(z)‘] = ©(a").
Thus, only scaling by’ is enough to keep the limit as— oo from
going tooo; however this scaling leads to a degenerate limiting dis-

The proofs of these theorems are straightforward, and are there-tribution.

fore omitted.

These two examples illustrate the strange effects of size basedconsider the central momentsB{z), E[(B(x) —

prioritization. WhileFCFS and all non-size based non-preemptive
policies haveVar[T(x)]/x that is strictly decreasing iw, size
based non-preemptive policies, sucltsd§, exhibit non-monotonic

A third natural suggestion for an appropriate scaling factor is to
E[B(2)))]. Up
until the third central moment, it seems that central moments can
be scaled appropriately using[(B(z) — E[B(z)])"]/x. How-
ever, beyond the third central moment the central moments be-

behavior similar to that seen under preemptive policies such ascome convoluted, and it becomes apparent that there is no sim-

SRPT, LAS, andPSJF.

6. HIGHER MOMENTS

The similarities between the metrics and criteria for fairness and g 2
predictability beg the question of how higher conditional moments

of response times vary acrasslin this section we begin to ask the

guestion of how to generalize the metrics and criteria for fairness

and predictability to higher moments.

We study the limiting case of — oo due to the role it played
in developing Definitions 1.1 and 1.2. This limiting case provides
insight into how conditional moments scale witlunder a range of
scheduling policies, and this scaling factor will motivate an appro-
priate metric and criterion for comparing higher conditional mo-
ments across. However, this case is also interesting in its own

right because of intuitive worries that large jobs receive larger, more
variable response times under policies that bias towards small jobs

[2, 25, 27].

There has been prior work on the question of analyzing the lim- erated from the cumulant generating functiti (s) =

iting distribution of 7'(z) asz — oo. Motivated by fairness con-

ple, appropriate scaling factor for the central moments either. For
i1 =2,3, E[(B(X)—E[B(X)])'] = AxE[B"]; however fori = 4,
B[(B(X) = E[B(X))"] = Xz (E[B"]) + 3(\zE[B?])*.

Introducing cumulants

The observation that the first three central moments are well be-
haved is important however. It hints that cumulants might provide
the correct asymptotic metric. Cumulants have appeared sporadi-
cally in queueing [4, 6, 14], tending to be used in large deviation
limits. Cumulants are a descriptive statistic similar to moments.
Formally, the cumulant moments of a random variaklex;[X]
i1=1,2,..., are defined in terms of the moments)éfE[Xi], as
follows:

[X]¢2 21,2
22!t +"':1+E[X]t+E‘[)§7']t+

From this definition it follows that the cumulants &f can be gen-
log(Lx(s)).

em[X]’erN

Thatis,(—1)'K(0) = [ X].

cerns, some of this has focused on the metric of slowdown and Although not immediately evident from the definition, cumu-
showed that under all work conserving policies, the asymptotic lants have many properties that both raw and central moments lack.

slowdown of large jobs is bounded almost surely {1 — p)

For instance, letting be a constants1[X + ¢] = k1[X] + ¢ but



fori > 2, k[ X + ] = k;[X]. Thus the first cumulant is shift- REMARK 6.1. We conjecture tha®S has the same limiting be-
equivariant, but all others are shift-invariant. Other nice properties havior as the above policies; however known asymptotics are only
of cumulants include homogeneity and additivity. Homogeneity tight enough to show the convergence of the first and second cu-

states that;[cX] = c's;[X]. Additivity states that for indepen-
dent random variableX andY, «;[X + Y] = ki[X] + si[Y].
These properties make cumulants very attractive.

Practically, the cumulants capture many of the standard descrip-

tive statistics. Each of the first four cumulants has a useful interpre-

tation. The first cumulant is the mean; the second cumulant is the
variance; the third cumulant measures the skewness of the distri-

bution; and the fourth cumulant measures the kurtosis of the distri-
bution. See [11] for tables of the relationships between cumulants,
moments, and central moments.

6.3 Asymptotic convergence

In contrast to raw and central moments, the cumulants (@f)
have a very simple form.

Kp)(s) =log(Lpw)(s)) = —z(s + X — ALB(s))

Calculating the cumulant moments through differentiation:
Kl[B(LE)} _ { m/(17p)

AzE[B']

Thus, usingk;/z, it is possible to capture the variability in the
limiting distribution of response time.

We will now see that this scaling factor is appropriate for a large
number of preemptive scheduling policies.

We will first prove an upper bound on the asymptattt cumu-
lant moment off’(x) that holds for all work conserving schedul-
ing policies. We will then show that this bound is tight, and that
many common scheduling policies have limiting response times
that match this bound. We will next illustrate that there are how-
ever policies that have lower asymptotic cumulants, e.g. all non-
preemptive policies.

fori=1
fori > 1

THEOREM 6.1. Under any work conserving policy,

milT ()] { 1/(1-p)
z \E[B]

PROOF. Let P be a work conserving policy. Theff;(z)" <
B(z + V) becauseB(z + V) = B(z) + B(V) corresponds to
the time it would take to finish all the work in the system when
arrived in addition to all the arriving work while is in the system.
Thus, ast — oo

forc =1

<
fori>1

lim
xr—00

log(Lp(tv)(s)/®
log(Lp()(s))/z + log(Lpv)(s))/z
s+A=ALB(s)

which yieldslim, .o #1[B(z + V)] /z = = and

limy o0 ki [B(z 4 V)]/z = AE[B'] for i > 1; from which the
result follows. [

Kptvy(s)/x

—

Next, we illustrate that this upper bound is tight and that many

mulants. In particular, it is known that [37]:E[T(z)"]7° =

zt Azt T E[X2)i(i—1) i—1 :
Ty S )it + o(z'~"), which proves the result for

r1[T(2)])7® and k2 [T ()]”®. However, information about higher
cumulants is lost in the(z*~1) term.

The combination of Theorems 6.1 and 6.2 serves to motivate
the metrics and criteria in Definitions 1.1 and 1.2 for fairness and
predictability. Further, these theorems suggest that similar met-
rics and criteria exist for higher conditional cumulants as well.
In particular, we conjecture thatE[B‘] will serve as criterion
for x;[T'(x)]/z that distinguishes between fundamentally different
functional behaviors. The similarities between the classifications
for k1[T'(x)]/x (fairness) andi2[T'(z)]/x (predictability) suggest
that similar classifications exist for higher cumulants.

Although many common policies have equivalent distributions
for T'(x) asx — oo, the limit of Theorem 6.2 is not the only
possibility.

THEOREM 6.3. Under any non-preemptive work conserving pol-
icy P,

The proof of this result mimics the proof of Theorem 6.1.

We have now seen examples of two possible limiting behaviors;
however these are not the only possibilities. It is straightforward
to show that class based preemptive priority policies can achieve
arbitraryr; [T'(x)]/x less thamE[B?].

1 fori=1
0 fori>1

ka1 ()]

lim

T —00

7. CONCLUSION

In many modern computer systems improving the predictability
of response times is more important than improving response times
on average. This is because users expect certain response times
based on past experience and become frustrated if they must wait
longer than expected. So, an important goal for a scheduling pol-
icy is to provide identical jobs nearly identical response times. In
order to understand how “predictable” scheduling polices are, we
introduce a two part definition of predictability (Definition 1.2) that
uses the metri& ar[T(x)]/x and the criteriomE[X?]/(1 — p)?
in order to classify which policies provide all job sizes predictable
response times. Definition 1.2 parallels the definition of fairness in
prior work and is further motivated by the goal of providing QoS
guarantees.

We build on Definition 1.2 to develop a classification of pre-
dictability (see Figure 1). Interestingly, the classification of pre-
dictability that we derive has many parallels to the classification of
fairness in [31]. For instanc®S andPLCFS are both Always Fair
and Always Predictable. SimilarlgRPT is both Sometimes Fair
and Sometimes Predictable and exhibits the same interesting non-

common policies have limiting response times that match the bound monotonic (hump shaped) behavior under both measures. In fact,

THEOREM 6.2. For P € {PSJF, LAS, SRPT, PLCFS},
ri[T ()" { 1/(1—p) fori=1

T AE[B"] fori>1
The proof of this theorem is a sequence of straightforward cal-
culations using the cumulant generating functions (c.g.f.) for each
policy. Normalizing the c.g.f. by: and lettingr — oo shows that
the c.g.f. of each of these policies converges to the c.gH (af).

lim
xr— 00

the entire class of remaining size based policies receives a parallel
classification under the two measures. Further, size based policies
are both Always Unfair and Always Unpredictable.

Although there are many similarities between the predictability
and fairness classifications, there are also some important differ-
ences. Both age based and non-preemptive non-size based policies
can be Sometimes Predictable but are Always Unfair. Further, al-
thoughPS is both Always Fair and Always Predictable, it has much
better predictability than fairness properties — WHIE ()] 7S /z



is constant,Var[T(z)]¥° /z is monotonically increasing which
means thaPS provides less variable response times for small job

sizes without increasing the variability of the large job sizes.

In classifying scheduling policies with respect to predictability,
we find thatV ar[T'(x)]” /2 can exhibit four different patterns of
functional behavior (see Figures 2 and 3).
PS, haveV ar[T(z)]” /= that grows monotonically and is bounded

by a constant across, whereas other policies, e.dg=CFS, have

Var[T(z)]F that decreases monotonically:inand is unbounded
asxz — 0. Further, it seems that prioritization, be it age based,

Some policies, e.g.

(1]
[12]
[13]
[14]

[15]

size based or remaining size based, leads to non-monotonic be{16]

havior in normalized conditional response times. In particular, un-
der PSJF, LAS, and SRPT mid-range job sizes have the largest
Var[T(z)]¥ /z. Further,SIF has a similar hump behavior for
mid-range jobs; however the smallest job sizes still receive un-
boundedVar[T(z)]” /x. Our work illustrates that the criterion
AE[X?]/(1 — p)? in Definition 1.2 for predictability distinguishes
between these functional behaviors. If a policy has monotonically
increasing, boundet ar[T'(x)]* /= under some service distribu-

[17]

(18]

tions and loads then the policy is Always or Sometimes Predictable; [19]

otherwise the policy is Always Unpredictable because under all ser-
vice distributions and loads eith&far [T (x)]F /= is unbounded or

some mid-range job sizes receive significantly wdree [T'(x)]/z
than other job sizes.
The parallels between the classifications of fairness and predictabil-

ity beg the question of whether similar classifications exist for higher

[20]

[21]

conditional moments. In this work, we take the first step towards [22]

answering this question by studying the higher conditional mo-
ments of T'(z) asz — oo in order to derive appropriate met-
rics and criteria. We find that the natural extension to the defi-
nitions used for fairness and predictability are the little used cu-
mulant moments, in particulat;[7'(z)]/z. Further, we find that

ki[T(x)]/x — AE[B"] asz — oo for all i > 1 (recall thatE[B"]
is thesth moment of a busy period). This suggests #dd(x)]/z
will serve asmetricsand \E[B*] will serve as ecriteria in defini-

tions of classifications for higher conditional moments. We conjec-
ture that these definitions for higher moments will lead to classifi-

cations that parallel the work in this paper.

8.
(1]
(2]

(3]
(4]

(3]
(6]

(7]

(8]
(9]

[10]
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APPENDIX
A. USEFUL LEMMAS

LEMMA Al X2mg(z)? < Mg (x)p(x)

PROOF
4x2 (/Oz(tf(t)l/Z)zdt> (/(Jx(f(t)l/?)zdt)

= @)

Nmg(z)® <

O

LEMMA A.2. LetK; besuchthatns(x) < Kizma(z). Thenms(x) <
KizE[X2].

PROOF,
m3(x) = ma(z)+z>F(z)
2 oo
< Kyoma(@) (HM>
ma(z)
00 42
< Kizma(x) (1 + m>
ma(z)
2] _
= Kizma(z) <1 + M) = K zB[X?]
ma(x)
[l
LEMMA A.3.
T Ama(t) ArE[X?] Amsz(x)
VarlR(z)SEPT — 2 —
T It ) el
PROOF
/l Ama (t) it < [y Ama(t)dt _ Azma(z) — Ams(z)
o (I—p(t)3 T (A—p=)3 1= p(x))?
Az E[X?] _ A2 F(x) B Amg(z)
T A =p@)® Q-p@)®  A-p@)3
Az E[X?] Az (z)

(1 —p()*  (1—p(x))?

O
LEMMA A4,
srpT _ [T Ama(t) Axmo(z) — Amsg(z)
VarlR@IT20 = | G p)e

(1= o) (1- 222))°

PROOF We show this using Chebyshev’s Integral Inequality [8].eTh
following holds for: = 1, 2, 3.

z T Amg(t) @ Ama(t)
() r-oan) ([ Gomgmee) = = a2y
Thus,
/z Amia(t) it z® [§ Ama(t)dt
o (1—p)3 T (S8 p(t)dt)®
_ Azma(z) — Amg(z) ,
(1o (1 - 5285))”
O

LEMMA A5. Defines, = Ama(z)/z = p(z) 222 Then

zmq (z)
Azmo(x) (" Ama(t)
= p@)® / Ve
3X2ma(z)? Ams(z)

S T p@ 4020 = @) T A= p@) + 6.7

Amg(z)

PROOF Lety = 5= 7y 5s- Then
Azma(x) _ T _Ama(t)
(1—p(z))3 ./o (1 =p®)? t
§ Azma () B Azma(z) — Amsg(z)
< — = 3 m €T 3
=plD® (1= p(ay (1 - 220)))
Azma(x)

(1 — p(@))® +3(1 — p())?8x + 3(L — p(2))3 + 83
{ (1 = p(x))?
3. 352 N 53 } s
I —p(x))  (A—px)?  (1-px)?

an2ma(@)? { (1= p(@)? + 6,01 = p(e)) + % |

- (1= () + 6.)°(1 — p(@))? T

We can complete the proof by noting tldat = Ama(x)/x < p(x), which
gives us that

.

_ Azma(z)
(1 —p(@) +62)°

2
(1= p(2))? +62(1 — pl)) + %x

2
< 1= 20() +p(a)? + pl@) — p@)? + 2D <1
O
LEMMA A.6. limg oo e}, = 0.
PROOF
zet = zex(1 = p(2))(1 = p(x) + 62)° TE€x
o 3A2mo(z)? ~ 3X2mo(x)?
_ 1 A2 E[X?] _ AzZma(x) A2z g (2)F(x)
C3NZma(2)2 \ (1-p)2 (1-p(2))? (1 = p(2))*
_ 1 Az? [2° 2 f(t)dt
T @\ (-
Az2ma(z) _ AzZma (z) A2z2 g (x) F(x)
(1=p32  (A=p)? (1 = p(x))*

Thus, ast — oo it is clear that the last term disappears because the
service distribution is taken to have a finite third moment.tifren; letting
Yz = X 77 tf(t)dt we can that the 2nd and 3rd terms cancel.

im a2 ! - !
e <<1—p>3 (1,p(m))3)
R s e ()
1 ( (1= pP3(1— p(@))? >
3(1—p)2+3(1—p)m—c+v§>:0
-0 p()?

where the last equality follows using L'Hopital’s Rule

T — 00

&Tr— 00

= lim 22y, <

42 f(t)dt

lim 172%9 = lim 7]“3 1®)
T—00 T—00 2772
= lim sz(x)

T—00 2x

lim zf(z) =0

Finally, the limit of the first term can seen to be 0 using a sin@fgplication
of L'Hopital's Rule as above. []



