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Abstract

The Shortest-Remaining-Processing-Time (SRPT) scheduling policy has long been known to be optimal

for minimizing mean response time (sojourn time). Despite this fact, SRPT scheduling is rarely used in

practice. It is believed that the performance improvementsof SRPT over other scheduling policies stem

from the fact that SRPT unfairly penalizes the large jobs in order to help the small jobs. This belief has led

people to instead adopt “fair” scheduling policies such as Processor-Sharing (PS), which produces the same

expected slowdown for jobs of all sizes.

This paper investigates formally the problem of unfairnessin SRPT scheduling as compared with PS

scheduling. The analysis assumes an M/G/1 model, and emphasizes job size distributions with a heavy-tailed

property, as are characteristic of empirical workloads. The analysis shows that the degree of unfairness under

SRPT is surprisingly small.

The M/G/1/SRPT and M/G/1/PS queues are also analyzed under overload and closed-form expressions

for mean response time as a function of job size are proved in this setting.
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1 Introduction

It has been long known that always giving service to the job with the shortest-remaining-processing-time

(SRPT) is the optimal scheduling policy with respect to minimizing the mean response time. Yet, many

existing schedulers time-share the processor equally among all jobs, giving each job an equal quantum of

service. For example, a web-server today time shares between its many concurrent open connections, giving

each an approximately equal share of processing time. In thelimit, as the size of the quantum goes to zero,

this “fair-share” scheduling policy is known as Processor Sharing (PS).

There are reasons why the optimal policy SRPT is not prevalent in practice. In some cases, it is because

thesize of a job(its processing requirement) is not known in advance, so SRPT cannot be applied. However,

in several applications this is not the case, and it is possible to reasonably estimate the size of a job. For

example, in the case of static web requests to a web server, a job’s processing requirement is proportional to

the file size requested, which is known by the server. Likewise in several database applications, the processing

requirement for a query may be estimated in advance.

A second objection to switching to SRPT is that it is not clearwhether the performance improvements of

SRPT over traditional scheduling policies like PS are significant. Comparing SRPT with other policies is not

easy given the complex nature of existing performance formulas for SRPT.

However, the foremost and very commonly cited objection to using SRPT is the fear that large jobs may

“starve” under SRPT [1, 28, 29, 26]. It is often stated that the huge average performance improvements of

SRPT over other scheduling policies stem from the fact that SRPT unfairly penalizes the large jobs in order to

help the small jobs. It is often thought that the performanceof small jobs cannot be improved without hurting

the large jobs (see Section 2) and thus large jobs suffer unfairly under SRPT.

This paper will investigate the objections cited above. Before we can state our results, we need to define

the performance metrics and the workloads which we use. The performance metrics we use throughout are

response timeandslowdown. The response time of a job (a.k.a. sojourn time, turnaroundtime, flow time)

is the time from when the job first arrives at the system until it departs the system. The slowdown of a job

(a.k.a. stretch, normalized response time) is the ratio of its response time to its size. The slowdown metric is

important because it helps to evaluate unfairness. For example, in an M/G/1 system with PS scheduling, all

jobs (long and short) experience the same expected slowdown(hence PS is “fair”).

It turns out that the job size distribution is important withrespect to evaluating SRPT. We will therefore

assume a general job size distribution. We will also concentrate on the special case of distributions with the

heavy-tailed property (HT property ), where the largest 1% of the jobs comprise more than half theload.

This HT property appears in many recent measurements of computing systems (see Section 3 ).

Throughout this paper we assume an M/G/1 queue where G is assumed to be acontinuous distributionwith
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finite mean and variance (the abbreviationc.f.m.f.v. is used to denote continuous, finite mean, finite variance

in the theorems).

In the case where� < 1 we prove the following results:

On the topic of mean performance improvements:� Although it is well-known that SRPT scheduling optimizes mean response time, it is not known how

SRPT compares with PS with respect to mean slowdown. We provethat SRPT scheduling also outper-

forms PS scheduling with respect to mean slowdown for all jobsize distributions (Theorem 1, Section

4).� Given that SRPT improves performance over PS both with respect to mean response time and mean

slowdown, we next investigate the magnitude of the improvement. We prove that for all job size dis-

tributions with the HT property the improvement is very significant under high loads. For example,

for load0:9, SRPT improves over PS with respect to mean slowdown by a factor of at least 4 for all

distributions with the HT property. As the load approaches 1, we find that SRPT improves over PS with

respect to mean slowdown by a factor of 100 for all distributions with the HT property (Theorem 2,

Section 4). In general we prove that forall job size distributions as the load approaches one, the mean

response time under SRPT improves upon the mean response time under PS by at least a factor of 2 and

likewise for mean slowdown. (Corollaries 1 and 2, Section 4).

On the topic of starvation we first show some counter-intuitive results:� The performance improvement of SRPT over PS doesnotusually come at the expense of the large jobs

(Section 5.1, Claim 1). In fact, we observe via example that for many job size distributions with the HT

property every single job, including a job of the maximum possible size, prefers SRPT to PS (unless the

load is extremely close to 1).� While the above result does not hold at all loads, we prove that no matter what the load, at least 99% of

the jobs have a lower expected response time under SRPT than under PS, for all job size distributions

with the HT property (Section 5.2, Corollary 4). In fact, these 99% of the jobs do significantly better. We

show that these jobs have an average slowdown of at most 4, at any load� < 1 (Section 5.2, Theorem

7), whereas their performance could be arbitrarily bad under PS as the load approaches 1. Similar, but

weaker results are shown for general distributions (Section 5.2, Theorem 4 and 5).� While the previous result is concerned only with 99% of the jobs, we also prove upper bounds on how

much worse any job could fare under SRPT as opposed to PS for general distributions (Section 5.2,

Theorem 6). Our bounds show that jobs never do too much worse under SRPT than under PS. For
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example, for all job size distributions, the expected response time under SRPT for any job is never more

than 3 times that under PS, when the load is0:8, and never more than 5.5 times that under PS when the

load is0:9. In fact, if the load is less than half, then for every job sizedistribution, each job has a lower

expected response time and slowdown under SRPT than under PS(Section 5.2, Theorem 4).� The above results show an upper bound on how much worse a job could fare under SRPT as opposed to

PS for general job size distributions. We likewise prove lower bounds on the performance of SRPT as

compared with PS for general job size distributions. (Section 5.2, Theorem 8).

Finally in the case where load� > 1 we prove that:� Consider a job of sizex such that�(x) < 1, where�(x) denotes the load made up of jobs of size� x.

For such jobs, we prove that the expected response time and slowdown arefiniteunder SRPT. We derive

a closed-form expression for the mean response time of a job of sizex where�(x) < 1 under SRPT

(see Section 7, Theorem 9). By contrast, under PS scheduling, it is well known thatall jobs, including

the very small ones experience infinite expected response time and slowdown for� > 1 [14].� We evaluate our overload formula above, for the case of a heavy-tailed job size distribution. We show

that for heavy-tailed job size distributions, for a system with average load well-above one, the mean

response time for all but the largest1% of the jobs is surprisingly low under SRPT. For example, under

a load of� = 1:5, 99% of jobs will experience a mean slowdown of only4 under SRPT scheduling, as

compared with a mean slowdown of infinity for every job under PS scheduling (see Section 7, Figure 2).

There is certainly more work to be done on the problem of comparing SRPT versus PS scheduling under

overload. Jean-Marie and Robert [11] provide some nice analysis of PS under overloaded conditions.

Throughout this paper, for the sake of clarity, we compare SRPT with PS scheduling only. The reason

for this is that PS has the properties that it is (1) “ultimately” fair (equal slowdown for all jobs), (2) in-

sensitive to the variance of the job size distribution, which implies good performance, and (3) ubiquitous.

For completeness in Section 9 we also compare SRPT to other scheduling policies in the literature such as:

first-come-first-server(FCFS), random (RANDOM), non-preemptive last-come-first-serve (LCFS), shortest-

job-first (SJF), preemptive-last-come-first-served (P-LCFS) and feedback (FB) scheduling.

This paper argues why SRPT scheduling makes sense on a performance level. In practice, it is not al-

ways so obvious how SRPT scheduling should be applied, giventhat most systems havemultipledevices and

multiprogramming is necessary to ensure that cycles aren’twasted. For an example of SRPT being applied

successfully to Web servers see [6].
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2 Previous work

Mean results: It has long been known that SRPT has the lowest mean response time of any scheduling policy,

given any arrival sequence and job sizes [23, 27]. Rajaramanet al. showed further that the mean slowdown

under SRPT is at most twice the optimal mean slowdown for any sequence of job arrivals [5].

Schrage and Miller first derived the expressions for the response times in an M/G/1/SRPT queue [24].

This was further generalized by Pechinkinet al. to disciplines where the remaining times are divided into

intervals. The jobs with remaining times in the smaller interval are served first but those within the same

interval are served in first-come-first server order [18]. The steady-state appearance of the M/G/1/SRPT queue

was obtained by Schassberger [22].

Though the above formulas have been known for a long time, they are difficult to evaluate numerically,

due to their complex form (many nested integrals). Hence, the comparison of SRPT to other policies was long

neglected. More recently, SRPT has been compared with otherpolicies by plotting the mean response times

for specific job size distributions under specific loads [21,19, 25, 24, 7]. A 7-year long study at University of

Aachen under Schreiber [19, 25] involved extensive evaluation of SRPT for various job size distributions and

loads. The survey paper by Schreiber [25] summarizes the results. These results are all plots forspecificjob

size distributions and loads. Hence it is not clear whether the conclusions based on these plots hold for more

general job size distributions and loads.

Unfairness results: It has often been cited that SRPT may lead tostarvationof large jobs [1, 28, 29, 26].

Usually, examples of adversarial arrival sequences where aparticular job starves are given to justify this.

However, such worst case examples do not reflect the behaviorof SRPT in the average case.

The term “starvation” is also used by people to indicate theunfairnessof SRPT’s treatment of long jobs.

It is often thought that since SRPT favors small jobs, long jobs should have a worse average performance

under SRPT than under other policies. The argument given is that if a scheduling policy manages to reduce

the response time of small jobs, then the response times for the large jobs would have to increase considerably.

This argument does hold for scheduling policies which do notmake use of size, see the famous Kleinrock

Conservation Law [13], [14, Page 197]. However the argumentdoesnot necessarily apply to policies which

make use of size, for example SRPT.

Very little has been done to evaluate the problem of unfairness analytically. Recently, Bender et al. con-

sider the metricmax slowdownof a job, as indication of unfairness [1]. They show with an example that SRPT

can have an arbitrarily largemax slowdown. However,max slowdownis not an appropriate metric to measure

unfairness. A large job may have an exceptionally long response time in some case, but it might do well most

of the time. A more relevant metric which we use in our paper isthemax mean slowdown.

There has also been work in the area of proposing new SRPT-like policies [2, 17] which try to reduce the
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problem of unfairness, while still favoring the short jobs.These usually prioritize based onboth the time a

job has waited so far, and its remaining size. These policiesare usually analytically intractable and have been

evaluated by simulation only. However simulations show that they are promising.

Overload results: No formulas have been derived for M/G/1/SRPT under overload. In our derivation we use

a combination of ideas from [24] and [12].

3 The heavy-tailed property

Many application environments show a mixture of job sizes spanning many orders of magnitude. Much pre-

vious work has used theexponential distribution to capture this variability, However, recentmeasurements

indicate that for many applications the exponential distribution is a poor model and that aheavy-taileddistri-

bution is more accurate. In general a heavy-tailed distribution is one for whichPrfX > xg � x��; where0 < � < 2:
In practice, there is some maximum and minimum job size (forced by finite limits in system resources).

Therefore, job sizes are often modeled as being generated i.i.d from a distribution that has a heavy-tailed

form, but has finite upper and lower bounds. This truncated distribution is referred to as theBounded-Pareto

distribution [8]. It is characterized by three parameters:�; the exponent of the power law;k, the shortest

possible job; andp, the largest possible job, The probabilitydensity function for the Bounded ParetoB(k; p; �)
is defined as: f(x) = �k�1� (k=p)� x���1 k � x � p; 0 < � < 2
Throughout this paper, whenever theB(k; p; �) distribution is mentioned, it will be assumed thatk is chosen

such that the mean value is fixed at3000 and the maximum value fixed atp = 1010, which correspond to

typical values taken from [4].

Many recent measurements of computing systems [15, 9, 4, 10,20] have observed job size distributions

which are well-modeled by a Bounded Pareto distribution, where� � 1.

One key property of heavy-tailed distributions and (many) Bounded Pareto distributions is that a tiny

fraction(< 1%) of the very largest jobs comprise over half of the total load.We will refer to this as theheavy-

tailed property (HT property) throughout this paper.Observe that for lower values of�, the HT property

is more pronounced, whereas it is less pronounced for highervalues of�. Throughout the paper, whenever

we use the Bounded Pareto distribution in the paper, it will always be theBP (k = 332; p = 1010; � = 1:1)
distribution. This distribution has a strong heavy-tailedproperty (the largest:3% of the jobs comprise half the

total load), mean3000, and variance7:25 � 1011. Note that while the Bounded Pareto distribution has both
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the HT property and finite moments, in general heavy-tailed distributions have the HT property, but infinite

variance, and sometimes even infinite mean.

4 Mean analysis of M/G/1/SRPT

This section presents a comparison of the M/G/1/SRPT queue and the M/G/1/PS queue with respect to mean

response time and mean slowdown.

We denote the average arrival rate by�. We will assume that the job size distribution is c.f.m.f.v.with

probability density functionf(t). The cumulative job size distribution will be denoted byF (t). We will

denote1 � F (t) by F (t). X will refer to the service time of a job. The load (utilization), �, of the server is� = � R10 tf(t)dt: The load made up by the jobs of size less than or equal tox, �(x), is�(x) = � R x0 tf(t)dt:
Let m2(x) be defined as follows:m2(x) = R x0 t2f(t)dt.

The expected response time for a job of sizex under SRPT,E[T (x)]SRPT , can be decomposed into the

expected waiting time of the job,E[W (x)]SRPT , and the expected residence time of the jobE[R(x)]SRPT ,

whereE[W (x)] is the expected time for a job of sizex from when it first arrives to when it receives service

for the first time, andE[R(x)]SRPT is the expected residence time (the time it takes for a job of size x to

complete once it begins execution). The formulas for these expressions are given by [24]E[T (x)]SRPT = E[W (x)]SRPT + E[R(x)]SRPT (1)E[W (x)]SRPT = �(m2(x) + x2(1� F (x)))2(1� �(x))2 (2)E[R(x)]SRPT = Z x0 dt1� �(t) (3)

For PS the expected response time for a job of sizex, E[T (x)]PS , is given by [30]E[T (x)]PS = x1� � (4)

For any policy, ifE[T (x)] is the expected response time for a job of sizex, then the expectedslowdownfor a

job of sizex, E[S(x)], is given by E[S(x)] = E[T (x)]x
The mean response time and mean slowdown are given byE[T ] = R10 E[T (x)]f(x)dx andE[S] = R10 E[S(x)]f(x)dx
respectively.

Observe that for a given load�, all jobs have the same slowdown under PS, since,E[S(x)]PS = 11�� for

anyx. Thus PS is ultimately “fair”.

We now show that the mean performance advantages of SRPT overPS are significant.
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Theorem 1 For load� < 1, for any c.f.m.f.v. distribution of job sizes,E[T ]SRPT � h(�)E[T ]PSE[S]SRPT � h(�)E[S]PS
where h(�) = �2 � (1� �) log (1� �)�
In particular, for any load�, E[S]SRPT � E[S]PS .

The proof of Theorem 1 will be given in Section 6, since it requires analysis not yet developed.

Observing thath(�) ! 12 , as�! 1, we get:

Corollary 1 For any c.f.m.f.v. job size distribution, as the load�! 1, E[T ]SRPT � 12E[T ]PS .

Corollary 2 For any c.f.m.f.v. job size distribution, as the load�! 1, E[S]SRPT � 12E[S]PS .

It is easy to see that the factor of two improvement in Corollaries 1 and 2 is in fact tight, given the assumption

of general distributions. To see this, observe that for the constant job size distribution, SRPT is identical to

FCFS. As the load approaches 1, it can be seen thatE[T ]SRPT = E[T ]FCFS � 12E[T ]PS .

The bound proven in Theorem 1 can be greatly strengthened if we limit our attention to job size distribu-

tions with the HT property.

Theorem 2 For load� < 1, for any c.f.m.f.v. job size distribution with the HT property,E[S]SRPT � k(�)E[S]PS
where k(�) = �(1:01� �)2� � � 2(1� �)� �log (1� �2 ) + 0:01 log 1� �1� �2 �
Corollary 3 For any c.f.m.f.v. job size distribution with the HT property, as the load� ! 1, E[S]SRPT �1100E[S]PS .

The proof of Theorem 2 will be given in Section 6, since it requires analysis not yet developed.

At this point it is tempting to assume that the large mean slowdown improvements of SRPT claimed above

are due to disproportionately helping the many small jobs and sacrificing the fewer big jobs. In the next section

we will show that this is in fact not the case.
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5 Unfairness Analysis

It is commonly believed that it is not possible to improve theperformance of some jobs without hurting the

performance of some other jobs. In section 5.1 we dispel thisnotion. We show with an example that there

exist job size distributions such thateveryjob can do better under SRPT than under PS. We also give intuition

as to why this might be true. We then show the main analytical results on unfairness in Section 5.2.

5.1 All jobs can do better

We saw in Theorem 2 that, for job size distributions with the HT property, mean slowdown is substantially

lower under SRPT as compared with PS. We now ask whether thismeanimprovement comes at the cost of

severely penalizing large jobs. We now show that for at leastone particular job size distribution,BP (k; p; � =1:1), there is zero penalty to large jobs. Figure 1 below shows theslowdown as function of job size, at load 0.9

for theBP (k; p; � = 1:1). The plot shows the expected slowdown for a job in each percentile of the job size

distribution (where 100 percentile indicates the very largest job, i.e., a job of sizep.). Observe that, each job

has an expected slowdown of 10 under PS, yet every single job has a smaller slowdown (and hence response

time) under SRPT. Even the largest job has a slowdown of only 9.54 under SRPT. We state this observation as

a claim, which is supported by Figure 1.

Claim 1 There exist job size distributions such that every job does better under SRPT than under PS.
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Figure 1:Expected slowdown as a function of job size forB(k; p; � = 1:1) distribution, at load� = 0:9. Even

a job of maximum sizep prefers SRPT to PS.

The above claim applies to many distributions with the HT property, provided� is not extremely close to

1. For example, if the job size distribution isB(k; p; � = 1:1), then every job does better under SRPT as long
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as the load is below 0.96. In fact forB(k; p; � = 1:5) every job does better for loads up to 0.999.

It is clear that SRPT should benefit the small jobs. However, it is not at all clear why SRPT should also

benefit the large jobs. Intuitively, the following explainswhy this should be true:

Under SRPT, a job is affected only by the other jobs in the system which have a smaller remaining size

than itself. Once a job begins execution, its remaining sizediminishes with time. Thus the load seen by the job

gets smaller as the job is worked upon. In contrast under PS, throughout its execution, a job is affected byall

the other jobs present in the system. Thus the load that the job sees does not change with time. Thus it makes

sense that, the expectedresidence timeof a job under SRPT is smaller than its expected response timeunder

PS. This difference is especially significant for distributions with the HT property, where the large jobs make

up most of the load. To argue aboutresponse timeunder SRPT, however, we also need to take into account

thewaiting timeunder SRPT. Although the waiting time under SRPT may be largefor big jobs, it turns out

that provided the load isn’t too high, the response time is dominated by residence time, not waiting time. In

the next section, we will provide formal proofs which take all these details into account.

5.2 Unfairness analysis for general job size distributions

Theorem 1 shows the existence of job size distributions for which every job prefers SRPT to PS under most

loads. We now extend this result along many directions. First, we show a similar but weaker result that holds

for all c.f.m.f.v. job size distributions.

Theorem 3 For any c.f.m.f.v. job size distribution, if the load is not more than half then every job has a lower

expected response time under SRPT, as compared with PS.

The proof of this theorem will follow from Theorem 4. The condition that the load is lower than half in

Theorem 3 is rather restrictive. However, if we relax the restriction thateveryjob performs better, then we get

the following stronger result which holds at all loads.

Theorem 4 For any c.f.m.f.v. job size distributionf and any load� < 1,E[T (x)]SRPT � E[T (x)]PS
for every job of sizex such that�(x) � 12 (i.e. jobs of size� x comprise less than half the load).

Theorem 4 implies Theorem 3, since� � 12 directly implies�(x) � 12 for all x. The proof of Theorem 4 will

follow from a more general Theorem 5 below.

Theorem 4 becomes especially useful if we relate the load percentiles and the job percentiles (i.e.�(x)
andF (x)). The HT property stated in Section 3 implies that less than 1% of the very largest jobs make up
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more than half the load. Thus Theorem 4 implies that at least 99% of the jobs have smaller response times

under SRPT than under PS no matter what the load. Thus we have Corollary 4.

Corollary 4 For c.f.m.f.v. distributions with the HT property, at least99% of the jobs have a lower response

time under SRPT than under PS at any load.

Observe however that even for the “light-tailed” exponential (C2 = 1) Theorem 4 implies that more than 81%

of the jobs do better at any load,� < 1, under SRPT as compared with PS.

We now state and prove a generalization of Theorem 4 which likewise holds for any job size distribution

and load� < 1.

Theorem 5 For any c.f.m.f.v. job size distributionf and load� < 1,E[T (x)]SRPT � E[T (x)]PS
for all jobs of sizex such that 2(1� �(x))2 � (1� �) (5)

Proof: E[T (x)]PS can be written as
R x0 dt1�� . And,E[R(x)]SRPT = R x0 dt1��(t) .

Since� � �(t) for any t, the expected residence time for any job under SRPT is smaller than the expected

response time under PS. We will bound this difference and obtain conditions under which the difference more

than compensates for the waiting time under SRPT.E[T (x)]PS � E[R(x)]SRPT = Z x0 dt1� � � Z x0 dt1� �(t)= Z x0 (� � �(t))dt(1 � �(t))(1 � �)� Z x0 (� � �(t))dt1� � [Since (1� �(t)) � 1]= x(� � �(x)) + �m2(x)1� � [Since �0(t) = �tf(t)] (6)� �x2(1� F (x)) + �m2(x)1� � (7)

Line (7) follows from Line (6) since:x(� � �(x)) = �x Z 1x tf(t)dt� �x2 Z 1x f(t)dt= �x2(1� F (x))
Comparing the expression forE[W (x)]SRPT in equation (2) with (7) it is clear that,E[T (x)]PS � E[R(x)]SRPT � E[W (x)]SRPT
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whenever the condition (5) is met.

Thus,E[T (x)]PS � E[T (x)]SRPT if 2(1� �(x))2 � (1� �).
Proof: (Theorem 4) If �(x) � 12 , then2(1 � �(x)) � 1. Observe that for allx, (1 � �(x)) � (1 � �) .

Multiplying both the inequalities we get,2(1� �(x))2 � (1� �) and the result follows from Theorem 5.

Theorems 3 and 4 show that for all job size distributions,

1. If � � 12 , then all jobs have a lower expected response time under SRPTas compared to PS.

2. Even if� > 12 , a majority of the jobs have better expected response times under SRPT.

But what about the small fraction of jobs which have a higher slowdown under SRPT than under PS, how bad

can their starvation be? We will show that for a fixed load, no job can do arbitrarily badly on the average.

Theorem 6 establishes an bound on the ratio of the expected response time of a job of sizex under SRPT as

compared with PS.

Theorem 6 For all c.f.m.f.v. job size distributionsf , for all loads� < 1, for all x,E[T (x)]SRPT � 1� �1� �(x) � �2(1� �(x)) + 1� �E[T (x)]PS (8)

In particular, E[T (x)]SRPT � � �2(1� �) + 1� �E[T (x)]PS (9)

Before we can prove this theorem, we need one observation:

Lemma 6.1 Z x0 tf(t)dt + x �F (x) � E[X]
Proof: E[X] = Z x0 tf(t)dt + Z 1x tf(t)dt � Z x0 tf(t)dt+ xF (x)
Proof: (Theorem 6)E[T (x)]SRPT = � R x0 t2f(t)dt + �x2F (x)2(1� �(x))2 + Z x0 dt1� �(t)� � R x0 t2f(t)dt + �x2F (x)2(1� �(x))2 + x1� �(x) [Since(1� �(x)) � (1� �(t)); for t � x]� �x R x0 tf(t)dt + �x2F (x)2(1� �(x))2 + x1� �(x)
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= x1� �(x) "� R x0 tf(t)dt + �xF (x)2(1� �(x)) + 1#� x1� �(x) � �E[X]2(1� �(x)) + 1� [By Lemma 6.1]= x1� � 1� �1� �(x) � �2(1� �(x)) + 1�= E[T (x)]PS 1� �1� �(x) � �2(1� �(x)) + 1�
Thus equation (8) follows.

We observe that the expression1��1��(x) h �2(1��(x)) + 1i is maximized whenx is the largest job (i.e.�(x) =�), in which case we getE[T (x)]SRPT � ( �2(1��) + 1)E[T (x)]PS.

Theorem 6 shows that for a given a load�, the expected response time for a job cannot be arbitrarily

worse under SRPT, as compared with PS. For example, if� = 0:8, the expected response time of every

job under SRPT is no more than 3 times that under PS, and no morethan 5.5 times that under PS where� = 0:9. In reality however, the factor is much better, since our analysis is not tight and it holds for all job size

distributions. Stronger results can be obtained for specific job size distributions.

The bound obtained in Equation 8 is quite useful. In Section 6we will use Equation 8 to prove Theorem

1 and then combine it with the HT property, to prove Theorem 2.

Below we use Equation 8 to prove Theorem 7.

Theorem 7 For any c.f.m.f.v. job size distribution and any load� < 1,E[S(x)]SRPT � 2 + 2�
for all jobs of sizex such that�(x) � 12 . Hence, for job size distributions with the HT property, at least 99%

of the jobs have an expected slowdown of at most 4, irrespective of the system load.

Proof: Follows directly from equation (8), Theorem 6.

So far, we have shown two types of results with respect to starvation. We either show thatall jobs do well

for mostloads. Or,mostjobs do well forall loads. A natural question to ask at this point is, whether there are

job size distributions for which all jobs do well at all loads.

We show that this is not the case. When load approaches 1, the largest job will perform worse under SRPT

for any job size distribution (which has a well-defined largest job).
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Theorem 8 For every c.f.m.f.v. bounded distribution,9� < 1 such thatE[T (l)]SRPT > E[T (l)]PS
wherel is the size of the largest job.

Proof: We will lower boundE[T (l)]SRPT and show that there exists a� < 1 such thatE[T (l)]SRPT >l1�� = E[T (l)]PS .

The waiting time of the largest job under SRPT is simplym2(l)2(1��)2 . To lower bound the residence time

under SRPT we use the Chebyshev Integral Inequality, (12), with y = x,u(x) = 11��(x) , v(x) = 1 � �(x),a = 0 andb = l. Note thatu andv satisfy the conditions in (12) since�(x) is non-decreasing inx. Thus we

get, 1 � R l0(1� �(x))dx R l0 dx1��(x)l2
Equivalently,

Residence Time(l)= Z l0 dx1� �(x) � l2l � l� + �m2(l)
So, E[T (l)]SRPT �E[T (l)]PS � �m2(l)2(1� �)2 + l2l � �l + �m2(l) � l1� �= �m2(l)1� � � 12(1� �) � 1(1� �(1� d))� [ whered = m2(l)lE[X] ]= �m2(l)2(1� �)2(1� �(1 � d)) (�(1 + d)� 1)
Since bothl andE[X] are finite,d > 0. Thus for any� < 1, such that�(1 + d) > 1, E[T (l)]SRPT �E[T (l)]PS > 0.

Hence, for any job size distribution, there is a load (less than 1) such that the largest job has a higher

expected response time under SRPT than under PS.

6 Proof of Theorems 1 and 2

We will now use Theorem 6 to prove Theorem 1.

Proof: (Theorem 1) Let g(�(x)) denote the improvement factor in Theorem 6.g(�(x)) = 1� �1� �(x) � �2(1� �(x)) + 1�
13



So,E[T (x)]SRPT � g(�(x))E[T (x)]PS .E[T ]SRPT = Z 10 E[T (x)]SRPT f(x)dx� Z 10 g(�(x))E[T (x)]PS f(x)dx= Z �0 1� g(�(x))1� � d(�(x)) Since; d�(x) = �xf(x)dx= 1�E[T ]PS Z �0 g(�(x))d(�(x))
Integratingg by parts, we get Z �0 g(�(x))d�(x) = �22 � (1� �) log (1� �) (10)

Thus, it follows thatE[T ]SRPT � h(�)E[T ]PS .

For slowdown, we similarly obtain,E[S]SRPT = Z 10 E[S(x)]SRPT f(x)dx� Z 10 E[S(x)]PS g(�(x))f(x)dx [Dividing both sides of equation(8) byx]= Z �0 11� �g(�(x)) 1�xd(�(x)) (11)

Observe thatg(�(x)) is increasing in�(x) and 1x is decreasing in�(x). We now apply the Chebyshev Integral

Inequality [16], which states that ifu(y); v(y) are non-negative functions which are non-decreasing and non-

increasing respectively, then(b� a) Z ba u(y)v(y)dy � Z ba u(y)dy Z ba v(y)dy (12)

Settingy = �(x); u(�(x)) = g(�(x)); v(�(x)) = 1x ; a = 0 andb = � we get,E[S]SRPT � 11� � 1� Z �0 g(�(x))d�(x) Z �0 d�(x)�x= 1� Z �0 11� �(x) � �2(1� �(x)) + 1� d�(x) Z 10 f(x)dx= h(�)1� �
Thus,E[S]SRPT � h(�)E[S]PS .

We now show thath(�) � 1 for all � � 1.dh(�)d� = 12 + 1� + log (1� �)�2
14



Using the identity, log (1� x) = �x� x22 � x33 � : : :
we get that d(h(�))d� � 0; 8 0 � � � 1
Thush(�) is decreasing in�. Observing thath(0) = 1, it follows thath(�) � 1, for all �.

ThusE[S]SRPT � E[S]PS .

Proof: (Theorem 2) For distributions with the HT property we know that it takesat least 99% of the smallest

jobs to make up half the load. So, we split Equation 11 asE[S]SRPT � Z �20 11� �g(�(x)) 1�xd(�(x)) + Z ��2 11� �g(�(x)) 1�xd(�(x))
Now applying the Chebyshev Integral Inequality, we getE[S]SRPT � 2�(1 � �)  Z �20 g(�(x))d(�(x)) Z �20 1�xd(�(x)) + Z ��2 g(�(x))d(�(x)) Z ��2 1�xd(�(x))!= 2�(1 � �)  Z �20 g(�(x))d(�(x)) Z xh0 f(x)dx+ Z ��2 g(�(x))d(�(x)) Z 1xh f(x)dx!

wherexh is such that�(xh) = �2 ; observe thatF (xh) � 0:99� 2�(1 � �)  Z �20 g(�(x))d(�(x)) + 0:01 Z ��2 g(�(x))d(�(x))!� E[S]PS ��(1 � �)2� � � 2(1� �)� log (1� �2) + 0:01( �2� � � 2(1� �)� log 1� �1� �2 )�= E[S]PS ��(1:01� �)2� � � 2(1� �)� (log (1� �2) + 0:01 log 1� �1� �2 )�
It is easy to see that the improvement factor approaches1100 as�! 1.

7 Overload

We now look at the case when the system is overloaded (� > 1). That is, jobs arrive at a rate higher than the

rate at which they can be worked upon. These situations oftenarise in real systems, and thus performance of

scheduling policies under overload is an important factor in determining the goodness of a policy.
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In the case of PS scheduling under overload, the mean response time foreveryjob is infinite [14]. For SRPT

scheduling under overload, to the best of our knowledge, no formula has been derived for the performance of

a job of sizex. We derive such a formula in this section, by combining ideasfrom [24] and [12].

Theorem 9 Given an M/G/1/SRPT system with load� > 1 and arrival rate�. Assume a c.f.m.f.v.job size

distribution with probability density functionf(t). Consider a job of sizex such that�(x) < 1. ThenE[T (x)]SRPT in overload= Z x0 dt1� �(t) + 12� R x0 t2f(t)dt + 12�(F (y) � F (x))x2(1� �(x))2
wherey is such that�(y) = 1.

Before we begin the proof, observe that the above formula is very similar to the original formula forE[T (x)]SRPT
(not in overload) which we saw in Equation 1. The only difference is that the1�F (x) term has been replaced

with aF (y) � F (x) term.

Proof: The response time for a job of sizex under SRPT can be split into waiting time and residence time,

as shown in Section 4. Let us consider the derivation of the waiting time. It is shown in [24] that the waiting

time for a job of sizex in M/G/1/SRPT is equivalent to the waiting time for a job of sizex in a particular non-

preemptive priority system specified as follows: The non-preemptive priority system has 3 types of arrivals.

Jobs of size< x have priority 1 (highest priority). Jobs of sizex have priority 2. Jobs of size> x have priority

3. Jobs of priority 1 and 2 arrive according to the original Poisson Process. However jobs of size 3 only arrive

into the non-preemptive priority system at the moments whenthose jobs would have been reduced to sizex
in the original SRPT system. When the jobs of priority 3 arrive into the non-preemptive priority system, they

arrive with sizex. Since we are concerned with the waiting time for a type 2 job,the particular arrival process

of jobs of priority 3 does not have any effect on the mean response time of a job of sizex.

Now if � < 1, the formula for waiting time of a classc job in a non-preemptive system withk priority

classes is given by E[Wc] = Pki=1 �iE[X2i ]2(1�Pc�1i=1 �i)(1 �Pci=1 �i) (13)

whereE[Wc] is the expected waiting time for a job in classc, Xi is the job size distribution of theith class,�i is the arrival rate of jobs in theith class and the�i is the load made up by jobs in theith class.

Observe that applying Equation 13 to the 3 class priority system described above gives the waiting time

for SRPT as stated in Equation 2.

Phipps extended the result in Equation 13 for the case when� > 1, [12]. They show that for a job in classc such that
Pci=1 �i < 1 E[Wc] = Pki=1 vi�iE[X2i ]2(1�Pc�1i=1 �i)(1 �Pci=1 �i) (14)
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wherevi is such that,vc = 1 if
Pci=1 �i < 1 andvc = 0 if

Pc�1i=1 �i > 1. For the classc where
Pc�1i=1 �i < 1

and
Pci=1 �i � 1, vc is a number between 0 and 1 such that

Pci=1 vi�i = 1. Thusvi indicates the fraction of

jobs of each class which are executed in the steady state.

To obtain an expression for the waiting time under SRPT for� > 1, observe that the equivalence of the

waiting time under SRPT and the three class non-preemptive system remains unchanged. Also observe thatF (y)�F (x)1�F (x) fraction of jobs of size> x are executed by SRPT in the steady state. Thus applying Equation 13

to the 3 class priority system with�3 = (Fy � Fx)�, we obtainE[W (x)]SRPT = 12� R x0 t2f(t)dt + 12�(F (y) � F (x))x2(1� �(x))2
wherey is such that�(y) = 1, and�(x) < 1.

To obtain expression for the residence time we notice that once a job of sizex begins execution and if

its current size ist, then this job is affected only by load made up by jobs of size smaller thant. Thus the

expression for the residence time under� > 1 remains the same as in Equation 3. This gives us the result for

the response time under overload.

To appreciate the above result, we consider theB(k; p; � = 1:1) job size distribution. We consider the

mean time in system for a job of sizex such that�(x) = :5� and we let� range from0 to 2. This job has

exactly half the system load below it and half above. By the HTproperty, this job of sizex is in the99th %-tile

of the job size distribution. The expected slowdown forx is shown in Figure 2 in the case of PS scheduling

and in the case of SRPT scheduling. Observe that in the case ofPS scheduling,x has infinite mean slowdown

once the system load reaches 1. However, under SRPT scheduling,x has finite mean slowdown up until the

point where�(x) = 1, i.e. up until� = 2.

In particular, Figure 2 shows that when the system load is1:5 (respectively1:8), the mean slowdown of a

job in the99%-tile of the job size distribution is only 4 (respectively15) for SRPT scheduling as compared

with infinity for PS scheduling.

The above results help explain our trace-based experimental results. Under overload conditions, PS simply

stalls: all jobs experience infinite mean slowdown. Howeverunder the same overload conditions, SRPT keeps

getting jobs out.

8 Preemption overhead

When implementing a scheduling policy with preemptions (like SRPT, PS, FB ...) the overhead associated

with preemptions is a cause for concern. In real systems, PS is implemented as round robin where each
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Figure 2: Mean slowdown for a job in the 99 percentile of theB(k; p; � = 1:1) job size distribution, as a

function of�.

process gets a finite time quantum. The number of preemptionsdepends on the size of this time quantum.

However, under SRPT, the amortized number of preemptions per job is at most two. This is true irrespec-

tive of the arrival process. To see this, observe that a job may be preempted under SRPT only when a new job

arrives into the system or an existing job is completed. Since any job arrives and completes exactly once, then

total number of preemptions is never more than twice the number of job arrivals.

By comparison, under any reasonable implementation of PS the average number of preemptions per job

will be more than two, since most jobs requires more than two time quantums of service.

9 Comparison of SRPT to other scheduling policies

Throughout this paper we compared SRPT scheduling with PS scheduling only and ignored how SRPT might

compare to other policies. In this section we will consider some other commonly used policies and explain

why we dismissed these. In particular we consider, First Come First Serve (FCFS), Last Come First Serve

(LCFS), Random, Non-preemptive Shortest Job First (SJF), Foreground-Background (FB) and Preemptive

Last Come First Serve (P-LCFS).

We will argue that non-preemptive policies have far worse mean performance than SRPT, under more

variable job size distributions. This is the reason why we’ve ignored such policies in this paper, although, as

we point out, these policies do have some nice properties fora few of the very largest jobs.

We will then argue that each of the preemptive policies abovecan easily be shown to either be no better

than PS on all jobs, or no better than SRPT on all jobs. This explains why we’ve ignored these policies in the
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paper as well.

Throughout we assume an M/G/1 queue.

9.1 Non-preemptive policies

It is well known [3] that the expected response time for a job of size x is the same forall non-preemptive

policies which do not make use of size. This includes for example FCFS, LCFS and Random. This time is

given by E[T (x)]FCFS;LCFS;RANDOM = � R10 t2f(t)dt2(1� �) + x (15)

A different kind of non-preemptive policy which makes use ofsize and favors smaller jobs as compared

with longer ones is SJF. For a c.f.m.f.v. job size distributionf , the expected response time for a job of sizex
under SJF is given by E[T (x)]SJF = � R10 t2f(t)dt2(1� �(x))2 + x (16)

Observe that in both Equations 15 and 16, the queueing time for a job of sizex is dependent on the second

moment of the entire job size distribution. This is especially punitive for small jobs. By contrast, observe that

under SRPT (see Equation 1) the time in system for a job of sizex depends only up to the second moment of

the distribution truncated atx.

Thus in the case of a highly variable distribution, we would expect that the mean response time will be

significantly higher for these non-preemptive policies as compared with that under SRPT. To illustrate this

point, Figure 3 shows the mean response time for these nonpreemptive policies as compared with SRPT when

the job size distribution isB(k; p; � = 1:1). Observe that SRPT improves upon these other policies by several

orders of magnitude.

While non-preemptive policies have very high mean responsetime as compared with SRPT, these non-

preemptive policies might actually improve upon SRPT with respect to response time of just the very large

jobs. The point is that, given a sufficiently large job, one could imagine its waiting time (time until first

idle period) becoming negligible compared with its size. Thus the response time would be dominated by the

residence time. The residence time will be 1 under a non-preemptive policy, but could approach11�� for very

large jobs under SRPT.

In the above scenario, however, it is typically only the truly largest jobs which benefit under a non-

preemptive policy, as compared with SRPT. For example, under theB(k; p; � = 1:1) job size distribution, at

a load of 0.9, only about 0.00005% of the jobs have a lower expected response time under FCFS as compared

with SRPT and only 0.0005% of the jobs have a lower response time under SJF as compared with SRPT.
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Figure 3:The figure shows the Mean Response Time as a function of load under FCFS, LCFS, Random, SJF

and SRPT for the Bounded Pareto job size distribution,B(k; p; � = 1:1).
9.2 Preemptive policies

In addition to PS, the other common preemptive policies are Foreground-Background (FB) and Preemptive

Last Come First Serve (P-LCFS). FB always serves that job with the least attained service (age). If two jobs

have equal attained service, they timeshare the server, as in PS. P-LCFS always serves that job which arrived

last.

For a c.f.m.f.v. job size distributionf , the expected response time for a job of sizex under FB and P-LCFS

is respectively given by E[T (x)]FB = �(m2(x) + x2(1� F (x))2(1� �x)2 + x1� �x (17)

where �x = �F (x)x+ � Z x0 yf(y)dy � �(x) (18)E[T (x)]P�LCFS = x1� � (19)

Observe that under P-LCFS the expected response time for a job of sizex is the same as that under PS. Thus

it suffices to compare SRPT with PS.

The comparison of FB scheduling with SRPT scheduling is slightlymore interesting. Comparing equations

17 and 1 we observe that the first term of Equation 17 is greaterthan or equal to the expected waiting time for

every job under SRPT. Secondly the second term in Equation 17can easily be seen to be greater than or equal

to the expression for the residence time under SRPT. Thus, wehave the following observation.
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Observation 1 For any job size distribution and for any load� < 1, every job has a higher expected response

time (hence slowdown) under FB scheduling as compared with SRPT scheduling.

It follows that both the mean slowdown and the mean response time will be worse under FB as compared

with SRPT. Also, the unfairness to large jobs will be higher under FB than under SRPT. Of course, FB has the

advantage over SRPT that it does not require knowledge of jobsize.

10 Conclusion

The goal of this paper is to dismiss notions of “unfairness” commonly associated with SRPT. We prove that

under moderate system load, forany job size distribution,all jobs prefer SRPT to PS. As the load increases,

this statement is only true for job size distributions with the heavy-tailed property. However the situation is

not as bad as one might think for general distributions. Evenunder conditions of higher load, for general

distributions, we show that the majority of jobs are insensitive to the higher load. For the remaining jobs, we

prove absolute bounds on how high the expected slowdown under SRPT can be as compared with PS.

While it is well-known that SRPT is optimal with respect to mean response time, the degree of the im-

provement in mean response time and mean slowdown of SRPT over PS has not been studied for general job

size distributions. We obtain bounds on the mean improvement factor of SRPT over PS under general job size

distributions and under job size distributions with the heavy-tailed property.

We also obtain closed-form expressions for the performanceof SRPT under overload. We show that under

overload the difference between SRPT and PS is even more dramatic.
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