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Abstract

The Shortest-Remaining-Processing-Time (SRPT) scheglpblicy has long been known to be optimal
for minimizing mean response time (sojourn time). Despgiie fact, SRPT scheduling is rarely used in
practice. It is believed that the performance improvemeftSRPT over other scheduling policies stem
from the fact that SRPT unfairly penalizes the large jobsrdeoto help the small jobs. This belief has led
people to instead adopt “fair” scheduling policies such@e®ssor-Sharing (PS), which produces the same
expected slowdown for jobs of all sizes.

This paper investigates formally the problem of unfairnesSRPT scheduling as compared with PS
scheduling. The analysis assumes an M/G/1 model, and eimph#zsb size distributions with a heavy-tailed
property, as are characteristic of empirical workloads &halysis shows that the degree of unfairness under
SRPT is surprisingly small.

The M/G/1/SRPT and M/G/1/PS queues are also analyzed unddoad and closed-form expressions

for mean response time as a function of job size are provdddrsetting.

*This research was supported by Cisco Systems via a granttfrerRittsburgh Digital Greenhouse 00-1 and by NSF ITR 99-167
ANI-0081396



1 Introduction

It has been long known that always giving service to the jothwhe shortest-remaining-processing-time
(SRPT) is the optimal scheduling policy with respect to mmizing the mean response time. Yet, many
existing schedulers time-share the processor equally gratbjobs, giving each job an equal quantum of
service. For example, a web-server today time shares betitgegany concurrent open connections, giving
each an approximately equal share of processing time. lfirtiitg as the size of the quantum goes to zero,
this “fair-share” scheduling policy is known as Procesduarhg (PS).

There are reasons why the optimal policy SRPT is not pretvalgoractice. In some cases, it is because
thesize of a jol(its processing requirement) is not known in advance, soTS&Rnot be applied. However,
in several applications this is not the case, and it is ptessibreasonably estimate the size of a job. For
example, in the case of static web requests to a web senab,sspgrocessing requirement is proportional to
the file size requested, which is known by the server. Likewiseveral database applications, the processing
requirement for a query may be estimated in advance.

A second objection to switching to SRPT is that it is not clslether the performance improvements of
SRPT over traditional scheduling policies like PS are digamt. Comparing SRPT with other policies is not
easy given the complex nature of existing performance ftagiior SRPT.

However, the foremost and very commonly cited objectiongiog SRPT is the fear that large jobs may
“starve” under SRPT [1, 28, 29, 26]. It is often stated that lluge average performance improvements of
SRPT over other scheduling policies stem from the fact tRRBunfairly penalizes the large jobs in order to
help the small jobs. It is often thought that the performasfcemall jobs cannot be improved without hurting
the large jobs (see Section 2) and thus large jobs suffeiriynfimder SRPT.

This paper will investigate the objections cited above.dBefve can state our results, we need to define
the performance metrics and the workloads which we use. €Hernmance metrics we use throughout are
response timandslowdown The response time of a job (a.k.a. sojourn time, turnardime, flow time)
is the time from when the job first arrives at the system untikeiparts the system. The slowdown of a job
(a.k.a. stretch, normalized response time) is the ratitsakisponse time to its size. The slowdown metric is
important because it helps to evaluate unfairness. For ghearim an M/G/1 system with PS scheduling, all
jobs (long and short) experience the same expected slow(femnce PS is “fair”).

It turns out that the job size distribution is important withspect to evaluating SRPT. We will therefore
assume a general job size distribution. We will also conme¢amion the special case of distributions with the
heavy-tailed property (HT property ), where the largest 1% of the jobs comprise more than halfoie.
This HT property appears in many recent measurements ofomgpsystems (see Section 3 ).

Throughout this paper we assume an M/G/1 queue where G isiadso be ontinuous distributiomwith



finite mean and variance (the abbreviatmhm.f.v.is used to denote continuous, finite mean, finite variance
in the theorems).
In the case wherg < 1 we prove the following results:

On the topic of mean performance improvements:

¢ Although it is well-known that SRPT scheduling optimizesameesponse time, it is not known how
SRPT compares with PS with respect to mean slowdown. We phae<SRPT scheduling also outper-
forms PS scheduling with respect to mean slowdown for alkjab distributions (Theorem 1, Section

4),

¢ Given that SRPT improves performance over PS both with otdpemean response time and mean
slowdown, we next investigate the magnitude of the imprammWe prove that for all job size dis-
tributions with the HT property the improvement is very sfgant under high loads. For example,
for load 0.9, SRPT improves over PS with respect to mean slowdown by arfactat least 4 for all
distributions with the HT property. As the load approachesd find that SRPT improves over PS with
respect to mean slowdown by a factor of 100 for all distribusgi with the HT property (Theorem 2,
Section 4). In general we prove that falt job size distributions as the load approaches one, the mean
response time under SRPT improves upon the mean resporesertder PS by at least a factor of 2 and

likewise for mean slowdown. (Corollaries 1 and 2, Sectian 4)
On the topic of starvation we first show some counter-intuitve results:

¢ The performance improvement of SRPT over PS dm¢sisually come at the expense of the large jobs
(Section 5.1, Claim 1). In fact, we observe via example thabhfany job size distributions with the HT
property every single job, including a job of the maximumgibte size, prefers SRPT to PS (unless the

load is extremely close to 1).

¢ While the above result does not hold at all loads, we provertbanatter what the load, at least 99% of
the jobs have a lower expected response time under SRPT ticken BS, for all job size distributions
with the HT property (Section 5.2, Corollary 4). In fact, $e€99% of the jobs do significantly better. We
show that these jobs have an average slowdown of at most dy &éadp < 1 (Section 5.2, Theorem
7), whereas their performance could be arbitrarily bad uf&as the load approaches 1. Similar, but

weaker results are shown for general distributions (Se&id, Theorem 4 and 5).

¢ While the previous result is concerned only with 99% of thesjave also prove upper bounds on how
much worse any job could fare under SRPT as opposed to PS tierajedistributions (Section 5.2,
Theorem 6). Our bounds show that jobs never do too much waorderlSRPT than under PS. For



example, for all job size distributions, the expected respdime under SRPT for any job is never more
than 3 times that under PS, when the load.# and never more than 5.5 times that under PS when the
load is0.9. In fact, if the load is less than half, then for every job sirgribution, each job has a lower

expected response time and slowdown under SRPT than und&eeton 5.2, Theorem 4).

e The above results show an upper bound on how much worse ajidbfeoe under SRPT as opposed to
PS for general job size distributions. We likewise provedowounds on the performance of SRPT as

compared with PS for general job size distributions. ($&ch.2, Theorem 8).

Finally in the case where loady > 1 we prove that:

o Consider a job of size such thap(z) < 1, wherep(z) denotes the load made up of jobs of sizer.
For such jobs, we prove that the expected response timeavdalvn ardiniteunder SRPT. We derive
a closed-form expression for the mean response time of afjelz@x wherep(z) < 1 under SRPT
(see Section 7, Theorem 9). By contrast, under PS scheditliagvell known thatall jobs, including

the very small ones experience infinite expected respomeeand slowdown fop > 1 [14].

¢ We evaluate our overload formula above, for the case of ayhtsdhed job size distribution. We show
that for heavy-tailed job size distributions, for a systefthvaverage load well-above one, the mean
response time for all but the largd$t of the jobs is surprisingly low under SRPT. For example, unde
aload ofp = 1.5, 99% of jobs will experience a mean slowdown of odlyinder SRPT scheduling, as

compared with a mean slowdown of infinity for every job und8rdeheduling (see Section 7, Figure 2).

There is certainly more work to be done on the problem of comge&RPT versus PS scheduling under
overload. Jean-Marie and Robert [11] provide some niceyaisabf PS under overloaded conditions.

Throughout this paper, for the sake of clarity, we compar®BRith PS scheduling only. The reason
for this is that PS has the properties that it is (1) “ultinhdtéair (equal slowdown for all jobs), (2) in-
sensitive to the variance of the job size distribution, whimplies good performance, and (3) ubiquitous.
For completeness in Section 9 we also compare SRPT to othedsiing policies in the literature such as:
first-come-first-server(FCFS), random (RANDOM), non-pnpéve last-come-first-serve (LCFS), shortest-
job-first (SJF), preemptive-last-come-first-served (F-BLand feedback (FB) scheduling.

This paper argues why SRPT scheduling makes sense on arparice level. In practice, it is not al-
ways so obvious how SRPT scheduling should be applied, ghamost systems haweultipledevices and
multiprogramming is necessary to ensure that cycles aveasted. For an example of SRPT being applied

successfully to Web servers see [6].



2 Previous work

Mean results: It has long been known that SRPT has the lowest mean resporeseftany scheduling policy,
given any arrival sequence and job sizes [23, 27]. Rajaraghah showed further that the mean slowdown
under SRPT is at most twice the optimal mean slowdown for agyence of job arrivals [5].

Schrage and Miller first derived the expressions for theamsp times in an M/G/1/SRPT queue [24].
This was further generalized by Pechinkihal. to disciplines where the remaining times are divided into
intervals. The jobs with remaining times in the smaller iméé are served first but those within the same
interval are served in first-come-first server order [18]e Steady-state appearance of the M/G/1/SRPT queue
was obtained by Schassberger [22].

Though the above formulas have been known for a long timg, dhe difficult to evaluate numerically,
due to their complex form (many nested integrals). Heneectimparison of SRPT to other policies was long
neglected. More recently, SRPT has been compared with ptiieies by plotting the mean response times
for specific job size distributions under specific loads [4,,25, 24, 7]. A 7-year long study at University of
Aachen under Schreiber [19, 25] involved extensive evadnaif SRPT for various job size distributions and
loads. The survey paper by Schreiber [25] summarizes tlhtseI hese results are all plots fgpecificjob
size distributions and loads. Hence it is not clear whetherconclusions based on these plots hold for more
general job size distributions and loads.

Unfairness results: It has often been cited that SRPT may leadstarvationof large jobs [1, 28, 29, 26].
Usually, examples of adversarial arrival sequences wherartécular job starves are given to justify this.
However, such worst case examples do not reflect the behaV8RPT in the average case.

The term “starvation” is also used by people to indicateuhfairnesof SRPT's treatment of long jobs.

It is often thought that since SRPT favors small jobs, lorgsjshould have a worse average performance
under SRPT than under other policies. The argument givemaisita scheduling policy manages to reduce
the response time of small jobs, then the response timelsddatge jobs would have to increase considerably.
This argument does hold for scheduling policies which domake use of size, see the famous Kleinrock
Conservation Law [13], [14, Page 197]. However the argurdeetnot necessarily apply to policies which
make use of size, for example SRPT.

Very little has been done to evaluate the problem of unfasramalytically. Recently, Bender et al. con-
sider the metrienax slowdowiof a job, as indication of unfairness [1]. They show with aareple that SRPT
can have an arbitrarily largaax slowdownHowevermax slowdowiis not an appropriate metric to measure
unfairness. A large job may have an exceptionally long raspdime in some case, but it might do well most
of the time. A more relevant metric which we use in our papénésnax mean slowdown

There has also been work in the area of proposing new SREPBdikcies [2, 17] which try to reduce the



problem of unfairness, while still favoring the short jobhese usually prioritize based doththe time a
job has waited so far, and its remaining size. These polaresisually analytically intractable and have been
evaluated by simulation only. However simulations show thay are promising.

Overload results: No formulas have been derived for M/G/1/SRPT under overltmdur derivation we use

a combination of ideas from [24] and [12].

3 The heavy-tailed property

Many application environments show a mixture of job sizeansfing many orders of magnitude. Much pre-
vious work has used thexponential distribution to capture this variability, However, recaneéasurements
indicate that for many applications the exponential disition is a poor model and thateavy-tailedistri-

bution is more accurate. In general a heavy-tailed dididbus one for which
Pr{X >uz}~a"" where) < o < 2.

In practice, there is some maximum and minimum job size @oiay finite limits in system resources).
Therefore, job sizes are often modeled as being generadram a distribution that has a heavy-tailed
form, but has finite upper and lower bounds. This truncatsttiution is referred to as tfg@ounded-Pareto
distribution [8]. It is characterized by three parametersthe exponent of the power lavi;, the shortest
possible job; ang, the largest possible job, The probability density funcfr the Bounded Paret8(%, p, )

is defined as:
ak®

= X
1= (k/p)*
Throughout this paper, whenever tBék, p, «) distribution is mentioned, it will be assumed tlais chosen

ol k<e<p, O<a<?2

f(x)

such that the mean value is fixed 300 and the maximum value fixed at= 10'°, which correspond to
typical values taken from [4].

Many recent measurements of computing systems [15, 9, £0Qlthave observed job size distributions
which are well-modeled by a Bounded Pareto distributiorengh ~ 1.

One key property of heavy-tailed distributions and (mangydled Pareto distributions is that a tiny
fraction (< 1%) of the very largest jobs comprise over half of the total I0a&. will refer to this as theeavy-
tailed property (HT property) throughout this paperObserve that for lower values of, the HT property
is more pronounced, whereas it is less pronounced for higddaes ofc. Throughout the paper, whenever
we use the Bounded Pareto distribution in the paper, it withgis be theB P(k = 332,p = 101 a = 1.1)
distribution. This distribution has a strong heavy-taiedperty (the larges8% of the jobs comprise half the
total load), mears000, and variance.25 - 10!!. Note that while the Bounded Pareto distribution has both



the HT property and finite moments, in general heavy-taiisttidutions have the HT property, but infinite

variance, and sometimes even infinite mean.

4 Mean analysis of M/G/1/SRPT

This section presents a comparison of the M/G/1/SRPT quedi¢ghe M/G/1/PS queue with respect to mean
response time and mean slowdown.

We denote the average arrival rate by We will assume that the job size distribution is c.f.m.fwith
probability density functiory(¢). The cumulative job size distribution will be denoted Byt). We will
denotel — F(t) by F'(t). X will refer to the service time of a job. The load (utilizatjop, of the server is
p =X [.7 tf(t)dt. The load made up by the jobs of size less than or equal px), is p(x) = A [t f(t)dt.
Let my(z) be defined as followsn, (z) = [ ¢2 f(t)dt.

The expected response time for a job of sizender SRPTE[T(z)]srpr, can be decomposed into the
expected waiting time of the jol#;[W (x)]srpr, and the expected residence time of the Jiii(#)]srpr,
whereE[IV(x)] is the expected time for a job of sizefrom when it first arrives to when it receives service
for the first time, andZ[R(x)]srpr IS the expected residence time (the time it takes for a jobzefss to

complete once it begins execution). The formulas for thgpeassions are given by [24]

EIT(@))sner = EW (@)lsrpr + EIR()]srer M
EIW (e)]srpr = A(m“?(jf;ﬁ)‘)f =) @
PLRG@sner = [ ’ l_d—;(t) 3)
For PS the expected response time for a job of 8izB[T'(z)] ps, is given by [30]
BT (x)]ps = — 4)

For any policy, if Z[T'(z)] is the expected response time for a job of sizéhen the expecteslowdowrfor a

job of sizex, E[S(x)], is given by

The mean response time and mean slowdown are givéi{by= [~ E[T(z)]f(z)dz andE[S] = [, E[S(z)]f(z)d=

respectively.

Observe that for a given load all jobs have the same slowdown under PS, sifi€,(x)]ps = ﬁ—p for

anyx. Thus PS is ultimately “fair”.

We now show that the mean performance advantages of SRPP8vare significant.



Theorem 1 For loadp < 1, for any c.f.m.f.v. distribution of job sizes,

ElT)srpr < h(p)E[T]ps
ElSlsrpr < R(p)E[S]ps

where
_p_ (L—p)log(l—p)
In particular, for any loadp, E[S]sgrpr < E[S]ps.

The proof of Theorem 1 will be given in Section 6, since it rnegsianalysis not yet developed.

Observing that(p) — £, asp — 1, we get:

Corollary 1 For any c.f.m.f.v. job size distribution, as the loag> 1, E[T]srpr < = E[T]ps.

Corollary 2 For any c.f.m.f.v. job size distribution, as the loae+ 1, E[S]srpr < 1 E[S]ps.

Itis easy to see that the factor of two improvement in Cor@tal and 2 is in fact tight, given the assumption
of general distributions. To see this, observe that for thestant job size distribution, SRPT is identical to
FCFS. As the load approaches 1, it can be seenBfiBls gpr = E[T]rors = %E[T]pg.

The bound proven in Theorem 1 can be greatly strengthenel liimit our attention to job size distribu-

tions with the HT property.

Theorem 2 For loadp < 1, for any c.f.m.f.v. job size distribution with the HT profyer

ESlsrpr < k(p)E[S]Ps

where
(101—-p) 2(1-p)

P p L—p
k(p) = e, T (log(l —5)+0.01log 7— E)
2

Corollary 3 For any c.f.m.f.v. job size distribution with the HT propers the loagp — 1, E[S]sgpr <
=+ E[S]ps.

The proof of Theorem 2 will be given in Section 6, since it regsianalysis not yet developed.
At this point it is tempting to assume that the large mean dtamn improvements of SRPT claimed above
are due to disproportionately helping the many small jolassaerificing the fewer big jobs. In the next section

we will show that this is in fact not the case.



5 Unfairness Analysis

It is commonly believed that it is not possible to improve pgeformance of some jobs without hurting the
performance of some other jobs. In section 5.1 we dispelnbi®n. We show with an example that there
exist job size distributions such theteryjob can do better under SRPT than under PS. We also giveiortuit

as to why this might be true. We then show the main analytesllis on unfairness in Section 5.2.

5.1 Alljobs can do better

We saw in Theorem 2 that, for job size distributions with the ptoperty, mean slowdown is substantially
lower under SRPT as compared with PS. We now ask whethemtbéhimprovement comes at the cost of
severely penalizing large jobs. We now show that for at leastparticular job size distributioB P (£, p, a =

1.1), there is zero penalty to large jobs. Figure 1 below showsltivedown as function of job size, at load 0.9
forthe BP(k,p, o = 1.1). The plot shows the expected slowdown for a job in each péleaf the job size
distribution (where 100 percentile indicates the veryédatgob, i.e., a job of sizg.). Observe that, each job
has an expected slowdown of 10 under PS, yet every singlegslalsmaller slowdown (and hence response
time) under SRPT. Even the largest job has a slowdown of aBl @nder SRPT. We state this observation as

a claim, which is supported by Figure 1.

Claim 1 There exist job size distributions such that every job de¢®bunder SRPT than under PS.
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Figure 1:Expected slowdown as a function of job sizeB¢k, p, « = 1.1) distribution, atloado = 0.9. Even

a job of maximum size prefers SRPT to PS.

The above claim applies to many distributions with the HTpamby, provided is not extremely close to

1. For example, if the job size distributioni® %, p, « = 1.1), then every job does better under SRPT as long



as the load is below 0.96. In fact fé¥(k, p, « = 1.5) every job does better for loads up to 0.999.

It is clear that SRPT should benefit the small jobs. Howeveés, ot at all clear why SRPT should also
benefit the large jobs. Intuitively, the following explaiwiy this should be true:

Under SRPT, a job is affected only by the other jobs in theesgswhich have a smaller remaining size
than itself. Once a job begins execution, its remaining @izenishes with time. Thus the load seen by the job
gets smaller as the job is worked upon. In contrast underf?@)ghout its execution, a job is affected &y
the other jobs present in the system. Thus the load that th&gjes does not change with time. Thus it makes
sense that, the expecteskidence timef a job under SRPT is smaller than its expected responseutitter
PS. This difference is especially significant for distribus with the HT property, where the large jobs make
up most of the load. To argue abaasponse timender SRPT, however, we also need to take into account
thewaiting timeunder SRPT. Although the waiting time under SRPT may be l&gbig jobs, it turns out
that provided the load isn't too high, the response time imidated by residence time, not waiting time. In

the next section, we will provide formal proofs which takkthese details into account.

5.2 Unfairness analysis for general job size distributions

Theorem 1 shows the existence of job size distributions fuickvevery job prefers SRPT to PS under most
loads. We now extend this result along many directionst,Firs show a similar but weaker result that holds

for all c.f.m.f.v. job size distributions.

Theorem 3 For any c.f.m.f.v. job size distribution, if the load is natmathan half then every job has a lower

expected response time under SRPT, as compared with PS.

The proof of this theorem will follow from Theorem 4. The cdtoh that the load is lower than half in
Theorem 3 is rather restrictive. However, if we relax therieson thateveryjob performs better, then we get

the following stronger result which holds at all loads.

Theorem 4 For any c.f.m.f.v. job size distributighand any loag < 1,
E[T(x)]srpr < E[T(2)]ps

for every job of size such that(z) < 3 (i.e. jobs of size<  comprise less than half the load).

1
2

Theorem 4 implies Theorem 3, singe< % directly impliesp(z) < 5 for all . The proof of Theorem 4 will

1
2
follow from a more general Theorem 5 below.

Theorem 4 becomes especially useful if we relate the loackepétes and the job percentiles (i.g(x)

and F'(z)). The HT property stated in Section 3 implies that less tHanof the very largest jobs make up



more than half the load. Thus Theorem 4 implies that at 1e8%i 6f the jobs have smaller response times

under SRPT than under PS no matter what the load. Thus we ltaedaCy 4.

Corollary 4 For c.f.m.f.v. distributions with the HT property, at le&8% of the jobs have a lower response

time under SRPT than under PS at any load.

Observe however that even for the “light-tailed” exponair{ti> = 1) Theorem 4 implies that more than 81%
of the jobs do better at any loag < 1, under SRPT as compared with PS.
We now state and prove a generalization of Theorem 4 whigwitse holds for any job size distribution

and loadp < 1.

Theorem 5 For any c.f.m.f.v. job size distributighand loadp < 1,
E[T(x)]srpr < E[T(2)]ps

for all jobs of sizer such that

2(1 = p(x))* > (L= p) (5)
Proof: E[T(x)]ps can be written ag,’ ﬁ—tp. And, E[R(z)]srpr = [; 1_d—;(t).
Sincep > p(t) for anyt, the expected residence time for any job under SRPT is smbh@ the expected
response time under PS. We will bound this difference andionlobnditions under which the difference more
than compensates for the waiting time under SRPT.
Todt Toodl
E|T(x — E|R(x = / —/
[T(x)]ps — E[R(x)]srPr il A w3
/f (p — p(t))dt
o (L=p(t)(1-p)

> /Ox w [Since (1 —p(t)) <1]
_ zlp— p(flv)j: Ams () [Since p/(t) = Atf(t)] (6)
Ae?(1— F(z)) + Ama(x) @)

Line (7) follows from Line (6) since:
dp—p@) = e [ ef(o

Ax? /Oo ft)dt
= Azr¥(1 - F())

v

Comparing the expression f6i{\W (z)]srpr in equation (2) with (7) it is clear that,

E[T(z)]ps — E[R(z)]srpr > EIW(2)]srpr

10



whenever the condition (5) is met.

ThUS,E[T(l‘)]pS > E[T(l‘)]SRPT if 2(1 — p(l‘))z > (1 — p). | |

Proof: (Theorem 4) If p(z) < 1, then2(1 — p(z)) > 1. Observe that for alk, (1 — p(z)) > (1 —p) .
Multiplying both the inequalities we ge2(1 — p(z))? > (1 — p) and the result follows from Theorem 5. m

Theorems 3 and 4 show that for all job size distributions,

1. Ifp< % then all jobs have a lower expected response time under 8Redmpared to PS.
2. Evenifp > % a majority of the jobs have better expected response timésrSRPT.

But what about the small fraction of jobs which have a high@vdown under SRPT than under PS, how bad
can their starvation be? We will show that for a fixed load, olo gan do arbitrarily badly on the average.
Theorem 6 establishes an bound on the ratio of the expecipdiise time of a job of sizeunder SRPT as

compared with PS.

Theorem 6 For all c.f.m.f.v. job size distributions, for all loadsp < 1, for all «,

BN @srer < Tt [l 1] BT les @
In particular,
B @snrr < | + 1] - LT w)les ©

Before we can prove this theorem, we need one observation:

Lemma6.1
/ tf(t)dt + = - F(z) < E[X]
Proof:
E[X]:/ tf(t)dt—i—/ tf(t)dtz/ tf(t)dt + xF(x)

Proof: (Theorem 6)

E[T'(z)]srpr Ao CSd 4 AT Fz) /Ox a

20— ple))? 0
< Mo t;g(lt)_dtp:;;)f =) oy [Sincell = p(x) < (1= pit)).fort < ]
< Aw [ tf(t)dt + Az?F () z
S TR )

11



o | 20— )
z [ AR[X]
=) (20— (o)

z [/\ [Ztf(t)dt + AeF () N 1]

+ 1] [By Lemma 6.1]

. 1=p p
T T 1) [2(1—p<x>>“]

1—p P
E[T(l‘)]PSl — (@) [2(1 — p(z)) + 1]

Thus equation (8) follows.

We observe that the expressi@h;(’;x) [m + 1} is maximized whem is the largest job (i.ep(x) =

p), inwhich case we get[T'(z)]srpr < (2(1[)_;)) + HE[T(x)]ps. =

Theorem 6 shows that for a given a lopadthe expected response time for a job cannot be arbitrarily
worse under SRPT, as compared with PS. For example, = 0.8, the expected response time of every
job under SRPT is no more than 3 times that under PS, and no tinane5.5 times that under PS where
p = 0.9. Inreality however, the factor is much better, since oufysigis not tight and it holds for all job size
distributions. Stronger results can be obtained for spejali size distributions.

The bound obtained in Equation 8 is quite useful. In Sectiare@vill use Equation 8 to prove Theorem
1 and then combine it with the HT property, to prove Theorem 2.

Below we use Equation 8 to prove Theorem 7.
Theorem 7 For any c.f.m.f.v. job size distribution and any loaek 1,
E[S(x)]srpr <2+ 2p

for all jobs of sizer such thatp(z) < % Hence, for job size distributions with the HT property, eddt 99%

of the jobs have an expected slowdown of at most 4, irresgectithe system load.

Proof: Follows directly from equation (8), Theorem 6. m

So far, we have shown two types of results with respect toatian. We either show thail jobs do well
for mostloads. Ormostjobs do well forall loads. A natural question to ask at this point is, whetheretlaee
job size distributions for which all jobs do well at all loads

We show that this is not the case. When load approaches Brtest job will perform worse under SRPT

for any job size distribution (which has a well-defined |atgjeb).
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Theorem 8 For every c.f.m.f.v. bounded distributiaiy < 1 such that

ETO)]srpr > E[T()]ps

wherel is the size of the largest job.

Proof: We will lower boundE[T'(!)]srpr and show that there existspa< 1 such thatE[T'(!)]srpr >
= = EIT()]ps.

The waiting time of the largest job under SRPT is sim%. To lower bound the residence time
under SRPT we use the Chebyshev Integral Inequality, (1i#f, yv= z,u(z) = #(x) v(r) = 1 — p(),

a = 0 andb = [. Note thatu andv satisfy the conditions in (12) singgx) is non-decreasing in. Thus we

get, fl(l . p(l‘))dl’ ! _dz__
1 S 0 e 0 1—p(z)
Equivalently,
! 2
Residence Time(l):/ 1—dj(x) > I lp—ll—/\m )
So,
ETO]srpr — E[T()]ps > 22\17%_2(;;2 [—pl -|l- Ams(l) 1 i P
_ama(l) 1 L = )
T 1-p (2(1 —p) (1—p1- d))) Lwhered = ZE[X]]

2(1=p)*(1 = p(1 = d))
Since both and E[X] are finite,d > 0. Thus for anyp < 1, such that(1 + d) > 1, E[T()]srpr —
E[T(D]ps > 0.
Hence, for any job size distribution, there is a load (lesnth) such that the largest job has a higher

expected response time under SRPT than under Pis.

6 Proof of Theorems 1 and 2

We will now use Theorem 6 to prove Theorem 1.

Proof: (Theorem 1) Let g(p(x)) denote the improvement factor in Theorem 6.

1—p 4
9(p(x)) = 1= () [2(1 —p(2)) * 1]

13



S0, E[T(«)]srpr < 9(p()) EIT(2)]ps.

Eflswer = [ E@)sner f@)is
< [ )BT @ips s
_ /0 ’ %gﬂxg) d(p(z))  Sincedp(x) = Aef(x)de
= L5l [ stole)d(pio)
Integratingg by parts, we get
[ stotenipte) = &~ (1= 1o 1 - (10)

Thus, it follows thatZ [T sgpr < h(p)E[Tps.

For slowdown, we similarly obtain,

E[Slsrpr = /oo E[S(x)]srpr f(z)de

IN

/Oo E[S(2)lps g(p(z))f(x)dz [Dividing both sides of equatio(R) by z]

= [ ) i) a1

Observe thag(p(x)) is increasing irp(z) and < is decreasing ip(x). We now apply the Chebyshev Integral
Inequality [16], which states that if(y), v(y) are non-negative functions which are non-decreasing and no

increasing respectively, then

- [ " uw)olu)dy < / " u(y)dy / o)y (12)

Settingy = p(x), u(p(x)) = g(p(x)). v(p(x)) = L.a = 0andb = p we get,

lmrr < o [ atotoipte) [F 5

-5/ e [2(1 et 1] ipte) [ steyi
it}
—p

ThUS,E[S]SRPT S h(p)E[S]PS
We now show thak(p) < 1 forall p < 1.

dhip) _ L 1 log(l—p)

dp 2 p p

14



Using the identity,

2 3
log(l—x):—x—%—%—
we get that
dhe) o v o<p<1
dp

Thush(p) is decreasing ip. Observing that(0) = 1, it follows thath(p) < 1, for all .
ThUSE[S]SRPT < E[S]PS. n

Proof: (Theorem 2) For distributions with the HT property we know that it takedeast 99% of the smallest
jobs to make up half the load. So, we split Equation 11 as

1

Elloner < [ alpte) o) + [ ale) L d(pto)

Now applying the Chebyshev Integral Inequality, we get

~—

ElS)snrr < Lp)( | atv@nato) [T e + [ sttt /:j—xd@(x)))

p(1 = 0

- sl

wherez), is such thap(z,) = g, observe that'(x;) > 0.99

e

o dtota)) [ o+ [ glotendiote)

Th

P

p(12_p) (/0 9(p(x))d(p(x)) +0.01/ﬂ g(p(l‘))d(p(x)))

e

IN

< FlSlps (p(;_—pp) B 2(1p—p) log (1 — g) +0'01(2fp ~ 2(1p—p) log 11:5))
= E[S)ps (P(lé()i;ﬁ) _ 2(1p—P) (log (1 — g) +0.01log 1:2))

Itis easy to see that the improvement factor approaegnf;eBSp —1. =

7 Overload

We now look at the case when the system is overloaged {). That is, jobs arrive at a rate higher than the
rate at which they can be worked upon. These situations afisa in real systems, and thus performance of

scheduling policies under overload is an important faciatétermining the goodness of a policy.
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In the case of PS scheduling under overload, the mean resporesforeveryjob is infinite [14]. For SRPT
scheduling under overload, to the best of our knowledgepmaila has been derived for the performance of

a job of sizex. We derive such a formula in this section, by combining ideas [24] and [12].

Theorem 9 Given an M/G/1/SRPT system with load> 1 and arrival rate \. Assume a c.f.m.f.v.job size

distribution with probability density functiofi(z). Consider a job of size such thafp(z) < 1. Then

v A [T )+ A (F(y) — F(x))2?
E[T()|SRPT in overload:/0 1_d;(t) + - b 70 (tltzp(i))(zy) @)

wherey is such thap(y) = 1.

Before we begin the proof, observe that the above formulerigsimilar to the original formulafoE[7(z)] s rpr
(not in overload) which we saw in Equation 1. The only diffeze is that thé — F'(x) term has been replaced

with a F(y) — F(z) term.

Proof: The response time for a job of sizeunder SRPT can be split into waiting time and residence time,
as shown in Section 4. Let us consider the derivation of th&mngegime. It is shown in [24] that the waiting
time for a job of sizer in M/G/1/SRPT is equivalent to the waiting time for a job afesi: in a particular non-
preemptive priority system specified as follows: The noeepmptive priority system has 3 types of arrivals.
Jobs of size< = have priority 1 (highest priority). Jobs of sizenave priority 2. Jobs of size = have priority
3. Jobs of priority 1 and 2 arrive according to the originakBon Process. However jobs of size 3 only arrive
into the non-preemptive priority system at the moments wihese jobs would have been reduced to size
in the original SRPT system. When the jobs of priority 3 atinto the non-preemptive priority system, they
arrive with sizex. Since we are concerned with the waiting time for a type 2fjlod particular arrival process
of jobs of priority 3 does not have any effect on the mean respdime of a job of size.

Now if p < 1, the formula for waiting time of a classjob in a non-preemptive system withpriority

classes is given by

2(1 = 32520 pi) (1= iz, i)

where E[W.] is the expected waiting time for a job in classX; is the job size distribution of th&é” class,

E[W.] = (13)

)\; is the arrival rate of jobs in th#” class and the; is the load made up by jobs in thé class.
Observe that applying Equation 13 to the 3 class priorityesysdescribed above gives the waiting time
for SRPT as stated in Equation 2.
Phipps extended the result in Equation 13 for the case wheri, [12]. They show that for a job in class
csuchthab™;_, p; <1
Yi ALY

FE Wc == 1 c 14
[Wel 2(1—2?;1 pi)(1 =2 =y pi) o
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wherev; is such thaty. = 1if > ;_, p; < 1 andv. = 0 if Zf;ll p; > 1. For the class Wherer;l1 pi < 1
ande:1 pi > 1, v. is a number between 0 and 1 such tﬁgft:l v;p; = 1. Thusy; indicates the fraction of
jobs of each class which are executed in the steady state.

To obtain an expression for the waiting time under SRPTpfor 1, observe that the equivalence of the
waiting time under SRPT and the three class non-preemptisters remains unchanged. Also observe that
%{;@ fraction of jobs of size> « are executed by SRPT in the steady state. Thus applying iBqu
to the 3 class priority system withy = (F, — F;) A, we obtain
WA Jy 2F(0)dt + (P (y) - F(x))2?

PV = (1= p(0))?

wherey is such thap(y) = 1, andp(z) < 1.

To obtain expression for the residence time we notice the¢ @njob of sizer begins execution and if
its current size ig, then this job is affected only by load made up by jobs of sipalker thant. Thus the
expression for the residence time ungdes 1 remains the same as in Equation 3. This gives us the result for
the response time under overload.

To appreciate the above result, we consider/ié, p, « = 1.1) job size distribution. We consider the
mean time in system for a job of sizesuch that(z) = .5p and we letp range from0 to 2. This job has
exactly half the system load below it and half above. By thepgrperty, this job of size is in the99th %-tile
of the job size distribution. The expected slowdownfas shown in Figure 2 in the case of PS scheduling
and in the case of SRPT scheduling. Observe that in the c&® stheduling; has infinite mean slowdown
once the system load reaches 1. However, under SRPT samgdulas finite mean slowdown up until the
point wherep(x) = 1, i.e. up untilp = 2.

In particular, Figure 2 shows that when the system loddhigrespectivelyl .8), the mean slowdown of a
job in the 99%-tile of the job size distribution is only 4 (respectivel§) for SRPT scheduling as compared
with infinity for PS scheduling.

The above results help explain our trace-based experihestdts. Under overload conditions, PS simply
stalls: all jobs experience infinite mean slowdown. Howewetter the same overload conditions, SRPT keeps

getting jobs out.

8 Preemption overhead

When implementing a scheduling policy with preemptionkg(IERPT, PS, FB ...) the overhead associated

with preemptions is a cause for concern. In real systemssR®plemented as round robin where each
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Figure 2: Mean slowdown for a job in the 99 percentile of fhg:, p,a = 1.1) job size distribution, as a

function of p.

process gets a finite time quantum. The number of preempdiepsnds on the size of this time quantum.
However, under SRPT, the amortized number of preemption®pés at most two. This is true irrespec-
tive of the arrival process. To see this, observe that a joblmgreempted under SRPT only when a new job
arrives into the system or an existing job is completed. &amy job arrives and completes exactly once, then
total number of preemptions is never more than twice the rumbjob arrivals.
By comparison, under any reasonable implementation of B&warage number of preemptions per job

will be more than two, since most jobs requires more than ime guantums of service.

9 Comparison of SRPT to other scheduling policies

Throughout this paper we compared SRPT scheduling with R&dsiting only and ignored how SRPT might
compare to other policies. In this section we will considame other commonly used policies and explain
why we dismissed these. In particular we consider, First €&inst Serve (FCFS), Last Come First Serve
(LCFS), Random, Non-preemptive Shortest Job First (SJtgdfound-Background (FB) and Preemptive
Last Come First Serve (P-LCFS).

We will argue that non-preemptive policies have far worsamperformance than SRPT, under more
variable job size distributions. This is the reason why wegnored such policies in this paper, although, as
we point out, these policies do have some nice properties filew of the very largest jobs.

We will then argue that each of the preemptive policies almareeasily be shown to either be no better

than PS on all jobs, or no better than SRPT on all jobs. Thitagx@why we've ignored these policies in the
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paper as well.

Throughout we assume an M/G/1 queue.

9.1 Non-preemptive policies

It is well known [3] that the expected response time for a jolsipe = is the same forll non-preemptive
policies which do not make use of size. This includes for gdanrCFS, LCFS and Random. This time is
given by ,
ET(2)rcFrs,L.CcFS,RANDOM = w +z (15)
(1—=p)

A different kind of non-preemptive policy which makes usesife and favors smaller jobs as compared
with longer ones is SJF. For a c.f.m.f.v. job size distribntf, the expected response time for a job of size
under SJF is given by ,

AUt f()dt
Bl = 500 4 (16)

Observe that in both Equations 15 and 16, the queueing tineejéib of sizer is dependent on the second
moment of the entire job size distribution. This is espégialinitive for small jobs. By contrast, observe that
under SRPT (see Equation 1) the time in system for a job ofistepends only up to the second moment of
the distribution truncated at

Thus in the case of a highly variable distribution, we woutget that the mean response time will be
significantly higher for these non-preemptive policies aspared with that under SRPT. To illustrate this
point, Figure 3 shows the mean response time for these nempté/e policies as compared with SRPT when
the job size distributioni®(k, p, « = 1.1). Observe that SRPT improves upon these other policies leyalev
orders of magnitude.

While non-preemptive policies have very high mean respdinse as compared with SRPT, these non-
preemptive policies might actually improve upon SRPT wihpect to response time of just the very large
jobs. The point is that, given a sufficiently large job, oneldoimagine its waiting time (time until first
idle period) becoming negligible compared with its sizeu3the response time would be dominated by the
residence time. The residence time will be 1 under a nonagpéee policy, but could approacﬁ—p for very
large jobs under SRPT.

In the above scenario, however, it is typically only the yrldrgest jobs which benefit under a non-
preemptive policy, as compared with SRPT. For example, uthee3 (, p, o = 1.1) job size distribution, at
a load of 0.9, only about 0.00005% of the jobs have a lower@®rpaesponse time under FCFS as compared

with SRPT and only 0.0005% of the jobs have a lower responsedinder SJF as compared with SRPT.
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Figure 3:The figure shows the Mean Response Time as a function of latd BCFS, LCFS, Random, SJF
and SRPT for the Bounded Pareto job size distribut®fk, p, « = 1.1).

9.2 Preemptive policies

In addition to PS, the other common preemptive policies amredround-Background (FB) and Preemptive
Last Come First Serve (P-LCFS). FB always serves that job thii least attained service (age). If two jobs
have equal attained service, they timeshare the servar,RS.iP-LCFS always serves that job which arrived
last.

For a c.f.m.f.v. job size distributiofy the expected response time for a job of siaender FB and P-LCFS

is respectively given by

A(ma(z) + 22(1 — F(z)) n x

E[T(x)lrp = 21— o) = a7

where
po = AF () + A/0 vf(v)dy > p(x) (18)
E[T(x)]lp-rcrs = =, (19)

Observe that under P-LCFS the expected response time foraf gizex is the same as that under PS. Thus
it suffices to compare SRPT with PS.

The comparison of FB scheduling with SRPT scheduling idlljgnore interesting. Comparing equations
17 and 1 we observe that the first term of Equation 17 is gré&aderor equal to the expected waiting time for
every job under SRPT. Secondly the second term in Equati@ad 2asily be seen to be greater than or equal

to the expression for the residence time under SRPT. Thubawethe following observation.
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Observation 1 For any job size distribution and for any load< 1, every job has a higher expected response

time (hence slowdown) under FB scheduling as compared \RBTSscheduling.

It follows that both the mean slowdown and the mean respomsewill be worse under FB as compared
with SRPT. Also, the unfairness to large jobs will be highetder FB than under SRPT. Of course, FB has the
advantage over SRPT that it does not require knowledge cfijeh

10 Conclusion

The goal of this paper is to dismiss notions of “unfairnesghmonly associated with SRPT. We prove that
under moderate system load, famyjob size distributionall jobs prefer SRPT to PS. As the load increases,
this statement is only true for job size distributions witle heavy-tailed property. However the situation is
not as bad as one might think for general distributions. BEweder conditions of higher load, for general

distributions, we show that the majority of jobs are insewsito the higher load. For the remaining jobs, we
prove absolute bounds on how high the expected slowdowrr SRIBT can be as compared with PS.

While it is well-known that SRPT is optimal with respect to aneresponse time, the degree of the im-
provement in mean response time and mean slowdown of SRRPP8vkas not been studied for general job
size distributions. We obtain bounds on the mean improvéfaetor of SRPT over PS under general job size
distributions and under job size distributions with thevyetailed property.

We also obtain closed-form expressions for the performah&&RPT under overload. We show that under

overload the difference between SRPT and PS is even moreatcam
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