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ABSTRACT

Service providers want to reduce datacenter costs by consolidat-
ing workloads onto fewer servers. At the same time, customers
have performance goals, such as meeting tail latency Service Level
Objectives (SLOs). Consolidating workloads while meeting tail la-
tency goals is challenging, especially since workloads in production
environments are often bursty. To limit the congestion when con-
solidating workloads, customers and service providers often agree
upon rate limits. Ideally, rate limits are chosen to maximize the
number of workloads that can be co-located while meeting each
workload’s SLO. In reality, neither the service provider nor customer
knows how to choose rate limits. Customers end up selecting rate
limits on their own in some ad hoc fashion, and service providers
are left to optimize given the chosen rate limits.

This paper describes WorkloadCompactor, a new system that
uses workload traces to automatically choose rate limits simulta-
neously with selecting onto which server to place workloads. Our
system meets customer tail latency SLOs while minimizing data-
center resource costs. Our experiments show that by optimizing
the choice of rate limits, WorkloadCompactor reduces the num-
ber of required servers by 30-60% as compared to state-of-the-art
approaches.
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1 INTRODUCTION

In cloud computing and enterprise datacenter environments, service
providers often seek to maximize the utilization of their resources by
sharing compute, network, and storage resources among customers.
At the same time, service providers want to keep their customers
happy by providing good performance. Some customers may specify
their performance goals in terms of a tail latency Service Level
Objective (SLO), such as “99% of requests must complete within 150
milliseconds”. Cloud researchers and companies such as Amazon
and Google have repeatedly stressed the importance of meeting
tail latency SLOs at, for example, the 99th and 99.9th percentiles,
particularly for user-facing interactive applications [2, 5, 6, 9, 13,
17, 20, 21, 25, 26].

Our work is designed for long-running user-facing applications,
such as web servers and email servers, in the context of network
attached storage, such as Amazon’s Elastic Block Store (EBS). We ad-
dress the problem of how to consolidate multiple workloads onto a
storage server while meeting tail latency performance goals. Specif-
ically, each workload sends a stream of requests to a storage server
containing its data. Our goal is to (1), ensure that each workload’s
stream of requests meets its tail latency SLO, while (2), minimizing
the number of servers that the service provider uses to satisfy all
the given workloads.

Our work addresses two key questions: what portion of a server
(e.g., storage throughput, network bandwidth) should be allocated
to each storage workload, and on which server should its data be
placed. The current practice for allocating storage resources is to
have customers either reserve some amount of storage throughput
(e.g., Amazon’s Provisioned IOPS) or run without any guarantees
in a best effort fashion. Today’s cloud providers do not support
tail latency SLOs since they are much harder to guarantee than
throughput, especially with bursty workloads. Unfortunately, using
throughput reservations to meet tail latency SLOs is inefficient
because the bursty nature of a workload’s traffic induces customers
to reserve more throughput than necessary.

A key challenge we address is managing the short-term bursti-
ness! that is commonly exhibited by production workloads. Even
when a server is not overloaded, short-term burstiness can have
a significant effect on tail-latency [25], and thus the ability to co-
locate workloads while meeting tail latency SLOs. In this work,
we focus on short-term burstiness and show how to characterize
short-term burstiness and quantify its effect on tail latency.

To handle bursts while guaranteeing SLOs, multiple research
papers [9, 11, 13, 24] have proposed using token bucket rate lim-
iting (Fig. 1) with both a rate (i.e., throughput) parameter (r) and
a burst (a.k.a. bucket size) parameter (b). Note that there are two

! Burstiness occurs at different time granularities. Short-term burstiness occurs at the
granularity of seconds or milliseconds, diurnal patterns occur at the granularity of a
day, and long-term load variations occur at the granularity of months.
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Figure 1: Token bucket rate limiters control the rate and
burstiness of a stream of requests. When a request arrives
at the rate limiter, tokens are used (i.e., removed) from the
token bucket to allow the request to proceed. If the bucket
is empty, the request must queue and wait until there are
enough tokens. Tokens are added to the bucket at a constant
rate r up to a maximum capacity as specified by the bucket
size b. Thus, the token bucket rate limiter limits the work-
load to a maximum instantaneous burst of size b and an av-
erage rate r.
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Figure 2: Example r-b tradeoff curve.

perspectives on rate limits. From the perspective of the customer,
the rate limit describes the traffic capacity reserved for its work-
load, w. From the perspective of the provider, the rate limit serves
as an upper bound on w’s traffic demand that the provider must
support — and hence, the rate limit on w ensures that sufficient
resource bandwidth remains to support the guarantees provided
to the other workloads co-located with w. Rate limiting has been
successfully used to provide network latency guarantees in Silo [13]
and QJump [9] and storage latency guarantees in pClock [11] and
Avatar [24]. However, an open problem in these papers is a method
for how to choose the rate limit parameters. These systems assume
the customer provides the rate limit parameters as input.
Impact of rate limits on consolidation

The key insight in our work is jointly optimizing the choice of
(r, b) rate limit parameters for each workload to better compact
workloads onto servers. Our results show that selecting rate limit
parameters is an important problem that can result in using many
more servers than necessary. The reason for such a big difference is
because there are (infinitely) many feasible (r, b) choices for a given
workload, and the choice of an (r, b) tuple affects how easily it can
be co-located with other workloads. We define feasible (r, b) tuples
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Figure 3: Comparing WorkloadCompactor to state-of-the-
art approaches under two scenarios, each using 1000 work-
loads based on production traces. In the first scenario, all
workloads specify the same SLO, and in the second sce-
nario, workloads specify random SLOs. Results are normal-
ized to the number of servers used by WorkloadCompactor
to clearly show that state-of-the-art approaches require 40-
150% more servers than WorkloadCompactor.

for a workload as rate limit parameters that are high enough such
that the rate limiter does not delay workload requests. Fig. 2 shows
an example of feasible (r, b) tuples where all points on or above the
r-b curve are feasible. We use the r-b curve as a characterization of
workload burstiness.

The r-b curve represents a tradeoff in characterizing burstiness
via the rate r parameter and bucket size b parameter. The r-b curve
notion was introduced in [26] and is an alternative representation
of the arrival curve concept in network calculus theory. Formally,
a workload with an (r, b) rate limit is by definition constrained by
the token bucket to never send more than

r-t+b

units of work within all time windows of length ¢, for all ¢. From this
equation, a workload’s traffic burstiness can either be accounted
for by adjusting its b parameter, which is good for instantaneous
bursts, or by adjusting its r parameter, and the r-b curve quantifies
this tradeoff between r and b.

Having the r-b curve rather than a single (r, b) tuple is important
since being able to choose each workload’s (r, b) tuple has a sig-
nificant impact on the ability to co-locate workloads. For example,
if all workloads select rate limits with low rates and large bucket
sizes, then it will be hard to co-locate workloads since the large
bucket sizes will allow large bursts that could cause SLO violations.
Similarly, if all workloads select rate limits with high rates and
small bucket sizes, then it will be hard to co-locate workloads since
the available bandwidth will quickly be used up.

In Fig. 3, we compare multiple approaches to choosing an (r, b)
tuple. One natural approach is to select rate limits by setting r to
the average rate multiplied by some constant k (e.g., k = 1.5). The
bucket size b can then be set by trial and error experiments or via
the r-b curve. This approach has been used, for example, by the
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authors of the recent Silo [13] paper in their experiments. We refer
to this approach as 1.5x Avg Rate or 2.0x Avg Rate, corresponding
to the values used in Silo. Our test results with a range of values
from k = 1.25 to k = 20 are not significantly better. Another natural
heuristic, which we call “Knee of r-b curve”, is to select the knee
of the r-b curve in hopes of making a good tradeoff between r and
b. The state-of-the-art in theory for selecting rate limits is based
on the Effective Bandwidth approach from network calculus [15],
which has been shown to be reasonable in [25]. Unfortunately, all of
these approaches are quite suboptimal in minimizing the number of
servers. This is because there is no “best” (r, b) tuple for a workload;
the optimal (r, b) tuple depends on the other workloads sharing
the server.

WorkloadCompactor

WorkloadCompactor is a new system that automatically selects
(r, by rate limits for each workload in conjunction with deciding
onto which server to place workloads to meet tail latency SLOs.
WorkloadCompactor first associates an r-b curve with each work-
load as a characterization of the workload’s behavior. The r-b curve
for a workload is generated via WorkloadCompactor’s rbGen tool,
which takes as input a historic trace of that workload’s behavior.
We assume the trace is long enough to represent an upper bound
on the workload’s behavior. Clearly, it is impossible to ensure tail
latency SLOs without an upper bound on the expected traffic. For
example, if the workload exhibits diurnal variations, then the trace
should cover a typical full day of time or a high load period of the
day. The customer can also add a “safety margin” to the workload’s
r-b curve to account for load variations over longer time periods
(see Sec. 5.2).

What makes WorkloadCompactor unique is that in picking rate
limits, it simultaneously considers the r-b curves for all workloads
sharing a server. This is in contrast to prior approaches which select
a rate limit independently for each workload, not taking the other
workloads into account. Specifically, when WorkloadCompactor
places a new workload onto a server, it dynamically reconfigures
the (r, b) rate limit for each workload on that server so that the
new workload can fit; the newly reconfigured rate limits are chosen
from each workload’s r-b curve. The key insight that makes the
dynamic rate limit reconfiguration fast is that we can represent the
joint optimization problem as a specially formed linear program (LP)
based on equations from network calculus. WorkloadCompactor also
provides a scalable heuristic for quickly deciding onto which server
to place workloads.

This paper makes the following main contributions:

e Building an automated system for minimizing the num-
ber of servers to meet tail latency SLOs:
WorkloadCompactor is a new QoS system that enforces rate
limits and priorities in storage and network to meet tail la-
tency SLOs. WorkloadCompactor minimizes the number of
servers using a new technique for automatically selecting
rate limits and priorities to compact more workloads onto a
server while meeting SLOs; our technique is based on non-
trivial applications of network calculus. Our compaction
technique is used in conjunction with our scalable place-
ment algorithm, which places workloads onto servers an
order of magnitude faster than the traditional first-fit policy.
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¢ Extensive evaluation:
We evaluate WorkloadCompactor on a physical 24-machine
cluster using 62-85 workloads derived from real production
traces to demonstrate that WorkloadCompactor uses 30-60%
fewer servers than state-of-the-art approaches while meeting
tail latency SLOs. Our scalability experiments with 1000
workloads show that WorkloadCompactor is able to quickly
and effectively pack workloads at large scale. We also show
that WorkloadCompactor works well in a broad range of
scenarios such as mixing workload arrivals/departures and
using multiple SSDs per server.
e Open-source implementation:

Code for WorkloadCompactor is available for public use at
https://github.com/timmyzhu/WorkloadCompactor. Work-
loadCompactor is designed to integrate into existing storage
and/or network infrastructures (e.g., Amazon EBS, Open-
Stack Cinder, IOFlow [19]) as an add-on feature for control-
ling traffic to meet tail latency SLOs. In our implementation,
we integrate WorkloadCompactor with NFS and Linux TC
to enforce rate limits and priorities at storage and network
devices.

2 ARCHITECTURE

2.1 System overview

In this work, we target storage workloads, which send a stream
of requests (e.g., read, write) over the network to access data on
storage servers. We imagine Amazon’s Elastic Block Store (EBS)
as a typical example scenario for WorkloadCompactor, but the
techniques described are applicable to other systems such as NFS
servers, memcached servers, or databases. In this example scenario,
an Amazon customer runs a workload (e.g., mail server) on an “in-
stance”® connected to one or more “EBS volumes”. An EBS volume
is hosted on a storage server, which provides networked storage to
the volume’s connected instance. WorkloadCompactor is respon-
sible for helping the service provider, Amazon in this case, decide
onto which storage server to host an EBS volume along with rate
limits for workloads accessing the storage server.

Fig. 4 shows the process of adding a workload in WorkloadCom-
pactor. When a customer wishes to add a workload (e.g., a database
backed by an EBS volume), the customer allocates an instance for
the database in the usual way. However, when the customer allo-
cates the EBS volume, the customer specifies the desired latency
along with a description of the workload’s storage and network
utilization in the form of r-b curves. The customer generates the r-b
curves via our provided rbGen tool (Sec. 2.2) using historic traces.
Note that if a workload’s behavior changes significantly, the other
workloads sharing the system are still protected, because rate limits
are individually enforced for each workload. If the workload’s new
behavior is expected to continue, then the customer would need
to regenerate an r-b curve based on the new behavior and submit
it to WorkloadCompactor, which may trigger a migration of the
workload. The customer can also scale the r-b curves to include
a safety margin for deviations in past behavior. We are motivated
by workloads, such as Wikipedia, where daily peak request rates

YInstances represent virtual machines (VMs) in Amazon, but the design of Workload-
Compactor does not require virtualization.
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Figure 4: WorkloadCompactor system diagram.

are stable across months (see Sec. 5.2 and Fig. 9); we explore the
robustness of r-b curves in Sec. 5.2. The provider then provides the
desired level of service as specified by the SLO and r-b curves.

Given the tail latency SLO and r-b curves for a workload, the
WorkloadCompactor Controller decides onto which server to place
the workload, along with what rate limits to set for the workload.
The controller is composed of three components. First, the wcPlacer
component identifies candidate servers upon which to place the
workload. Second, the weOptimizer component speculatively de-
termines candidate (r, b) tuples for each workload on the server.
Third, the wcLatencyChecker component determines whether the
candidate placement and (r, b) tuples would satisfy all workload
SLOs. If not, the cycle begins again with the wcPlacer identifying a
new candidate server. Instead, if all SLOs are satisfied, the Work-
loadCompactor Controller configures the appropriate storage and
network rate limits and completes by assigning the workload to
the server.

2.2 rbGen: Generating r-b curves

To simplify the description of the rbGen algorithm, we present an
alternate, but equivalent, description of token bucket rate limiting
than the traditional description in Fig. 1. In the alternate description,
when a request arrives, tokens are added to the token bucket. If
there is sufficient space to add tokens to the token bucket without
exceeding the bucket size b, then the request is allowed to proceed.
Otherwise, the request is queued and waits until there is sufficient
space. Space becomes available as tokens continuously drain from
the bucket at the configured rate r.

Algorithm 1 provides the pseudocode for rbGen, WorkloadCom-
pactor’s tool for generating r-b curves based on a given trace. Traces
contain a list of requests parameterized by the arrival time, request
type (e.g., read, write), and request size (e.g., 4KB). The tool sweeps
across a given list of r values (e.g., 0.1, 0.2, ..., 1.0), and for each r
value, it computes the minimum b such that the requests are not
queued. These b values are computed by replaying the trace with
an infinite sized token bucket (virtualBucket) at each rate r and

Algorithm 1: r-b curve generation

// trace - list of requests in trace
// r - list of rates to sample in r-b curve
// tokensFunc - function to convert requests to tokens

// Returns: list of bucket sizes in r-b curve

// where <r[i], b[i]> are points on the r-b curve

// for i in [0, len(r))

function rbGen(var tracel[], var r[], var tokensFunc)

var b[len(r)]; // Initialized to @
for (var i = 0; i < len(r); i++) {

var virtualBucket = 0;
var prevTime = 0;
for (req in trace) {
var interarrival = req.arrivalTime - prevTime;
// Drain token bucket for interarrival time
virtualBucket -= r[i] * interarrival;
if (virtualBucket < 0) {
virtualBucket = 0;
3

// Add tokens for current request
virtualBucket += tokensFunc(req);
// Record max tokens in bucket at any point
if (virtualBucket > b[i]) {
b[i] = virtualBucket;
3
prevTime = req.arrivalTime;
}
}
return b;

}

tracking the maximum tokens in the bucket at any point in time.
The output b values along with the input r values then form the
(r,b) vertices in the piecewise linear r-b curve. To simplify the
mathematics, all r-b curves are normalized (e.g., divide by network
link bandwidth) such that r = 1.0 represents a workload requesting
100% utilization.

Note that different r-b curves need to be generated for network
traffic into the server, storage traffic at the server, and network
traffic out of the server. Network traffic into and out of the server
are accounted for separately since the amount of data transferred
depends on request type (e.g., read/write). rbGen generates different
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r-b curves via the tokensFunc parameter, which converts request
sizes to tokens. For example, the network traffic leaving the server
would use the number of bytes accessed for read requests and
a constant (i.e., size of acknowledgment) for write requests. For
storage, we implement a storage model (Sec. 3.1) to represent the
amount of “work” introduced by a request. WorkloadCompactor is
designed to handle the complexity of multiple stages of traffic, and
it automatically selects the (r, b) rate limits for each stage while
accounting for the end-to-end latency across stages.

2.3 wcLatencyChecker: Guaranteeing SLOs

WorkloadCompactor relies upon network calculus, which has been
shown to be effective in related literature [9, 13, 26]. Network calcu-
lus provides a framework for calculating latency guarantees based
on the selected (r, b) tuples. Specifically, we use network calcu-
lus equations to compute the latency due to queueing at a server;
we write equations from the perspective of a single server and
repeatedly apply them to each server.

To simplify exposition, we first show how to handle a single
stage (e.g., storage) and later show how to extend the analysis to
multiple stages. For any workload at priority p, an upper bound on
the workload’s tail latency is:

2. b

Jlpizp

1- Z rj
jlpi>p
where (r}, b;) corresponds to workload j’s selected rate limit. Equa-
tion (1) is derived from network calculus basic principles [15]. The
numerator is the sum of bucket sizes b; across workloads j where
Jj’s priority, denoted by p;, is higher than or equal to p. The denom-
inator is 1 minus the sum of rates r; across workloads j where j’s
priority p; is strictly higher than p.

From Equation (1), note that prioritization provides the benefit
that workloads are only affected by equal or higher priority work-
loads. WorkloadCompactor uses prioritization to provide better
latency for the workloads with tighter SLO constraints. Specifically,
WorkloadCompactor sets priorities in order of SLOs such that work-
loads with tighter SLOs are assigned higher priorities, as proposed
in [26]. In other words, each priority p is associated with a SLO,
denoted by SLO,,, where p1 > p2 implies SLOp1 < SLOps.

latency(p) < (1)

2.3.1 wcOptimizer: Selecting optimal rate limits. The choice of
(r, b) parameters has a significant impact on how many workloads
can be co-located onto servers. Rather than using ad hoc approaches
to choose the rate limit parameters, WorkloadCompactor introduces
a novel systematic approach for optimizing the (r, b) parameters;
existing strategies are described in Sec. 4.1. Our approach is based
on two key ideas.

First, since WorkloadCompactor associates an r-b curve with
each workload, when a new workload is added to a server, Work-
loadCompactor is able to dynamically recompute rate limits for all
existing workloads sharing that server. Thus, WorkloadCompactor
does not need to consider future workload arrivals and only needs
to optimize based on the current workloads in the system.

Second, WorkloadCompactor directly embeds Equation (1) into
its optimization. Since Equation (1) is used to check if workloads can
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be co-located, WorkloadCompactor can check if there exists any set
of rate limit parameters for the workloads such that they all can be
co-located. While checking all possible rate limits may sound slow
and intractable, a key insight is that we can actually represent the
problem as a linear program (LP), which can be efficiently solved.
Specifically, for each priority level p with a given SLO, SLO,,, we
want to ensure that:
2. b

Jlpjzp

—~—— =<SLO 2
1- Z rj ’
jlpi>p
which can be rewritten as the linear inequality:
D b+ Y rj-SLO, < SLOp (3)

jlpjzp Jlpj>p

Thus, WorkloadCompactor creates an LP with r; and b; as LP
variables representing workload j’s selected rate limit {r;, b;). Equa-
tion (3) is added as a constraint for each priority level to ensure
SLOs are guaranteed. Additionally, constraints are added to ensure
that each selected rate limit {r;, b;) is on (or above) the workload’s
r-b curve. Since the r-b curves are piecewise linear convex func-
tions, they can be encoded as linear constraints in the LP by taking
each of the lines defined by the piecewise segments in the r-b curve
and adding an LP constraint that (r;, b;) is above the line. Lastly,
the following LP constraint is added to ensure the server is not

overloaded:
Z ri<1 4)

J
Note that the sums in these LP constraints are in the context of
one specific server (i.e., the server where the new workload is being
added).

WorkloadCompactor then uses an off-the-shelf solver (e.g., GLPK)
to determine if the LP is feasible (i.e., there exist valid (r;, b;) rate
limits that satisfy the constraints) or if there are no such rate limit
configurations that can satisfy all workload SLOs. Since LP feasibil-
ity is the primary concern, the specific choice of objective function
is not critical, and WorkloadCompactor simply minimizes the sum
of rates.

To handle multiple stages (e.g., network, storage), WorkloadCom-
pactor uses Equation (1) three times to represent the three stages:
network into server, storage, network out of server. This results in

the following equation:
netOut
2. b

netln Z storage
>y

ilpj= ilpj= ilpj=
Jipjzp + Jipjzp 4 Jipjzp SSLOP
1— Z pnetin 4 _ r?torage 1— Z pnetOut
J J J
Jlpi>p Jlpi>p Jlpi>p
(5)

Unfortunately, Equation (5) is not a linear inequality, which makes
the optimization difficult. The key trick we discovered in solving
this problem is to apply a relaxation to the problem to convert
it into a linear inequality. Specifically, we add a new LP variable
Ry, for each priority level such that it obeys the following three

constraints:
netln storage netOut

2 R ) <Ry D, M <Ry

Jlpj>p jlpj>p

Jlpi>p
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Figure 5: Performance profile of NFS storage stack running with our SSD.

Intuitively, the Rp variable balances the rate across the three stages.
Equation (5) can then be relaxed to the inequality:

netln storage netOut
DI I 2. b
jlpjzp + jlpjzp + jlpjzp
1-Rp 1-Rp 1-Rp
which can be rewritten as the linear inequality:
Dopreting N porasey N pnetOul iR, S10, < SLO,
Jjlpjzp Jjlpizp Jlpszp

< SLOp (6)

™)

Thus, to handle multiple stages, WorkloadCompactor replaces

Equation (3) with Equation (7), and for each priority level p, it adds
the R, variable along with Ry’s 3 constraints.

2.4 wcPlacer: Selecting workload placements

Since storage workloads are difficult to migrate, we restrict our
design space to solutions that do not rely upon constantly migrat-
ing workloads to fix bad placements. So to make a good placement
where SLOs are met, WorkloadCompactor places workloads onto
servers where they fit, as determined by solving the LP (Sec. 2.3.1).
It remains to establish the order in which to check servers for fit.
Our tests with placement heuristics® indicate that first-fit yields
good packings, which agrees with theoretical results?; hence, Work-
loadCompactor adopts a first-fit strategy.

Unfortunately, a naive implementation of first-fit is slow and
unscalable. Often times, most servers are nearly full, so a lot of time
is wasted in determining that the new workload cannot fit on near-
full servers. WorkloadCompactor adds an optional fast-first-fit (FFF)
placement feature where it tracks how full servers are and skips
trying to place workloads onto near-full servers. Specifically, Work-
loadCompactor tracks the sum of configured rates at each server
and skips placing workloads onto servers where the new work-
load would overload the server (i.e., violate Equation (4)) assuming

3 We have tried various heuristics including first-fit, balancing the number of workloads
per server, balancing the average load per server, spreading bursty workloads onto
different servers, spreading workloads with different SLOs onto different servers, and
random first-fit. We did not see any heuristic perform significantly better than the
others, and first-fit was one of the best policies we tried.

4 Packing workloads with rate limits and priorities onto servers can be translated into
the “online vector bin packing” problem where rate limits correspond to packed-object
sizes and the number of priorities is correlated with the dimension of the vector. A
recent STOC paper [3] proves a lower bound that is close to the known upper bound
for first-fit, indicating that first-fit is near-optimal.

that rate limits are not reconfigured. This avoids running the LP
to reconfigure rate limits, but may result in using extra servers in
cases where reconfiguring rate limits would have allowed the new
workload to be packed together. Our experiments (Sec. 5.4) show
that FFF drastically improves the speed and scalability of Work-
loadCompactor (e.g., over 10X faster with 1000 workloads) without
significantly increasing the number of servers (within 3-4%).

3 PROTOTYPE IMPLEMENTATION

In implementing our WorkloadCompactor prototype, there are mul-
tiple challenges we face in working with storage tail latency. First,
we describe how we model storage in WorkloadCompactor. Second,
we describe how we enforce priorities in WorkloadCompactor.

3.1 Storage model

Though our techniques can be extended to various storage devices,
our WorkloadCompactor prototype focuses on Solid-State Drives
(SSDs). In this section, we describe how we model the performance
of SSDs and the storage stack. SSDs are complex devices with many
performance peculiarities, making them difficult to model. SSD per-
formance cannot be described with a single parameter, but rather
requires profiling the device across various access types. For exam-
ple, read and write throughput is very different for SSDs. Writes
may need to erase SSD blocks, which is considerably slower than
reading SSD blocks. To accurately profile a SSD, we profile reads
and writes separately. Additionally, the request size significantly
impacts SSD throughput. For small requests, SSDs are limited to the
maximum IOPS supported by the device. For large requests, SSDs
are limited to the maximum bandwidth supported by the device.
WorkloadCompactor builds a performance profile (e.g., Fig. 5(a) and
Fig. 5(b)) for each SSD by measuring the empirical throughput over
a sweep of request sizes. The performance profile includes the per-
formance of both the SSD and storage stack so as to have a holistic
view of the storage subsystem. We assume the storage performance
profile does not significantly change over time, and variation in
performance can be addressed by using more conservative (i.e.,
lower) throughput numbers.

These SSD profiles are used to compute the amount of “work”
induced by a request. WorkloadCompactor uses this generic notion
of work to quantify the congestion between workloads at an SSD.
We calculate the work induced by a request by taking the inverse
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of the IOPS throughput (i.e., work = m), where IOPS(size)
denotes the number of I/O operations per second as a function of
request size.

In addition to the work generated by a request, there is also a
tail latency effect due to the SSD and storage stack. For example,
writes are sometimes delayed to allow more write batching, and
SSD garbage collection is known to affect tail latency. Thus, Work-
loadCompactor also profiles the tail latency of requests without
the queueing effects of bursty workloads to isolate the SSD and
storage stack tail latency (e.g., Fig. 5(c)). This profiled latency is
then added to the estimated queueing latency from the network
calculus equations. WorkloadCompactor focuses on limiting the
tail latency due to queueing and is complementary to other works
that focus on device tail latencies (e.g., [22]).

3.2 Enforcing priorities in SSDs

To enforce priorities (and rate limits) in storage, we implement a
prototype storage enforcement module. The most straightforward
way to enforce priorities at the SSD is to dispatch one request at a
time to the SSD. However, dispatching requests one at a time does
not work well for SSDs because modern SSDs require a high degree
of parallelism to achieve high throughput®.

While parallelizing requests enables high throughput for SSDs,
it also has the potential to interfere with the priority ordering of
WorkloadCompactor. When a high priority request arrives at the
storage system, it may need to wait for outstanding low priority
requests. Also, SSDs may unintentionally delay a high priority
request in order to more efficiently serve low priority requests.
This can induce starvation for high priority requests while other
requests are being served [23].

The reason behind these challenges is that SSDs are unaware of
priority classes, and once a request has been dispatched to the SSD,
we lose control over the request. The current WorkloadCompactor
implementation addresses these issues from two angles. First, we
limit the overall number of outstanding requests at the SSD as well
as the overall number of bytes from outstanding requests. This
allows us to exploit the SSD’s parallel architecture while giving an
upper bound on the time a newly-arriving high priority request
needs to wait. Second, we limit the number of low priority requests
as well as number of bytes that can be dispatched while a high
priority request is in progress to prevent starvation of high priority
requests.

4 EXPERIMENTAL SETUP

This section describes the comparison approaches, production traces,
and testbed used for the performance evaluation of WorkloadCom-
pactor.

4.1 Comparison approaches

To evaluate the effectiveness of WorkloadCompactor, we compare
its performance to three state-of-the-art approaches to selecting a

5The reason behind this is that individual flash memory packages offer limited band-
width which is commonly solved by bundling many packages together. In particular,
modern SSDs employ parallelism at many levels (e.g., channel-level, package-level,
die-level etc.) [4, 7].
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workload’s rate limits: scaling average bandwidth, effective band-
width, and finding the knee of the r-b curve. To make a fair com-
parison, all approaches provide tail latency SLO guarantees by
adhering to Equation (1). Workloads are placed using a first-fit
strategy, which works well, as noted in Sec. 2.4.

4.1.1  Scaling average bandwidth. Little is known about selecting
rate limits, and most users resort to ad hoc heuristics. Authors of
the recent Silo [13] paper, for example, select rate limits by setting
r to the average rate of the workload multiplied by some constant k
(e.g., k = 1.5). The b parameter can then be determined through trial
and error experiments or via the r-b curve (Sec. 2.2). By choosing
higher r values, smaller bursts are allowed into the system, which
allows more workloads to be co-located without violating SLOs.
However, higher r values may also exhaust the available bandwidth.
Our results evaluate this approach with two values of k: 1.5 and 2,
corresponding to values used in Silo. We also test a range of values
from 1.25 to 20, but find that all of them perform worse than the
effective bandwidth approach, described next.

4.1.2  Effective bandwidth. The state-of-the-art in selecting rate
limits is based on the effective bandwidth theory [15] and has
shown to be a reasonable approach in [25]. The effective bandwidth
approach is designed to isolate each workload’s burstiness from the
other workloads in the system. Intuitively, the effective bandwidth
approach slows down traffic at the rate limiter to create smooth
traffic and eliminate burstiness within the system. Thus, the effec-
tive bandwidth approach sets b to 0 to create smooth traffic and
calculates the minimum r (known as the effective bandwidth) such
that the workload is slowed down by no more than the SLO.

The main downside to the effective bandwidth approach is that
it isolates each workload’s burstiness, which eliminates any mul-
tiplexing benefit in the system. Specifically, since congestion is
eliminated from the system, prioritization does not provide any
multiplexing benefit. Thus, the effective bandwidth approach is
suboptimal in cases where prioritization is useful (i.e., workloads
with different SLOs), but is reasonable in cases where prioritization
is less helpful (i.e., workloads with same SLOs).

4.1.3  Knee of r-b curve. Looking at the shape of the r-b curves,
one might consider a heuristic for selecting rate limit parameters
based on the “knee” of the curve. We are not aware of any system
that uses this approach, but it seems to be a reasonable way to trade
off r and b. We evaluate this approach with the knee defined as the
point along the r-b curve that minimizes r + b.

4.2 Traces

Our evaluation uses a collection of real production storage traces of
Microsoft services (e.g., LiveMaps, Exchange), which are described
in detail in [14]. In our experiments, we consider each trace to
represent a workload. Half of the trace is used for generating r-b
curves (Sec. 2.2), and the other half is replayed on our cluster to
demonstrate that WorkloadCompactor is able to meet tail latency
SLOs. We replay traces in an open loop fashion, which properly
captures the end-to-end latency and the effects of queueing.
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Figure 6: Number of servers required by state-of-the-art approaches to meet tail latency SLOs, normalized to the number
of servers used by WorkloadCompactor (12 servers). In all experiments, we randomly select workloads. In the first 5 “Same
SLO” experiments, we use a fixed SLO for all workloads. In the last “Random SLO” experiment, workloads are configured
with random SLOs from {100ms, 150ms, 250ms, 500ms, 1000ms}. Each of these experiments is run on our local cluster, and
WorkloadCompactor is able to meet all workload SLOs while using significantly fewer servers.

4.3 Experimental testbed

All experimental results are run on a dedicated 24-machine cluster,
with 12 client machines and 12 server machines. Each machine
is configured with two Intel Xeon E5-2680 processors, 64GB of
DRAM, and an Intel 710 series 300GB SSD, and is connected via
a 1Gbps network. Each machine runs 64-bit Ubuntu and provides
virtualization support via the standard kvm package (qemu-kvm-
1.0). We replay traces in VMs running 64-bit Ubuntu 14.04 and
use the standard NFSv3 server and client that come with these
operating systems to provide remote storage access.

5 RESULTS
5.1 WorkloadCompactor uses fewer servers

One of the surprising results in our work is that the ability to com-
pact workloads onto servers while meeting tail latency SLOs is
highly influenced by how rate limits are chosen for each work-
load. Fig. 6 compares WorkloadCompactor with the state-of-the-art
approaches in choosing rate limits across several experiments. In
each experiment, we assign 99.9% tail latency SLOs to randomly
selected workloads and count the number of servers used, normal-
ized to the number of servers used by WorkloadCompactor (12
servers). In the first 5 “Same SLO” experiments, we use a fixed SLO
for all workloads. In the last “Random SLO” experiment, we assign
random SLOs from {100ms, 150ms, 250ms, 500ms, 1000ms}. When
selecting workloads, we only consider workloads that can meet
their SLOs when run in isolation to avoid using a SLO that is too
tight for a workload. As a result, in experiments with higher SLOs,
we randomly select from a larger pool of workloads that includes
more bursty workloads.

Fig. 6 shows that WorkloadCompactor uses far fewer servers
than the state-of-the-art approaches. For the Same SLO experiments,
effective bandwidth works better than the other state-of-the-art ap-
proaches, but still uses 40% more servers than WorkloadCompactor.
For the Random SLO experiment, the knee method works better
than effective bandwidth since the effective bandwidth approach is

fundamentally unable to take advantage of prioritization benefits.
Nevertheless, the knee method still uses 50% more servers than
WorkloadCompactor. WorkloadCompactor is the only method that
works well in all cases.

5.2 Robustness

To demonstrate that WorkloadCompactor meets 99.9% tail latency
SLOs, we measure each workload’s 99.9% latency when running the
experiments in Sec. 5.1 on our local cluster. Our initial results (not
shown) reveal that WorkloadCompactor meets all workload SLOs
when workloads are represented by their r-b curves. To explore
the effect when workloads deviate from their expected behavior,
we run another set of experiments where we use the first half of
each workload’s trace to generate r-b curves and replay the second
half. We find that almost all workloads still meet their SLOs, but a
few miss their SLOs due to specifying r-b curves that are too small.
One way of addressing this issue is to add a “safety margin” by
increasing the r-b curves. Fig. 7 and Fig. 8 show our experimental
results with a 10% safety margin (i.e., scaling the r-b curves by 1.1);
all of the workload 99.9% latencies (vertical bars) are under the SLO
(horizontal line) in all experiments.

The selection of a “safety margin” is left to the customer, and
it depends on how likely the workload’s behavior is expected to
change over the long-term and the customer’s risk adversity. Our
work is motivated by the fact that production workloads are often
very bursty at short time scales (as seen in all of our production
workload traces), but are more stable over longer time periods. As
a motivating example of long-term stability, Fig. 9 shows a timeline
graph of Wikipedia english traffic in 2017 [1]. The graph shows
that each day’s maximum hourly request rate is stable over a span
of multiple months. The highest request rate is within 15% of the
median day’s maximum hourly request rate. Importantly, while
many workloads exhibit long-term stability, there is significant
short-term burstiness in the traces we’ve analyzed, which has a
large effect on tail latency and the ability to pack workloads while
satisfying tail latency SLOs.
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Figure 9: Each day’s maximum hourly request rate for
Wikipedia english pages, which is stable over months. The
highest request rate is within 15% of the median day’s max-
imum hourly request rate.

5.3 Scalability of workload packing density

Fig. 10 and Fig. 11 show the results from scaling the experiments
from our local cluster experiments in Sec. 5.1 to more workloads.
Our results show that WorkloadCompactor’s packing density is
not significantly affected by the size of the cluster, and we expect
WorkloadCompactor to perform well regardless of the cluster size.

5.4 Scalability of computation

Fig. 12 shows the scalability of WorkloadCompactor’s computation
as the cluster size grows. Our results show that WorkloadCom-
pactor’s fast first-fit (FFF) policy (Sec. 2.4) scales much better than
the typical naive first-fit policy since FFF skips servers that are
nearly full. Note that WorkloadCompactor’s computation is not
on the critical path for handling requests; it executes when new
workloads arrive to the system.

One may be concerned about the quality of FFF’s packing, since
it uses an approximation to check if servers are full. In our experi-
ments, however, we find that FFF produces good packings that only
use 3-4% more servers than naive first-fit while using significantly
less computation.

5.5 Effect of workload departures

So far, we've assumed workloads only arrive over time. In reality,
workloads will also depart from the system, leaving gaps in which
to place future workloads. To mimic this behavior, we run an ex-
periment where workloads randomly arrive and depart from the
system. Our results in Fig. 13 show that WorkloadCompactor is
better able to cope with workload departures than the state-of-the-
art approaches, which use over 50% more servers. By contrast, the
state-of-the-art approaches use over 40% more servers in the arrival-
only scenario in Fig. 11. This is because WorkloadCompactor can
dynamically reconfigure rate limits for previously placed workloads
to better pack in new workloads, whereas the other approaches
have less flexibility in squeezing in new workloads once a given
workload has departed.
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Figure 12: Comparing the computation time scalability of
first-fit and WorkloadCompactor’s fast first-fit (FFF) algo-
rithm. FFF is much faster since it skips checking servers that
are nearly full.

5.6 Multiple SSDs on a server shift storage
bottleneck to network bottleneck

While storage is often a bottleneck, the network can also become a
bottleneck depending on the number and bandwidth of SSDs vs. the
network bandwidth. Fig. 14 shows an experiment where we vary the
number of SSDs per server to demonstrate this effect. When storage
is a bottleneck, increasing the number of SSDs per server should
decrease the number of servers used. Eventually, adding more SSDs
per server does not help, since now the network has become the
bottleneck. For example, in our system, we see that storage is a
bottleneck with a single SSD per server, but the network becomes
a bottleneck with 2+ SSDs per server. With 2+ SSDs per server,
the number of servers used plateaus at around 115 servers, and
the number of SSDs used also plateaus since the extra SSDs aren’t
helpful. In systems with higher network bandwidth, we would
expect similar trends, except with the plateau occurring at a higher
number of SSDs per server. Importantly, WorkloadCompactor is
designed to account for both storage and network, and it will pack
workloads so as to not overload either storage or network.
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Figure 13: Same experiment as Fig. 11, except with workloads randomly arriving and departing over time. Results measure
the maximum number of servers used at any point in time, normalized to WorkloadCompactor. Comparing results to Fig. 11,
we see that WorkloadCompactor handles workload departures better than other approaches since WorkloadCompactor’s dy-
namic reconfiguration naturally adapts to departures.
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Figure 14: The effect of changing the number of SSDs per Figure 15: Comparing WorkloadCompactor to using multi-
server in an experiment with 1000 random workloads, each ple simultaneous rate limits.
with random SLOs. With 1 SSD per server, the storage is a
bottleneck. With 2+ SSDs per server, the network becomes
a bottleneck, causing the number of servers and number of equal priority workloads, which results in using more servers than
SSDs used to plateau. Since WorkloadCompactor accounts necessary. Consequently, WorkloadCompactor uses fewer servers
for both network and storage, it naturally detects that it than the multiple simultaneous rate limits approach, as seen in
doesn’t need to use the extra SSDs per server since the net- Fig. 15.
work is fully loaded.

6 RELATED WORK

WorkloadCompactor is related to three branches of work, and is

5.7 Multiple simultaneous rate limits the first system to address all three areas. WorkloadCompactor
In addition to the state-of-the-art approaches for selecting rate lim- solves the workload placement problem in the context of meeting
its, there is another approach proposed in PriorityMeister [26] to use tail latency SLOs by optimizing the selection of rate limit parameters.
multiple rate limiters simultaneously for each stage (e.g., storage, Tbl. 1 summarizes the differences between related works.
network) in a workload. Ideally, using multiple simultaneous rate Workload placement

limits will achieve a similar benefit to dynamically reconfiguring There are many works that consider how to place and migrate
rate limits, but there are multiple caveats. First, enforcing multiple workloads between servers [8, 10, 12, 16, 18]. Many of these works
simultaneous rate limits is uncommon in systems today, making it propose good ideas for how to improve latency and throughput
harder to deploy. Second, the complexity in analyzing tail latency with better load balancing [10, 12, 16, 18]. However, ensuring that
with multiple rate limits leads to 15X more computation time than tail latency SLOs are met is outside the scope of their work.
WorkloadCompactor with 1000 workloads. Third, the complexity Delphi/Pythia [8] looks at migrating workloads to meet tail la-

also leads to the analysis being overly conservative when handling tency SLOs. It reacts to SLO violations and learns the appropriate
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Workload placement | Tail latency SLOs | Rate limit configuration

Basil [10] v X X
Load balancing Pesto [12] ’ x X
and migration Romano [16] v X X
VectorDot [18] v X X
Delphi/Pythia [8] v v X
Silo [13] v v X
Guaranteeing tail | QJump [9] X v X
latency SLOs PriorityMeister [26] X v v
SNC-Meister [25] X v X
Rate limit Effective bandwidth [15] X 4 v
configuration WorkloadCompactor v v v

Table 1: Comparison of related work.

mitigation actions (e.g., which tenant to migrate). A major limita-
tion is that at the core of its design, it allows SLO violations to occur
and then reacts. By contrast, WorkloadCompactor is designed to
avoid SLO violations rather than fix bad placements.

Tail latency SLOs

There are four systems that provide tail latency SLO guarantees:
Silo [13], QJump [9], PriorityMeister [26], and SNC-Meister [25].
Like WorkloadCompactor, they all use mathematical analysis to
ensure SLOs can be met.

Of these works, Silo is the only system that addresses workload
placement. The authors find that a first-fit policy works well to
pack workloads onto servers. However, Silo does not address how
to set rate limits, and the key finding in our work is that the choice
of rate limits significantly impacts the ability to compact workloads
onto servers. In addition, Silo (as well as QJump and SNC-Meister)
only support networks, whereas WorkloadCompactor supports
both storage and networks. Furthermore, WorkloadCompactor also
introduces the fast first-fit feature that drastically improves the
computational scalability of workload placement (see Sec. 5.4).

Of these works, PriorityMeister is the only system that consid-
ers how to select rate limits. PriorityMeister introduces the idea
of simultaneously using multiple rate limiters to avoid picking a
specific (r, b) rate limit. Conceptually, the idea should work well,
but as described in Sec. 5.7, there are multiple caveats that make
WorkloadCompactor a superior solution. Additionally, workload
placement is outside the scope of the PriorityMeister work.
Selection of rate limit parameters

Little is known about selecting rate limit parameters since most
works using rate limits (e.g., [9, 11, 13, 24]) assume the user is
responsible for selecting them. Users end up relying upon ad hoc
heuristics such as scaling the average rate by a factor [13]. The state-
of-the-art from theory is an idea known as effective bandwidth [15],
described in Sec. 4.1. Though effective bandwidth is optimal when
workloads have the same SLO and only traverse a single stage (e.g.,
storage), our experiments show that WorkloadCompactor uses far
fewer servers than effective bandwidth when handling multiple
stages or workloads with different SLOs.

7 CONCLUSION

WorkloadCompactor is a new system for compacting workloads
onto servers while meeting tail latency SLOs. To guarantee tail
latency SLOs, WorkloadCompactor enforces rate limits and priori-
ties in storage and network and uses network calculus equations
to check if workloads can be placed together while meeting their
SLOs. Surprisingly, we find that the selection of workload rate limits
makes a big difference in the ability to pack workloads together. In
a sense, a workload’s rate limit defines the “size” of the workload
and affects how well it fits on a server. Rate limits have both a rate
(r) and burst (b) parameter, and there is flexibility in trading off r
and b. WorkloadCompactor takes advantage of this flexibility to
better pack workloads onto servers as workloads arrive and depart.
WorkloadCompactor’s new technique for optimizing the selection
of rate limits can compact more workloads onto a server while meet-
ing SLOs. Our compaction technique is used in conjunction with
our scalable placement algorithm, which places workloads onto
servers an order of magnitude faster than the traditional first-fit
policy. Experiments with assigning 1000 workloads to servers show
that WorkloadCompactor is superior to state-of-the-art approaches,
which use 40-150% more servers than WorkloadCompactor.
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