
Queueing Systems
https://doi.org/10.1007/s11134-022-09848-6

WCFS: a new framework for analyzing multiserver systems

Isaac Grosof1 ·Mor Harchol-Balter1 · Alan Scheller-Wolf2

Received: 1 March 2022 / Revised: 9 June 2022 / Accepted: 13 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Multiserver queueing systems are found at the core of a wide variety of practical
systems. Many important multiserver models have a previously-unexplained simi-
larity: identical mean response time behavior is empirically observed in the heavy
traffic limit. We explain this similarity for the first time. We do so by introducing the
work-conserving finite-skip (WCFS) framework, which encompasses a broad class of
importantmodels. This class includes the heterogeneousM/G/k, the Limited Processor
Sharing policy for the M/G/1, the Threshold Parallelism model and the Multiserver-
Job model under a novel scheduling algorithm. We prove that for all WCFS models,
scaled mean response time E[T](1−ρ) converges to the same value, E[S2]/(2E[S]),
in the heavy-traffic limit, which is also the heavy traffic limit for the M/G/1/FCFS.
Moreover, we prove additively tight bounds on mean response time for the WCFS
class, which hold for all load ρ. For each of the four models mentioned above, our
bounds are the first known bounds on mean response time.

Keywords Queueing · Response time · Bounds · Heavy traffic · Multiserver ·
M/G/k · Scheduling

Mathematics Subject Classification 68M20

B Isaac Grosof
igrosof@cs.cmu.edu

Mor Harchol-Balter
harchol@cs.cmu.edu

Alan Scheller-Wolf
awolf@andrew.cmu.edu

1 Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA

2 Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-022-09848-6&domain=pdf
http://orcid.org/0000-0001-6205-8652

Queueing Systems

Fig. 1 Scaled mean response time of our four motivating models, as well as the related M/G/k and M/G/1
models. Our four motivating models will be further defined in Sect. 3. In each case, the job size distribution

S is distributed as Hyperexp(μ1 = 2, μ2 = 2
3 , p1 = 1

2). The black line is E[T](1−ρ) = E[S2]
2E[S] , the heavy

traffic behavior ofM/G/1/FCFS and each of our models of interest. 109 arrivals simulated. ρ ∈ [0, 0.96] to
ensure accurate results

1 Introduction

Consider the following four queueing models, which are each important, practical
models, but which seem very different. We will refer to these models throughout the
paper as our four motivating models:

• Heterogeneous M/G/k: A k-server system where servers run at different speeds.
Jobs are held at a central queue and served in First-Come-First-Served (FCFS)
order when servers become available. If multiple servers are vacant, a server
assignment policy such as Fastest Server First is applied.

• Limited processor sharing: A single-server system where if at least k jobs are
present, the k earliest arrivals each receive an equal fraction of service. If fewer
than k jobs are present, the server is split equally among all jobs.

• Threshold parallelism: A multiserver system where jobs can run on any number
of servers up to some threshold, with perfect speedup. We consider FCFS service,
where each job is allocated a number of servers equal to its threshold, as long as
servers are available. The final job served may be allocated fewer servers than its
threshold.

• Multiserver-jobs under the ServerFilling policy: A multiserver system where the
jobs are called “multiserver jobs,” because each job requires a fixed number of
servers, which it holds concurrently throughout its service. We examine a service
policy called ServerFilling, which always fills all of the servers if enough jobs are
available.

We define these models in more detail in Sect. 3.
We will show that, while our four motivating models appear quite different, their

mean response times, E[T], are very similar, especially in the heavy-traffic limit.
Specifically, we will show that their behavior in the heavy traffic limit is identical to
that of the M/G/1/FCFS model, and in fact the mean response time of each of these

123

Queueing Systems

Fig. 2 Scaled mean response time of alternative models and policies. All of these models and policies will

be explained in Sect. 6. S ∼ Hyperexp(μ1 = 2, μ2 = 2
3 , p1 = 1

2). Black line is E[T](1 − ρ) = E[S2]
2E[S] .

109 arrivals simulated, ρ ∈ [0, 0.96] to ensure accurate results, except MaxWeight andM/G/4/SRPT: 1010

arrivals, ρ ∈ [0, 0.99]

disparate models only differs by an additive constant from that ofM/G/1/FCFS for all
loads, a much stronger result than convergence in heavy traffic.

The similarity of these models is illustrated by Fig. 1, which shows mean response
time, E[T], scaled by a factor of 1−ρ, to help illustrate the asymptotic behavior in the
ρ → 1 limit. Observe that in each of our models of interest, as well as in the M/G/1
and theM/G/4, E[T](1− ρ) converges to E[S2]/2E[S], the mean of the equilibrium
(excess) distribution, where S denotes the job size distribution and ρ = λE[S] < 1 is
the system load.

This similarity is striking—to see just how notable it is, consider a variety of alter-
native models and policies shown in Fig. 2. For these alternative models, scaled mean
response time either does not converge at all, or converges to a different limit entirely.

This contrast poses an intriguing question:

Why do our four motivating models converge to M/G/1/FCFS in heavy traffic?

To put it another way, we ask what crucial property our four motivating models share,
that is not shared by the alternative models in Fig. 2.

To answer this question, we define the “work-conserving finite-skip” framework
(WCFS), which applies to a broad class of models. The WCFS class contains our four
motivating queueing models, as well many others. We demonstrate that for any model
in the WCFS class (which we call a “WCFS model”), if the job size distribution S
has bounded expected remaining size, then its scaled mean response time converges
to the same heavy traffic limit as the M/G/1/FCFS. Specifically, we prove that

Theorem 1 For any model π ∈ WCFS with bounded expected remaining size1,

lim
ρ→1

E[T π](1 − ρ) = E[S2]
2E[S] .

1 This assumption is defined in Sect. 2.3.

123

Queueing Systems

Theorem 1 follows from an even stronger result: We prove that the difference in
mean response time between any WCFS model and M/G/1/FCFS is bounded by an
explicit additive constant, that may depend on the specific WCFS model.

Theorem 2 For any model π ∈ WCFS with bounded expected remaining size,

E[T π] ≤ ρ

1 − ρ

E[S2]
2E[S] + cπ

upper

E[T π] ≥ ρ

1 − ρ

E[S2]
2E[S] + cπ

lower

for explicit constants cπ
upper and cπ

lower not dependent on load ρ.

Theorem 2 not only implies Theorem 1, it also guarantees rapid convergence of
scaled mean response time to the heavy traffic limit specified in Theorem 1.

In summary, this paper makes the following contributions:

• Wedefine theWCFS framework andour bounded expected remaining size assump-
tion. (Sect. 2)

• We prove that each of the four motivating models is a WCFS model (Sect. 3).
• We discuss prior work on WCFS models (Sect. 4).
• We prove that all WCFS models with bounded expected remaining size have the
same scaled mean response time asM/G/1/FCFS, and mean response time within
an additive constant of M/G/1/FCFS (Sect. 5).

• We empirically validate our results, contrasting heavy traffic behavior of WCFS
models and non-WCFS models (Sect. 6).

2 TheWCFS framework andWCFSmodels

In Sects. 2.1 and 2.2, we define theWCFS framework and resulting class of models. In
Sect. 2.3, we define our “bounded expected remaining size” assumption. In Sect. 2.4,
we define a few more concepts that will be used in the paper.

Job sizes are sampled i .i .d. from a job size distribution. Once sampled, job sizes
are fixed: we assume preempt-resume service if a job is preempted while in service.
Intuitively, the size of a job represents the amount of work associated with the job.
Size will be defined in more detail in Sect. 2.1.2.

2.1 WCFS framework andWCFSmodels

The WCFS framework applies to the class of models with Poisson arrivals at rate λ,
which satisfy the following properties:

1. Finite skip (Sect. 2.1.1),
2. Work conserving (Sect. 2.1.2)
3. Non-idling (Sect. 2.1.3).

123

Queueing Systems

Fig. 3 Diagram of a finite-skip model

2.1.1 Finite skip

We first define the finite-skip property, which defines the class of finite-skip models.
Consider the jobs in the system in arrival order. Associatedwith each finite-skipmodel,
there is a finite parameter n. We partition the jobs in the system into two sets: the (up
to) n jobs which arrived longest ago, which we call the front, and all other jobs, which
we call the queue. The finite-skip property specifies that, among all of the jobs in the
system, the server(s) only serve jobs in the front. In particular, no jobs beyond the first
n jobs in arrival order receive any service. Figure 3 shows a generic finite-skip model.

Definition 1 We call the front full if at least n jobs are present in the system, and
therefore exactly n jobs are at the front.

The intuition behind the term “finite skip” comes from imagining moving through
the jobs in the system in arrival order, skipping over some jobs and serving others. In
a finite-skip model, only the first n jobs can be served, so only finitely many jobs can
be skipped.

2.1.2 Work conserving

Now,wewill specifywhatwemean by “work conserving,”which is a different concept
here than in previous work.

First, we normalize the total system capacity to 1, regardless of the number of
servers in the system. For instance, in a homogeneous k-server system, we think of
each server as serving jobs at rate 1/k.

Whenever a job is in service, it receives some fraction of the system’s total service
capacity, whichwe call the job’s service rate. Let B(t) ≤ 1 denote the total service rate
of all jobs in service at time t , and let B be the stationary total service rate, assuming
for now such a quantity exists.

We define a job’s age at time t to be the total amount of service the job has received
up to time t : a job’s age increases at a rate equal to the job’s service rate whenever the
job is in service. Each job has a property called its size. When the job’s age reaches
its size, the job completes.

123

Queueing Systems

In particular, we assume that every job j has a size s j and a class c j drawn i.i.d. from
some general joint distribution. Let (S,C) be the random variables denoting a job’s
size and class pair. A job’s class is static information known to the scheduler, while
a job’s size is unknown to the scheduler. For instance, in the Threshold Parallelism
model defined in Sect. 3.3, a job’s parallelism threshold is its class.

Definition 2 We call the system maximally busy if the entire capacity of the system is
in use, namely if the total service rate of jobs in service is 1.

We define a finite-skip model to be work conserving if whenever the front is full,
the system is also maximally busy.

In other words, a finite-skip model is work conserving if, whenever there are at
least n jobs in the system, the total service rate is 1.

Now that we have defined a job’s size, we can also define the load of the system:
ρ = λE[S]. Load ρ is the time-average service rate, or equivalently the time-average
fraction of capacity in use. Specifically, ρ = E[B]. We assume ρ < 1 to ensure
stability.

2.1.3 Non-idling

We also assume that the total service rate B(t) is bounded away from zero whenever
a job is present. Specifically, whenever a job is present, we assume that B(t) ≥ binf ,
for some constant binf > 0.

This assumption is key to bounding mean response time under low load. For an
example, see the batch-processing system in Sect. 2.2.

2.2 Examples and non-examples

To clarify which models fit within the WCFS framework, we give several examples,
both positive and negative.

• M/G/k/FCFS: This is a WCFS model with n = k.
• M/G/∞: This model is not finite skip. All jobs are in service, regardless of the
number of jobs in the system: there is no finite bound on the number of jobs in
service.

• M/G/k/SRPT : In this model, the k jobs with smallest remaining size are served at
rate 1/k. This model is not finite skip because the jobs with smallest remaining
size can be arbitrarily far back in the arrival ordering.

• Multiserver-job model: Consider a multiserver system with k = 2 servers, and
where each job requires either 1 or 2 servers. Let the front size n = 2.
If jobs are served in FCFS order, with head-of-the-line (HOLB) blocking, this
policy is finite skip, but not work conserving. If the front consists of a job requiring
1 server followed by a job requiring 2 servers, under HOLB the system will only
utilize one server. In this case, the front is full, because n = 2 jobs are present in
the system, but the system is not maximally busy.
In contrast, consider a service policy which serves a 2 server job if either of the
jobs in the front are 2 server jobs, or else serves each of the 1 server jobs at the

123

Queueing Systems

front. This policy is a special case of the ServerFilling policy, depicted in Fig. 1
and defined in general in Sect. 3.4.2. This policy is finite skip andwork conserving.

• Batch-processing M/G/k: If there are at least k jobs present, the oldest k jobs in
the system are each served at rate 1

k . Otherwise, no service occurs. This model is
finite skip and work conserving, but is not non-idling. To see why the non-idling
property is necessary for our main results, specifically Theorem 2, one can show
that in the λ → 0 limit, response times will grow arbitrarily large in the batch-
processing M/G/k. To rule out systems where E[T] diverges in the λ → 0 limit,
we assume the non-idling property.

• Red and blue M/G/k: Imagine an M/G/k with red and blue jobs. Only one color
of jobs is allowed to be in service at a time. To determine which jobs to serve, the
scheduler counts off jobs in arrival order until it finds k red jobs or k blue jobs and
serves all k of the appropriate color (if fewer than k jobs are found for both colors,
the system serves the more populous color). This scheduling policy is WCFS with
n = 2k − 1.

2.3 Bounded expected remaining size: finite remsup

At a given point in time, let the state of a job j consist of its class c j and its age a j .
Within our WCFS framework, we allow service to be based on the states of the jobs
in the front, but not on the number or states of jobs in the queue.

A key assumption wemake is that jobs have bounded expected remaining size from
an arbitrary state. Let Sc be the job size distribution for jobs of class c ∈ C . We define
remsup(S,C) to be the supremum over the expected remaining sizes of jobs, taken
over all states:

remsup(S,C) := sup
c∈C,a∈R+

E[Sc − a | Sc > a].

When size S is independent of class C , or when a model has no class information, we
simply write remsup(S).

In this paper, we focus on job size distributions for which remsup(S,C) is finite.
To better understand the finite remsup(S,C) assumption, let us walk through a couple
of examples. In all of these examples, let us suppose that the class information is
independent of the job size distribution S, so we can simply write remsup(S).

Consider a job size distribution S that is hyperexponential:

S =

⎧
⎪⎨

⎪⎩

Exp(μ1) w.p. p1
Exp(μ2) w.p. p2
Exp(μ3) w.p. p3

For all ages a, the expected remaining size is bounded:

E[S − a | S > a] ≤ 1

min(μ1, μ2, μ3)
= remsup(S).

123

Queueing Systems

More generally, an arbitrary phase type job size distribution S′ must have finite
remsup.

On the other hand, Pareto job size distributions do not have finite remsup. Let
S′′ ∼ Pareto(α = 3, xmin = 1), which has finite first and second moments.

E[S′′ − a | S′′ > a] = a

2
, ∀a ≥ 1

lim
a→∞ E[S′′ − a | S′′ > a] = ∞

remsup = sup
a

E[S′′ − a | S′′ > a] = ∞

In general, finite remsup roughly corresponds to service time having an exponential
or sub-exponential tail, though there are some subtleties. For instance, a Weibull dis-
tribution with P(S ≥ a) = a−k for some k < 1 has infinite remsup, while for k ≥ 1,
remsup is finite.

As a final example, suppose the WCFS scheduling policy is a known-size policy,
such as a policy which serves the job with least remaining size among the n jobs
in the front, at rate 1. Because we require that service is based only on the age and
class of a job, we model this situation by saying that a job’s class is its original size.
In this case, S = C , and the distribution Sx is simply the constant x . As a result,
remsup(S,C) = sup(S). Therefore, in a known-size setting, remsup is finite only if S
is bounded.

2.4 Work, number, response time

Let the work in the system be defined as the sum of the remaining sizes of all jobs in
the system. Let W (t) be the total work in the system at time t . Let WQ(t) and WF (t)
be the work in the queue and the work at the front, respectively, at time t . (We will
generally use the subscripts Q and F to denote the queue and the front.) Let W ,WQ,

and WF denote the corresponding time-stationary random variables.
Recall from Sect. 2.1.2 that B(t) is the total service rate at time t . Note that

d
dt W (t) = −B(t), except at arrival instants.

Let N (t) be the number of jobs in the system at time t . Note that NF (t) = n
whenever N (t) ≥ n, because the front is full, and NF (t) = N (t) otherwise.

Let T be a random variable denoting a job’s time-stationary response time: the time
from when a job arrives to when it completes.

3 Important WCFSmodels

Here,wedefine inmoredetail the fourmotivatingmodelsmentioned in the introduction
and depicted in Fig. 1.

123

Queueing Systems

3.1 HeterogeneousM/G/k

The heterogeneousM/G/k/FCFS models multiserver systems where servers have dif-
ferent speeds. This scenario commonly arises in datacenters,which are often composed
of servers with a wide variety of different types of hardware [1, 2]. In themobile device
setting, the big.LITTLE architecture employs heterogeneous processors to improve
battery life [3].

Let each server i have speed vi > 0, scaled so that
∑

i vi = 1. While a job is being
served by server i , the job’s age increases at a rate of vi .

If there are multiple servers idle when a job arrives, a server is chosen according
to an arbitrary server assignment policy. Jobs may also be migrated between servers
when a job completes. We only assume that jobs are served in FCFS order, and that
no job is left waiting while a server is idle. Under these assumptions, all assignment
policies fit within the WCFS framework.

As an example, in Fig. 1 we show the scaledmean response time of a heterogeneous
M/G/4 with server speeds 0.4, 0.3, 0.2, 0.1, and the Preemptive Fastest Server First
assignment policy.

3.2 Limited processor sharing

The Processor Sharing policy for the M/G/1 is of great theoretical interest, and has
been extensively studied [4]. However, in real systems, running too many jobs at once
causes a significant overhead. A natural remedy is to utilize a policy is known as
Limited Processor Sharing (LPS) [5–8].

The LPS policy is parameterized by some Multi-Programming Level k. If at most
k jobs are present in the system, then the policy is equivalent to Processor Sharing,
serving all jobs at an equal rate, with total service rate 1. When more than k jobs are
present, the k oldest jobs in FCFS order are each served at rate 1/k. LPS is a WCFS
model with n = k.

As an example, in Fig. 1 we show the scaled mean response time of a LPS system
with MPL 4.

3.3 Threshold parallelism

In modern datacenters, it is increasingly common for jobs to be parallelizable across
a variety of different numbers of servers, where the level of parallelism is chosen by
the scheduler [9, 10]. Under Threshold Parallelism, a job j has two characteristics:
its size s j and its parallelism threshold � j , where � j is some number of servers. Job j
may be parallelized across up to � j servers, with linear speedup. The pair (s j , � j) is
sampled i.i.d. from some joint distribution (S, L). Note that � j is the class of the job
j .
Let k be the total number of servers. Note that � j ∈ [1, k]. If a job j is served

on q ≤ � j servers, then it receives service rate q
k and will complete after

ks j
q time in

service. The number of servers a job is allocated can change over time, correspondingly
changing its service rate.

123

Queueing Systems

Fig. 4 The distribution of number of CPUs requested in Google’s recently published Borg trace [15].
Number of CPUs is normalized to the size of the smallest request observed, not an absolute value

We focus on the FCFS service policy. Under this policy, jobs are placed into service
in arrival order until their total parallelism thresholds sum to at least k, or all jobs are
in service. Each job j other than the final job in service is served by � j servers. The
final job in service is served by the remaining servers. Under FCFS service, Threshold
Parallelism fits the WCFS framework with n = k.

As an example, in Fig. 1 we show the scaled mean response time of a Threshold
Parallelism model where the joint distribution (S, L) is (Exp(2), 1) with probability
1
2 , and (Exp(23), 4) with probability

1
2 , and with FCFS service.

As a comparison, in Fig. 2, we show Threshold Parallelism models with the same
joint distribution (S, L), but with different service policies: “Elastic First,” prioritizing
jobs with L = 1, and “Inelastic First,” prioritizing jobs with L = 4. These policies do
not fit within the WCFS framework, because a job may skip over an arbitrary number
of jobs.

3.4 Multiserver-jobs under the ServerFilling policy

First, we will describe the Multiserver-Job setting. Then, we will specify the Server-
Filling policy.

3.4.1 Multiserver-job setting

Whenwe look at jobs in cloud computing systems [11] and in supercomputing systems
[12–14], jobs commonly require an exact number of servers for the entire time the job
is in service. To illustrate, in Fig. 4 we show the distribution of the number of CPUs
requested by the jobs in Google’s recently published trace of its “Borg” computation
cluster [15, 16]. The distribution is highly variable, with jobs requesting anywhere
from 1 to 100,000 normalized CPUs 2.

The Multiserver-Job (MSJ) model is a natural model for these computing systems.
In anMSJ model, a job j has two requirements: a number of servers v j and an amount
of time x j , which are sampled i.i.d. from some joint distribution (V , X). If job j

2 The data was published in a scaled form [15]. We rescale the data so the smallest job in the trace uses
one normalized CPU.

123

Queueing Systems

requires v j servers, then it can only be served when exactly v j servers are allocated
to it. The job will complete after x j time in service.

Let a job j’s size be defined as

s j = v j x j
k

S = V X

k
.

There are a wide variety of possible service policies for placing jobs at open servers,
including FCFS,MaxWeight,Most Servers First andmany others. (We formally define
these policies in Sect. 6.) As examples, in Fig. 2, we show the scaled mean response
time ofMultiserver-Job models under a variety of service policies, where the joint dis-
tribution (V , X) is (1, Exp(12)) with probability

1
2 , and (4, Exp(23)) with probability

1
2 .

Unfortunately, no existing policies fit within the WCFS framework—all existing
policies, including those shown in Fig. 2, are either non-finite-skip, such as Most
Servers First, or non-work-conserving, such as FCFS. Correspondingly, in Fig. 2, we
see that no existing policy has its scaled mean response time converge to the same
limit as M/G/1/FCFS.

We therefore define a novel service policy calledServerFillingwhich yields aWCFS
model. The scaled mean response time of this service policy is depicted in Fig. 1, with
the same joint distribution (V , X) as the policies shown in Fig. 2.

3.4.2 ServerFilling

For simplicity, we initially define the Server Filling policy for the common situation in
computer systems where all jobs require a number of servers which is a power of 2 (V
is always a power of 2), and where k is also a power of 2. We discuss generalizations
in Sect. 3.4.3.

First, ServerFilling designates a candidate set M , consisting of the minimal prefix
(i.e., initial subset) of the jobs in the system in arrival order which collectively require
at least k servers. If all jobs in the system collectively require fewer than k servers,
then all are served. Note that |M | ≤ k because all jobs require at least 1 server.

For instance, if k = 8 and the jobs in the system require [1, 2, 1, 1, 4, 2, 2, 1]
servers, in arrival order (reading from left to right), then M would consist of the first
5 jobs: [1, 2, 1, 1, 4], which collectively require 9 servers.

Next, the jobs in M are ordered by their server requirements v j , from largest to
smallest, tiebroken by arrival order. Jobs are placed into service in that order until
no more servers are available. In our example, jobs requiring 4, 2, 1, and 1 server(s)
would be placed into service.

To show that ServerFilling fits within WCFS with n = k, we must show that
ServerFilling always utilizes all k servers if at least k jobs are in the system.

Lemma 1 Let M be a set of jobs such that
∑

j∈M v j ≥ k, where each v j = 2i for

some i and k = 2i
′
for some i ′. Label the jobs m1,m2, . . . in decreasing order of

server requirement: vm1 ≥ vm2 ≥ Then, there exists some index � ≤ |M | such

123

Queueing Systems

that

�∑

j=1

vm j = k.

Proof Let req(z) count the number of servers required by the first z jobs in this
ordering:

req(z) =
z∑

j=1

vm j .

We want to show that req(�) = k for some �. To do so, it suffices to prove that:

There exists no index �′ such that both req(�′) < k and req(�′ + 1) > k. (1)

Equation (1) states that req(z) cannot cross from below k to above k without exactly
equaling k. Because req(0) = 0 and req(|M |) ≥ k, req(�) must exactly equal k for
some �.

To prove (1), let us examine the quantity k − req(z), the number of remaining
servers after z jobs have been placed in service. Because all v j s are powers of 2,
k − req(z) carries an important property:

k − req(z) is divisible by vmz+1 for all z. (2)

We write a|b to indicate that a divides b.
We will prove (2) inductively. For z = 0, k − req(0) = k. Because k is a power

of 2, and vm1 is a power of 2 no greater than k, the base case holds. Next, assume that
(2) holds for some index z, meaning that vmz+1 |(k − req(z)). Note that req(z + 1) =
req(z) + vmz+1 . As a result, vmz+1 |(k − req(z + 1)). Now, note that vmz+2 |vmz+1 ,
because both are powers of 2, and vmz+2 ≤ vmz+1 . As a result, vmz+2 |(k−req(z+1)),
completing the proof of (2).

Now, we are ready to prove (1). Assume for contradiction that there does exist such
an �′. Then k − req(�′) > 0, and k − req(�′ + 1) < 0. Because req(�′ + 1) =
req(�′) + vm�′+1

, we therefore know that vm�′+1
> k − req(�′). But from (2), we

know that vm�′+1
divides k − req(�′), which is a contradiction.
�

As a result, the MSJ model under ServerFilling fits within the WCFS framework
with n = k.

3.4.3 Generalizations of ServerFilling

The ServerFilling policy can be generalized, as long as all server requirements divide
k. We describe the corresponding scheduling policy, which we call DivisorFilling, in
the full version of this paper: [17, Appendix A].

123

Queueing Systems

DivisorFilling is themost general possibleWCFSpolicy for theMSJ setting. If some
server requirement does not divide k, then no policy fits within the WCFS framework,
because the system is not work conserving if all jobs present require that non-divisible
number of servers and more than n jobs are present.

4 Prior work

4.1 M/G/k

4.1.1 Fixed k

In this regime, the best-known bounds on response time either require much stronger
assumptions on the job size distribution S than we assume [18], or prove much weaker
bounds on mean response time [19, 20].

A paper by [18] bounds mean work in system in the M/G/k to within an additive
gap, under the strong assumption that the job size distribution S is bounded. While
the paper mostly focuses on the overload regime (ρ > 1), their equations (9) and
(10) apply in our setting (ρ < 1) as well. They couple the multiserver system with a
single-server system on the same arrival sequence. They show that

0 ≤ WM/G/k(t) − WM/G/1(t) ≤ k max
1≤i≤A(t)

Si ,

where A(t) is the number of jobs that have arrived by time t . In the case of a bounded
job size distribution S, one can therefore show that

0 ≤ WM/G/k(t) − WM/G/1(t) ≤ k sup(S). (3)

One could then use this workload bound to prove a bound on mean response time in
theM/G/k.

These bounds are comparable to those in our Lemma 3 when S is bounded, but our
bounds require a much weaker assumption on the job size distribution S.

Köllerström [19] proves convergence of queueing time to an exponential distribu-
tion in the GI/GI/k. Specialized to theM/G/k, the result states that in the ρ → 1 limit,
T M/G/k
Q converges to an exponential distribution with mean

ρ

1 − ρ

E[S2]
2E[S] − 1

λ
= E[T M/G/1

Q] − 1

λ
.

Köllerström [20] improves upon [19] by characterizing the rate of convergence and
thereby derives explicit moment bounds. However, unlike prior single-server results
[21], these bounds are quite weak. Specialized to the M/G/k, [20]’s bounds state that

E[T M/G/k
Q] − E[T M/G/1

Q] ≥ clower
(1 − ρ)1/2

(4)

123

Queueing Systems

E[T M/G/k
Q] − E[T M/G/1

Q] ≤ chigher
1 − ρ

(5)

for constants clower, chigher not dependent on ρ.
The �(1

1−ρ
) scaling in (5) is especially poor: this bound is too weak to give any

explicit bound on the convergence rate of E[T M/G/k
Q](1− ρ) to the previously estab-

lished limit of E[S2]
2E[S] .

Our bounds are tighter in that they are constants not depending on ρ, but we assume
S has finite remsup, while [20] merely assumes that S has finite second moment.

4.1.2 Scaling k

Recent work has focused on regimes where both ρ and k scale asymptotically, such
as the Halfin–Whitt regime. These results are not directly comparable to ours; they
indicate that the limiting behavior in the Halfin–Whitt regime depends in a complex
way on the job size distribution S [22–24].

Turning to the more general case of scaling k, in work currently under submission,
[25] prove the first bounds on E[TQ] that scale as c

1−ρ
for an explicit constant c and

arbitrary joint scaling of k and ρ. Unfortunately, the constant c is enormous, scaling
as 10450E[S3]. In contrast, we focus on the regime of fixed k, and prove tight and
explicit bounds on mean response time. [25] also provide a highly detailed literature
review on bounds on E[TQ] and related measures in theM/G/k and related models.

4.2 HeterogeneousM/G/k

4.2.1 HeterogeneousM/M/k

Much of the previous work on multiserver models with heterogeneous service rates
has focused on the much simplerM/M/k setting, where jobs are memoryless [26–29].
In this model, one can analyze the preemptive Fastest-Server-First policy to derive a
natural lower bound on the mean response time of any server assignment policy. One
can similarly analyze the preemptive Slowest-Server-First policy to derive an upper
bound. These two policies each lead to a single-dimensional birth-deathMarkov chain,
allowing for straightforward analysis [27]. One can think of our bounds as essentially
extending these bounds for theM/M/k to themuchmore complex setting of theM/G/k.

4.2.2 Heterogeneous M/Hm/k

Van Harten and Sleptchenko [30] primarily study a homogeneous multiserver setting
with hyperexponential job sizes. However, in their conclusion, they mention that their
methods could be extended to a setting with heterogeneous servers, but at the cost
of making their Markov chain grow exponentially. This exponential blowup seems
inevitable when applying exact Markovian methods to a heterogeneous setting with
differentiated jobs.

123

Queueing Systems

4.2.3 M/(M+G)/2 model

Another intermediate model is theM/(M+G)/2 model of [31]. In this model, jobs are
not differentiated. Instead, the service time distribution is entirely dependent on the
server. Server 1, the first server to be used, has an exponential service time distribution,
while server 2 has a general service time distribution. [31] derive an implicit expression
for the Laplace–Stieltjes transform of response time in this setting, which they are only
able to make explicit when the general service time distribution has rational transform.
Subsequent work has fully solved the M/(M+G)/2 model, under both FCFS service
and related service disciplines [32–34].

Our results are not directly applicable to theM/(M+G)/2 setting, because the servers
have different distributions of service time, not just different speeds. However, the slow
progress on this two-server model illustrates the immense difficulty in solving even
the simplest heterogeneous multiserver models. In contrast, our WCFS framework
handles both differentiated jobs and an arbitrary number of servers with no additional
effort.

4.3 Limited processor sharing

The Limited Processor Sharing policy has been studied by a wide variety of authors
[5–8, 35–37], but none bound mean response time for all loads ρ.

4.3.1 Asymptotic regimes

A series of papers by Zhang et al. [7, 35, 36] derive the strongest known results on
Limited Processor Sharing in a variety of asymptotic regimes. These authors derive
the measure-valued fluid limit [35], the diffusion limit [36] and a steady-state approx-
imation [7]. The most comparable of their results to our work is their steady-state
approximation. When specialized to mean response time in the M/G/1/LPS, their
approximation states that

E[T] ≈ E[S]
1 − ρ

(1 − ρk) + E[S2]
2E[S]

ρk

1 − ρ

They prove that this approximation is accurate in the heavy-traffic limit; they do not
provide specific error bounds, but empirically show the approximation performs well
at all loads ρ [7]. Our results therefore complement their results by proving concrete
error bounds.

4.3.2 State-dependent server speed

To model the behavior of databases, [8] introduce a variant of the Limited Processor
Sharing model, where the total server speed is a function of the number of jobs in
service. In their setting, server speed increases to a peak, and then slowly declines as
more jobs enter service. They derive a two-moment approximation for mean response

123

Queueing Systems

time, and use it to derive a heuristic policy for choosing the Multi-Programming Level
(MPL). While this two-moment approximation is not known to be tight, it indicates
that the optimal MPL for minimizing mean response time may be significantly larger
than the service-rate-maximizing MPL, if job size variability is large and load is not
too high.

Using our WCFS framework, it is possible to derive bounds on mean response
time for the state-dependent server speeds setting. For MPL parameters less than or
equal to the service-rate-maximizing MPL, both our upper and lower bounds apply,
while if the MPL parameter is greater than the service-rate-maximizing MPL, only
our upper bounds apply, because the system only partially fulfills our definition of
work conservation.

Subsequently, [6] derive theLaplace–Stieltjes transformof response time in theLPS
model with state-dependent server speed, under phase-type job sizes. Unfortunately,
the transform takes the form of a complicated matrix equation, making it difficult
to derive general insights across general job size distributions. Instead, the authors
numerically invert the Laplace transform for a handful of specific distributions to
derive empirical insights.

4.4 Threshold parallelism

Jobs with “speedup functions” are common in Machine Learning and other highly
parallel computing settings. A job’s speedup function specifies the degree to which it
can be parallelized. In [38–40], the authors study optimal allocation policies of servers
to jobs when the arriving jobs have different speedup function. In many cases, a job’s
speedup function takes the form of a “threshold” function: here the job receives perfect
(linear) speedup up to some threshold number of servers and receives no additional
speedup beyond that number of servers. We refer to this as the Threshold Parallelism
model.

While understanding the response time in systems where jobs have speedup func-
tions is generally intractable, [40] were able to approximately analyze response time in
the case where every job is either “inelastic,” with parallelism threshold 1, or “elastic,”
with parallelism threshold k. They also assume that inelastic jobs have size distributed
as Exp(μI), and elastic jobs have size distributed as Exp(μE), with sizes unknown to
the scheduler. They focus on two preemptive-priority service policies for this setting:
Inelastic First (IF) and Elastic First (EF). In this setting, they approximate the mean
response time of EF and IF within 1% error by using a combination of the Busy-Period
Transitions technique andMatrix-Analyticmethods to evaluate theirmultidimensional
Markov chain.

The Threshold Parallelism model in our paper is far broader than that in the prior
literature, and our bounds are tighter in the heavy-traffic limit.

4.5 Multiserver jobs

The Multiserver-Job model has been extensively studied, in both practical [12–14]
and theoretical settings [11, 41–47]. It captures the common scenario in datacenters

123

Queueing Systems

and supercomputing where each job requires a fixed number of servers in order to run.
Characterizing the stability region of policies in this model is already a challenging
problem, and there were no bounds on mean response time for any scheduling policy,
prior to our bound on ServerFilling.

4.5.1 FCFS scheduling

The most natural policy is FCFS, where the oldest jobs are placed into service until a
job requires more servers than remain, at which point the queue is blocked. Therefore,
the FCFS policy can leave a large number of servers idle even when many jobs are
present. As a result, FCFS does not in general achieve an optimal stability region.
Even worse, deriving the stability region of FCFS is an open problem, and has only
been solved in a few special cases [41, 42].

One technique that may be useful for characterizing this stability region is the sat-
urated system approach [48, 49]. The saturated system is a system in which additional
jobs are always available, so the front is always full, only the composition of jobs in
the front varies. The completion rate of the saturated system exactly matches the sta-
bility region of the equivalent open system, under a wide variety of arrival processes.
Unfortunately, analyzing the general Multiserver-Job FCFS saturated system seems
intractable.

Given the difficulty of proving results under FCFS scheduling, finding policies with
better theoretical guarantees, such as ServerFilling, is desirable.

4.5.2 MaxWeight scheduling

One natural throughput-optimal policy is the MaxWeight policy [11]. Here, jobs are
divided into classes based on their server requirements,with Ni (t)denoting the number
of jobs requiring i servers in the system at time t . Let the set Z(t) denote all possible
packings of jobs at time t onto servers. Let z ∈ Z(t) be a particular packing, where zi
denotes the number of jobs requiring i servers that are served by packing z.

The MaxWeight service policy picks the packing z which maximizes

max
z

∑

i

Ni (t)zi .

For example, if there are many jobs requiring 3 servers, we want to pick a packing
that serves many 3-server jobs. While MaxWeight is throughput optimal, it is very
computationally intensive to implement, requiring the scheduler to solve an NP-hard
optimization problemwhenever a job arrives or departs. For comparison, ServerFilling
is also throughput-optimal given our assumptions on the server requirements V , but it
is far computationally simpler, requiring approximately linear time as a function of k.
Moreover, no bounds on mean response time are known for MaxWeight, due in part
to its high complexity.

123

Queueing Systems

4.5.3 Nonpreemptive scheduling

In certain practical settings such as supercomputing, a nonpreemptive service policy is
preferred. In such settings, a backfilling policy such as EASY backfilling or conserva-
tive backfilling is often used [12–14]. These start by serving jobs in FCFS order, until
a job is reached that requires more servers than remain. At this point, jobs further back
in the queue that require fewer servers are scheduled, but only if they will not delay
older jobs, based on user-provided service time upper bounds.While these policies are
popular in practice little is known about them theoretically, including their response
time characteristics.

Finding any nonpreemptive throughput-optimal policy is a challenging problem.
Several such policies have been designed [44, 45, 47], typically by slowly shifting
between different server configurations to alleviate overhead. Because such policies
can have very large renewal times, many jobs can back up while the system is in a
low-efficiency configuration, which can empirically lead to very high mean response
times. However, no theoretical mean response time analysis exists for any policy in the
Multiserver-Job setting. As a result, there is no good baseline policy to compare against
novel policies. Our bounds on the mean response time of ServerFilling can serve as
such a baseline, albeit in the more permissive setting of preemptive scheduling.

5 Theorems and proofs

We perform a heavy traffic analysis within our WCFS framework, assuming finite
remsup(S,C). Specifically, we prove that the scaled mean response time of anyWCFS
model converges to the same constant as an M/G/1/FCFS:

Theorem 1 (Heavy Traffic response time) For any model π ∈ WCFS, if remsup(S,C)

is finite,

lim
ρ→1

E[T π](1 − ρ) = E[S2]
2E[S] .

To prove Theorem 1, we prove a stronger theorem, tightly and explicitly bounding
E[T π] up to an additive constant, for any π ∈ WCFS.

Theorem 2 (Explicit response timebounds)For anymodelπ ∈WCFS, if remsup(S,C)

is finite,

E[T π] ≤ ρ

1 − ρ

E[S2]
2E[S] + cπ

upper

E[T π] ≥ ρ

1 − ρ

E[S2]
2E[S] + cπ

lower

for explicit constants cπ
upper and cπ

lower not dependent on load ρ.

123

Queueing Systems

Proof deferred to Sect. 5.1 FromTheorem2, Theorem1 follows via a simple rearrange-
ment:

ρ

1 − ρ

E[S2]
2E[S] =

E[S2]
2E[S]
1 − ρ

− E[S2]
2E[S] .

�
Theorem 2 also implies rapid convergence of scaled mean response time to its

limiting constant for any WCFS policy:

Corollary 1 For any model π ∈ WCFS, if remsup(S,C) is finite,

E[T π](1 − ρ) = E[S2]
2E[S] + O(1 − ρ).

5.1 Outline of Proof of Theorem 2

We will prove Theorem 2 where

cπ
upper = (n − 1)remsup(S,C) + nE[S]

binf
,

cπ
lower = −(n − 1)remsup(S,C) + E[S],

where n denotes the size of the front, and where binf is defined in Sect. 2.1.3.
Our goal is simply to prove the bounds inTheorem2 for some constants cπ

upper, c
π
lower

independent of ρ; we have made no effort to optimize these constants, leaving that
to future work. Specifically, for three of our four motivating models, the n

binf
term

scales as O(n2). For these models, this term is unnecessarily loose, and could easily
be lowered to an O(n) bound by using a more detailed view.

Our approach is to split response time T into two pieces, queueing time TQ and
front time TF , and bound the expectation of each separately. We first bound E[TQ],
which forms the bulk of our proof. The two key ideas come from the intuition that
a WCFS model behaves like a FCFS M/G/1 system. In Theorem 2, we prove that
E[TQ] = E[W] + c, for some constant c; in a WCFS model, jobs progress through
the system in essentially FCFS order, and as ρ → 1 work is completed essentially at
rate 1.

In Lemma 3, we prove that E[W] = E[WM/G/1] + c, for some constant c. The
key idea here is that in a WCFS model, if W is large, work arrives and completes in
exactly the same way as in anM/G/1. Likewise, if the front is not full, then W cannot
be large.

In Lemma 4, we combine Lemmas 2 and 3 to prove that E[TQ] = E[T M/G/1] + c
for some constant c.

In Lemma 5, we prove that work W is indeed stationary with finite mean. This is a
technical lemma that rules out pathological scenarios, which is necessary because our
WCFS class of models is very general. Lemma 5 is used by both Lemmas 2 and 3.

123

Queueing Systems

Finally, in Lemma 6, we bound E[TF], utilizing Little’s law.
Combining Lemmas 4 and 6 proves Theorem 2.

5.2 Two views

At several steps in our proof of Theorem 2, we will make use of two different views
of the queueing system, corresponding to two different state descriptors:

Omniscient view In the omniscient view the state descriptor consists of the remain-
ing size and class of all jobs in the system; we sample jobs’ sizes and classes when
the jobs enter the system. For a given system state, work is a deterministic quantity.
Limited view In the limited view, the state descriptor consists of the age and class
of the jobs in the front, and the number of jobs in the queue. We sample jobs’
classes when they enter the front, and determine whether jobs complete according
to the hazard rate of the job size distribution, as the job ages. For a given system
state, work is a random variable.

Wewillmake it clearwhich viewof the systemwe are using in each step of the proof.
Generally, the omniscient view is useful when analyzing total work in the system, and
the limited view is useful when analyzing work at the front.

5.3 Lemma 2: E[TQ] and E[W]

First, we prove that mean queueing time and mean work are similar:

Lemma 2 (Queueing time and work) For any model π ∈ WCFS, if remsup(S,C) is
finite,

E[W] − (n − 1)remsup(S,C) ≤ E[TQ] ≤ E[W].

Proof Start by writing time in queue TQ in terms of work in system. Let us consider
the omniscient view of the system, so work W is a deterministic quantity given the
system state. Consider an arbitrary tagged job j . When j arrives, let W A(j) be the
amount of work j sees in the system. Let WF

F (j) be the amount of work j sees in
the front other than j itself, when j leaves the queue and enters the front. In WF

F , the
subscript F indicates that we are looking at the amount of work at the front, and the
superscript F indicates that we are looking at the moment when j enters the front.

Because the model is finite skip, jobs move from the queue to the front in arrival
order, so all of the W A(j) work that was in the system when j arrived is either
complete or in the front when j enters the front. As a result, the amount of work which
is completed while j is in the queue is exactly W A(j) − WF

F (j). Note that if j enters
the front upon arrival to the system, W A(j) = WF

F (j), and no work is completed
while j is in the queue.

While j is in the queue, the front must be full; the system must be maximally busy
during this time, completing work at rate 1. Job j is in the queue for TQ(j) time, so
the system must complete TQ(j) work during that time. We can therefore conclude

123

Queueing Systems

that

W A(j) − WF
F (j) = TQ(j).

Because j is an arbitrary job, we can write WF
F (j) as WF

F , a random variable over
all jobs that pass through the system. Likewise, TQ(j) is simply TQ . Because Poisson
arrivals see time averages, W A(j) ∼ W , the time-stationary amount of work in the
system. Combining these equivalencies, we find that

W − WF
F = TQ . (6)

Note that W is time-stationary, while WF
F and TQ are event-stationary.

To rigorously demonstrate (6), we need to prove that the system converges to a
stationary distribution, which we prove in Lemma 5.

To give bounds on WF
F , we switch to the limited view of the system, where the

state of the front consists of the classes and ages of the jobs at the front. We have two
simple bounds on WF

F : First, W
F
F ≥ 0. Next, because WF

F (j) is the work of at most
n − 1 jobs, the jobs at the front when a given job enters the front, we know that

E[WF
F] ≤ (n − 1)remsup(S,C).

Combining these bounds with (6), we can bound E[TQ] in terms of E[W]:

E[W] − (n − 1)remsup(S,C) ≤ E[TQ] ≤ E[W].

�

5.4 Lemma 3: bounding E[W]

Lemma 3 (Work bounds) For any model π ∈ WCFS, if remsup(S,C) is finite,

ρ

1 − ρ

E[S2]
2E[S] ≤ E[W] ≤ ρ

1 − ρ

E[S2]
2E[S] + (n − 1)remsup(S,C).

Proof Consider the stationary random variable W 2 in the omniscient view, so work
is a deterministic quantity at a given time on a given sample path. W 2 evolves in two
ways: continuous decrease as work is completed, and stochastic jumps as jobs arrive.
BecauseW 2 is a stationary random variable, the expected rate of decrease and increase
must be equal, due to the rate conservation law [50] with respect to W 2.

To calculate the expected rate of decrease, note that, ignoring moments where
jobs arrive, d

dt W (t) = −B(t), by definition, where B(t) is the total service rate of
the system at time t . As a result, d

dt W (t)2 = −2W (t)B(t), ignoring arrival epochs.
This expected rate of decrease is a well-defined random variable, because the system
converges to stationarity. Thus, the expected rate of decrease of W 2 is 2E[WB].

123

Queueing Systems

To calculate the expected rate of increase, let t− be the time just before a job arrives
to the system. When the job arrives, W 2 increases from W (t−)2 to (W (t−) + S)2, a
change of 2W (t−)S + S2. Note that W (t−) is distributed as W , by PASTA. Note also
that W and S are independent, because S is sampled i.i.d.. As a result, the expected
increase per arrival is 2E[W]E[S] + E[S2]. Arrivals occur at rate λ. As a result, the
expected rate of increase is 2λE[W]E[S] + λE[S2].

To show that these rates are equal, we must show that the rates are finite. This
follows from the fact that E[W] is finite, which we prove in Lemma 5.

As a result, the rates of increase and decrease of W 2 are equal:

2E[WB] = 2λE[W]E[S] + λE[S2]
E[WB] = λE[W]E[S] + λ

2
E[S2]

E[WB] = ρE[W] + λ

2
E[S2]

E[W] − E[W (1 − B)] = ρE[W] + λ

2
E[S2]

E[W](1 − ρ) = E[W (1 − B)] + λ

2
E[S2]

E[W] = E[W (1 − B)]
1 − ρ

+ λE[S2]
2(1 − ρ)

(7)

Now, we merely need to bound E[W (1− B)]. We do so by switching to the limited
view. Note that

E[W (1 − B)] = E[W (1 − B)1{B = 1}] + E[W (1 − B)1{B < 1}]
= E[W (1 − B)1{B < 1}]

Because the model is work conserving, if B < 1, the front is not full, and there are
at most n − 1 jobs in the system. Taking expectations over the future randomness of
these jobs, at any time t for which B(t) < 1,

E[W (t)] ≤ (n − 1)remsup(S,C)

Therefore,

E[W (1 − B)1{B < 1}] ≤ (n − 1)remsup(S,C)E[(1 − B)1{B < 1}]
= (n − 1)remsup(S,C)E[1 − B]
= (n − 1)remsup(S,C)(1 − ρ)

E[W (1 − B)] ≤ (n − 1)remsup(S,C)(1 − ρ).

Substituting this into (7), our equation for E[W], we find that

E[W] ≤ λE[S2]
2(1 − ρ)

+ (n − 1)remsup(S,C).

123

Queueing Systems

Dropping the first term of (7), we also get a lower bound:

E[W] ≥ λE[S2]
2(1 − ρ)

.

�
Onemight alternatively try to prove Lemma 3 via a coupling argument, by coupling

theWCFS system to anM/G/1 with the same arrival process. Unfortunately, this proof
strategy does not succeed, for a subtle reason.

One can show that the difference inwork between the two systems during an interval
when theWCFS system has a full front is bounded by the amount of work in theWCFS
system at the beginning of the interval. This is analogous to the many-jobs interval
argument used by Grosof et al. [51] to analyze relevant work in the M/G/k/SRPT.
The key difference is that in the WCFS setting, we consider total work, not relevant
work, meaning that job sizes are not bounded. As a result, while the expected work at
the beginning of a full-front interval is bounded, the realization of that work may be
arbitrarily large.

A coupling argument would therefore need to bound the relative length of full-front
intervals started by different amounts of work, to prove a time-average bound on the
gap between E[W] and E[WM/G/1]. This seems intractable, given the generality of
WCFS policies.

Instead, by using a rate-conservation approach, formalized by Palm Calculus, we
directly connect the small expected amount of work in a WCFS system with non-full
front to a small expected difference in work between the two systems. We therefore
prove Lemma 3, while avoiding all of the complications of a coupling-based argument.

5.5 Lemma 4: bounding E[TQ]

Now, we can bound E[TQ] by combining Lemmas 2 and 3:

Lemma 4 (Queueing time bounds)For any model π ∈WCFS, if remsup(S,C) is finite,

E[T π
Q] ≤ ρ

1 − ρ

E[S2]
2E[S] + (n − 1)remsup(S,C)

E[T π
Q] ≥ ρ

1 − ρ

E[S2]
2E[S] − (n − 1)remsup(S,C)

5.6 Lemma 5: finite E[W]

Lemma 5 (Finite mean work) For any model π ∈ WCFS, if remsup(S,C) is finite, for
any load ρ < 1, W is a well-defined stationary random variable and E[W] is finite.
Proof Recall that W = WF + WQ ; we first focus on WF . There are at most n jobs
in the front at any time. In the limited view, each job has expected remaining size at
most remsup(S,C), so E[WF] ≤ nremsup(S,C).

123

Queueing Systems

As for the stationarity of the state of the front, this follows from two assumptions
we made in Sect. 2.3. First, we assumed that the service policy is dependent only on
the state of the front. Second, the front must empty and thereby undergo renewals,
because the service rate B(t) is at least binf whenever the system is nonempty. As a
result, WF is stationary.

We now turn to WQ . To prove that WQ is stationary and well-defined with finite
mean, we will apply the “inventory process” results of [52, 53]’s refinement of those
results.

We upper bound WQ by W , which we will write as an inventory process.

W := W1{WQ > 0}.

Here, we will use the omniscient view, so W(t) is a specific value. By proving W is
stationary and well-defined with finite mean, we also show the same is true of WQ .
Because WQ = (W − WF)+, the stationarity of W also implies the stationarity of
WQ , given the stationarity of WF .

To writeW as an inventory process as in [52], we must define a process X(t) with
stationary and ergodic increments, such that

W(t) = X(t) + L(t),

where

L(t) := sup
0≤s≤t

(−min{0, X(s)}).

Here, X(t) represents the potential workload process, and L(t) corrects for the fact
that the queue can empty.

We will apply [53, Theorem 2.2.1], for the special case of the first moment. Note
by Remarks 1 and 3, for the first moment of an inventory process, it suffices to show:

• Negative drift: There exists an amount of work w < ∞ and a drift rate δ > 0 such
that conditioned on W(t) ≥ w,

lim
ε→0

EFt [X(t + ε) − X(t)]
ε

≥ −δ

where Ft is the filtration defined by the behavior of the system up to time t .
• Finite second moment of positive jumps: There exists a constant k1 < ∞ such
that

lim
ε→0

EFt [((X(t + ε) − X(t))+)2] ≤ k1

Now, we define the potential workload process X(t) based on W (t) and WQ(t).
During intervals when WQ(t) = 0, X(t) is constant. If t0 is the beginning of an

interval where WQ(t) > 0, X(t) jumps up by W (t+0) at time t0. During an interval
whereWQ(t) > 0, X(t)mimicsW (t): X(t) rises by Swhena job arrives, anddecreases

123

Queueing Systems

at rate 1. If t1 is the end of an interval where WQ(t) > 0, X(t) jumps down by W (t−1)

at time t1.
By construction, X(t) generates W(t) as an inventory process. For example, let

t1 be the end of an interval where WQ(t) > 0. Assume that the desired relationship
between X(t) and W(t) holds up to time t−1 . In particular, W(t−1) = W (t−1). Then,
W(t+1) = 0, as desired.

Next, we show that X(t) has stationary and ergodic increments. X(t) has two types
of increments: First, Poisson arrivals cause increments sampled i.i.d. from S, which
are clearly stationary and ergodic. Second, the beginning and end of intervals where
WQ(t) = 0 cause increments equal to WF (t). These increments are stationary and
ergodic because the state of the front, and WF in particular, are stationary. Thus, X(t)
has stationary and ergodic increments.

To demonstrate negative drift, letw be an arbitrary nonzero amount of work.When-
ever W(t) ≥ w, X(t) has two types of increments: jumps of size S occurring at rate
λ, and continuous decrease at rate 1. As a result, the drift of X(t) is ρ − 1 < 0.

To demonstrate finite second moment of positive jumps, note that X(t) has two
kinds of positive jumps: Jumps of size S, when WQ(t) > 0, and jumps of size W (t),
at the beginning of a WQ > 0 interval.

Switching back to the limited view, note that the latter kind of jump consists of the
remaining size of at most n jobs. These remaining sizes are distributed as

R(a, c) ∼ [Sc − a | Sc > a]

for some age a and class c.
It therefore suffices to show that there exists a constant r such that for all a, c,

E[R(a, c)2] ≤ r < ∞.

To do so, we will write R(a, c)e, the excess of the remaining size distribution, as a
mixture of remaining size distributions for different ages. Note that for any distribution
Y , the excess Ye is equivalent to

Ye ∼ [Y − Ye | Y > Ye].

This holds because the forward and backwards renewal times are distributed identically
[37, Chapter 23]. By applying this construction with Y = R(a, c), we find that

R(a, c)e ∼ [R(a, c) − R(a, c)e | R(a, c) > R(a, c)e]
= [Sc − (a + R(a, c)e) | Sc > a + R(a, c)e].

As a result, a + R(a, c)e is the desired age distribution.
For any age a′, E[R(a′, c)] ≤ remsup(S,C). Because R(a, c)e can be written as a

mixture of remaining size distributions, E[R(a, c)e] ≤ remsup(S,C), which is finite
by assumption.

123

Queueing Systems

We can now bound E[R(a, c)2]:

E[R(a, c)e] = E[R(a, c)2)]
2E[R(a, c)]

E[R(a, c)2] = 2E[R(a, c)]E[R(a, c)e] ≤ 2remsup(S,C)2

Thus, the requirements of [53, Theorem 2.2.1] are satisfied, so bothW andWQ are
stationary and well-defined, and have finite mean.
�

5.7 Lemma 6: bounding E[TF]

Lemma 6 (Front time bounds) For any model π ∈ WCFS,

E[S] ≤ E[T F] ≤ nE[S]
binf

Proof First, to prove that E[T F] ≥ E[S], note that if a job receives service at the
maximum possible rate of 1 for the entire time it is in the front, then the job will
complete in time S. As a result, E[T F] ≥ E[S].

To prove the upper bound, recall that by the non-idling assumption from Sect. 2.1.3,
in all states of the front s where NF (s) ≥ 1, the service rate B(s) ≥ binf . Because
NF (s) ≤ n, we can bound the ratio B(s)/NF (s) in all NF (s) ≥ 1 states:

B(s)

NF (s)
≥ binf

n
.

Therefore, in all states,

B(s) ≥ binf
n

NF (s).

In expectation, the same must hold:

E[B] ≥ binf
n

E[NF].

Note that E[B] = ρ and E[NF] = λE[TF] by Little’s Law. Thus,

ρ ≥ binf
n

λE[TF]
nE[S]
binf

≥ E[TF].

�
Note that Lemma 6 proves a relatively weak bound on E[T F], because we have

only made the weak assumption that binf is positive. In many models, one can prove

123

Queueing Systems

Fig. 5
π for WCFS models. Job size distribution S is hyperexponential: Exp(2) w.p. 1/2, Exp(2/3)
otherwise. 109 arrivals simulated.ρ > 0.96omitted due to the large amount of randomnoise under high load.
Specific settings: Heterogeneous M/G/k with speeds [0.4, 0.3, 0.2, 0.1]. Limited Processor Sharing with
Multi-Programming Level 4. Threshold Parallelism FCFS with joint random variable (S, L) of (Exp(2), 1)
w.p. 1/2, (Exp(2/3), 4) otherwise. Multiserver-Job ServerFilling with joint random variable (V , X) of
(1,Exp(1/2)) w.p. 1/2, (4,Exp(2/3)) otherwise

a stronger bound on E[T F] by using more information about the model’s dynamics
when the front is not full.

From Lemmas 4 and 6, Theorem 2 follows immediately, with explicit formulas for
cπ
upper and cπ

lower.

6 Empirical comparison: WCFS and non-WCFS

Wehave proven tight bounds onmean response time for allWCFSpolicies. To quantify
the tightness of our bounds, we define the mean response time difference
π for a
given policy π :

π = E[T π] − ρ

1 − ρ

E[S2]
2E[S] = E[T π] − E[T M/G/1

Q].

For instance,
M/G/1 = E[S].
This definition is useful because we have shown in Theorem 2 that for any load ρ,

π ∈ [cπ
lower, c

π
upper], for constants cπ

lower, c
π
upper not dependent on ρ, but potentially

depending on the model π .
To investigate the behavior of
π , we turn to simulation. We simulate both WCFS

models, to confirm our results, as well as non-WCFSmodels, to show that non-WCFS
models typically do not have constant
π in the ρ → 1 limit.

123

Queueing Systems

Fig. 6
π for non-WCFSmodels. Same job sizes and specific settings as in Fig. 5. Same number of arrivals
and range of ρ except MaxWeight: 1010 arrivals, ρ ∈ [0, 0.99]

In Fig. 5, we simulate WCFS models: our four motivating models from Sect. 3, as
well as the simplerM/G/k andM/G/1 models. In each case, we find that
π remains
bounded quite close to 0, meaning that Theorem 2 holds with constants close to 0.

In Fig. 5, we see that for some models,
π increases with ρ, while for others,

π decreases with ρ. Intuitively, this depends on which jobs tend to be prioritized
as ρ → 1. Policies which serve many jobs at once, such as the M/G/4 and Limited
Processor Sharing systems, typically have
π decrease as ρ → 1, because they allow
small and large jobs to share service. As a result, small jobs can complete faster than
in an M/G/1, lowering
π if ρ is large enough that many jobs are typically in the
system.

In contrast, policies which reorder large jobs ahead of small jobs typically have
π

increase as ρ → 1, by the same principle. For example, Multiserver-Job ServerFilling
prioritizes jobs in the front which require 4 servers. In the setting depicted in Fig. 5,
such jobs have mean size 3/2 in this system, compared to the overall mean size
E[S] = 1.

In all of the settings simulated in Fig. 5,
π > 0. This is merely a coincidence, not
a general rule, as can be seen in Fig. 7b.

Regardless of the different reordering behavior of these different WCFS policies,

π does not diverge as ρ → 1, as predicted by Theorem 2.

In contrast, in Fig. 6, we simulate several non-WCFS models, which we depicted
earlier in Fig. 2. These models are:

• Threshold parallelism inelastic first: This is the Threshold Parallelismmodel from
Sect. 3.3, but rather than serving jobs in FCFS order, we prioritize jobs j with
smaller parallelism threshold p j [38].

• Threshold parallelism elastic first: This is the Threshold Parallelism model from
Sect. 3.3, but we prioritize jobs j with larger parallelism threshold p j .

• M/G/k/SRPT : This is anM/G/k, where each of the k servers runs at speed 1/k, and
we prioritize jobs of least remaining size.

• Multiserver-job FCFS: This is the Multiserver-Job model from Sect. 3.4, but we
serve jobs in FCFS order. If the next job to be served does not “fit” in the remaining

123

Queueing Systems

servers, those servers remain idle until other jobs complete, idling sufficient servers
to allow the job to fit.

• Multiserver-job least servers first: This is the Multiserver-Job model from
Sect. 3.4, but we prioritize jobs j with smaller server requirements v j . Again,
if the next job does not fit, the remaining servers remain idle until the job can fit.

• Multiserver-job most servers first: This is the Multiserver-Job model from
Sect. 3.4, but we prioritize jobs j with larger server requirements v j .

• Multiserver-job MaxWeight: This is the Multiserver-Job model from Sect. 3.4,
but we serve jobs according to the “MaxWeight” policy which we describe in
Sect. 4.5.2.

In all cases, prioritization is preemptive.
Our empirical results in Fig. 6 indicate that for these non-WCFS policies,
π

diverges as ρ → 1. Specifically, for Threshold Parallelism Elastic First, Multiserver-
Job FCFS,Multiserver-Job Least Servers First andMultiserver-JobMost Servers First,

π appears to diverge in the positive direction. For Threshold Parallelism Inelastic
First, M/G/k/SRPT, and Multiserver-Job ServerFilling,
π appears to diverge in the
negative direction. Note the expanded scale of Fig. 6 as compared to Fig. 5. For
Multiserver-Job MaxWeight, we performed additional simulation, which indicated
that
π diverged in the negative direction as ρ → 1.

Next, we explore the behavior of
π for WCFS models, as we vary the front size
n and the job size distribution S.

First, in Fig. 7a, we investigate the effects of varying front size n on
π for the
Multiserver-Job model with our ServerFilling policy; under this model, the front size
n is equal to the number of servers k. In this setting, the difference
π empirically
grows approximately linearly with the number of servers k, and is nearly constant
as ρ → 1. This matches the behavior of our bounds proven in Theorem 2, which
expand linearly with n. Our simulations indicate that other WCFS policies similarly
experience linear relationships between n and
π .

In Fig. 7b, we investigate the effects of varying job size distribution S on
π in
the HeterogeneousM/G/k where the job size distribution S is parameterized by a real
value x . Each S is a hyperexponential distribution with E[S] = 1. At large ages a, the
remaining size distributions [S − a | S > a] of these job size distributions converge
to Exp(1/x), the larger exponential branch. From this, it is straightforward to show
that remsup(S) = x .

In Fig. 7b, we see that as x increases,
π at loads near 1 falls linearly, with more
negative slope for larger x . However, for each specific x , it does not appear that
π is
diverging to positive or negative infinity. For instance, consider the red curve, x = 8:
as ρ → 1,
π converges to a value near −3, rather than diverging.

Broadly, Fig. 7b matches the behavior of our bounds proven in Theorem 2, which
expand linearly with remsup(S), which here is x . We have empirically found that other
WCFS policies similarly experience linear relations between remsup(S) and
π , for
hyperexponential job size distributions S, and we believe that similar behavior will
occur for other common job size distributions.

123

Queueing Systems

(a) Varying front size n. Multiserver-job
ServerFilling with k = [2, 4, 8, 16]. S dis-
tributed Exp(1). Server requirement V
distributed uniformly over all integer pow-
ers of 2 ≤ k.

(b) Varying job size distributions.
Heterogeneous M/G/4 with speeds
[0.4, 0.3, 0.2, 0.1]. S distributed hyperexpo-
nential: Exp(1/x) with probability 1/2x,
else Exp((2x − 1)/x), for x ∈ [1, 2, 4, 8].
E[S] = 1, C2

� [1, 1.67, 3.57, 7.53].

Fig. 7 a Varying front size n. Multiserver-Job ServerFilling with k = [2, 4, 8, 16]. S distributed Exp(1).
Server requirement V distributed uniformly over all integer powers of 2 ≤ k. b Varying job size distri-
butions. Heterogeneous M/G/4 with speeds [0.4, 0.3, 0.2, 0.1]. S distributed hyperexponential: Exp(1/x)
with probability 1/2x , else Exp((2x − 1)/x), for x ∈ [1, 2, 4, 8]. E[S] = 1,C2

� [1, 1.67, 3.57, 7.53].

π under WCFS models with varying conditions. Up to 109 arrivals simulated

7 Conclusion

We introduce thework-conserving finite-skip (WCFS) framework, and use it to analyze
many important queueing models which have eluded analysis thus far. We prove that
the scaled mean response time E[T π](1 − ρ) of any WCFS model π converges in
heavy traffic to the same limit as M/G/1/FCFS. Moreover, we prove that the additive
gap
π = E[T π]− E[T M/G/1

Q] remains bounded by explicit constants at all loads ρ,
proving rapid convergence to the heavy traffic limit.

A possible direction for future work would be to tighten the explicit constants on

π . Doing so will likely require use of more detailed properties of the WCFS models
being analyzed, but seems quite doable.

This paper considers models which are finite skip and work conserving relative
to the FCFS service ordering. Another interesting direction would be to investigate
policies which are “finite-skip” relative to other base service orderings. Hopefully, one
could prove bounds on mean response time of models in this new class relative to an
M/G/1 operating under the base service ordering.

Finally, one could try to characterize other metrics of response time for WCFS
policies, such as tail metrics. One possible approach to doing sowould be to generalize
the rate-conservation technique used in Lemma 3.

Funding Funding was provided by National Science Foundation (Grant Nos. CMMI-1938909, CSR-
1763701) and a Google 2020 Faculty Research Award.

123

Queueing Systems

References

1. Nathuji, R., Isci, C., Gorbatov, E.: Exploiting platform heterogeneity for power efficient data centers.
In: Fourth International Conference on Autonomic Computing (ICAC’07), p. 5 (2007)

2. Mars, J., Tang, L., Hundt, R.: Heterogeneity in “homogeneous” warehouse-scale computers: a perfor-
mance opportunity. IEEE Comput. Arch. Lett. 10(2), 29–32 (2011)

3. Cho, H.-D., Engineer, P.D.P., Chung, K., Kim, T.: Benefits of the big. LITTLE architecture. EETimes,
(2012)

4. Yashkov, S., Yashkova, A.: Processor sharing: a survey of the mathematical theory. Autom. Remote
Control 68(9), 1662–1731 (2007)

5. Nuyens, M., Van Der Weij, W.: Monotonicity in the limited processor sharing queue. Resource 4, 7
(2008)

6. Telek, M., Van Houdt, B.: Response time distribution of a class of limited processor sharing queues.
SIGMETRICS Perform. Eval. Rev. 45(3), 143–155 (2018)

7. Zhang, J., Zwart, B.: Steady state approximations of limited processor sharing queues in heavy traffic.
Queueing Syst. 60(3), 227–246 (2008)

8. Gupta, V., Harchol-Balter, M.: Self-adaptive admission control policies for resource-sharing systems.
SIGMETRICS Perform. Eval. Rev. 37(1), 311–322 (2009)

9. Delimitrou, C., Kozyrakis, C.: Quasar: Resource-efficient andQoS-aware cluster management. In: Pro-
ceedings of the 19th International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’14, pp. 127–144 (2014)

10. Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C.: Optimus: an efficient dynamic resource scheduler for
deep learning clusters. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18 (2018)

11. Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling in cloud
computing clusters. In: 2012 Proceedings IEEE Infocom, pp. 702–710. IEEE, Orlando (2012)

12. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling—a status report. In: Work-
shop on Job Scheduling Strategies for Parallel Processing, pp. 1–16. Springer, New York (2004)

13. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of backfilling strate-
gies for parallel job scheduling. In: Proceedings of International Conference on Parallel Processing
Workshop, pp. 514–519 (2002)

14. Carastan-Santos, D., De Camargo, R.Y., Trystram, D., Zrigui, S.: One can only gain by replacing easy
backfilling: a simple scheduling policies case study. In: 201919th IEEE/ACMInternational Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 1–10 (2019)

15. Tirmazi, M., Barker, A., Deng, N., Haque, M.E., Qin, Z.G., Hand, S., Harchol-Balter, M., Wilkes,
J.: Borg: the next generation. In: Proceedings of the Fifteenth European Conference on Computer
Systems. EuroSys ’20 (2020)

16. Grosof, I., Harchol-Balter,M., Scheller-Wolf, A.: Stability for two-classmultiserver-job systems. arXiv
preprint arXiv:2010.00631 (2020)

17. Grosof, I., Harchol-Balter, M., Scheller-Wolf, A.: WCFS: a new framework for analyzing multiserver
systems (2022). https://doi.org/10.48550/ARXIV.2109.12663

18. Loulou, R.: Multi-channel queues in heavy traffic. J. Appl. Probab. 10(4), 769–777 (1973)
19. Köllerström, J.: Heavy traffic theory for queues with several servers. I. J. Appl. Probab. 11(3), 544–552

(1974)
20. Köllerström, J.: Heavy traffic theory for queueswith several servers. II. J. Appl. Probab. 16(2), 393–401

(1979)
21. Kingman, J.: Some inequalities for the queue GI/G/1. Biometrika 49(3/4), 315–324 (1962)
22. Gamarnik, D., Momčilović, P.: Steady-state analysis of a multiserver queue in the Halfin-Whitt regime.

Adv. Appl. Probab. 40(2), 548–577 (2008)
23. Aghajani, R., Ramanan, K.: The limit of stationary distributions of many-server queues in the Halfin–

Whitt regime. Math. Oper. Res. 45(3), 1016–1055 (2020)
24. Dai, J., Dieker,A.,Gao,X.:Validity of heavy-traffic steady-state approximations inmany-server queues

with abandonment. Queueing Syst. 78(1), 1–29 (2014)
25. Goldberg, D.A., Li, Y.: Simple and explicit bounds for multi-server queues with universal 1/(1-rho)

scaling. arXiv preprint arXiv:1706.04628 (2017)
26. Efrosinin, D.V., Rykov, V.V.: On performance characteristics for queueing systems with heterogeneous

servers. Autom. Remote Control 69(1), 61–75 (2008)

123

http://arxiv.org/abs/2010.00631
https://doi.org/10.48550/ARXIV.2109.12663
http://arxiv.org/abs/1706.04628

Queueing Systems

27. Alves, F., Yehia, H., Pedrosa, L., Cruz, F., Kerbache, L.: Upper bounds on performance measures of
heterogeneous M/M/c queues. Math. Probl. Eng. 2011 (2011)

28. Efrosinin, D., Stepanova, N., Sztrik, J., Plank, A.: Approximations in performance analysis of a con-
trollable queueing system with heterogeneous servers. Mathematics 8(10), 1803 (2020)

29. Lin,W., Kumar, P.: Optimal control of a queueing systemwith two heterogeneous servers. IEEE Trans.
Autom. Control 29(8), 696–703 (1984)

30. Van Harten, A., Sleptchenko, A.: On Markovian multi-class, multi-server queueing. Queueing Syst.
43(4), 307–328 (2003)

31. Boxma,O.J., Deng, Q., Zwart, A.P.:Waiting-time asymptotics for theM/G/2 queuewith heterogeneous
servers. Queueing Syst. 40(1), 5–31 (2002)

32. Keaogile, T., Fatai Adewole, A., Ramasamy, S.: Geo (λ)/Geo (μ)+ G/2 queues with heterogeneous
servers operating under FCFS queue discipline. Am. J. Appl. Math. Stat 3(2), 54–58 (2015)

33. Sani, S., Daman, O.A.: The M/G/2 queue with heterogeneous servers under a controlled service dis-
cipline: stationary performance analysis. IAENG Int. J. Appl. Math. 45(1) (2015)

34. Ramasamy, S., Daman, O.A., Sani, S.: An M/G/2 queue where customers are served subject to a
minimum violation of FCFS queue discipline. Eur. J. Oper. Res. 240(1), 140–146 (2015)

35. Zhang, J., Dai, J.G., Zwart, B.: Law of large number limits of limited processor-sharing queues. Math.
Oper. Res. 34(4), 937–970 (2009)

36. Zhang, J., Dai, J.G., Zwart, B.: Diffusion limits of limited processor sharing queues. Ann. Appl. Probab.
21(2), 745–799 (2011)

37. Harchol-Balter, M.: Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press, Cambridge (2013)

38. Berg, B., Dorsman, J.-P., Harchol-Balter, M.: Towards optimality in parallel scheduling. Proc. ACM
Meas. Anal. Comput. Syst. 1(2) (2017)

39. Berg, B., Harchol-Balter, M.: Optimal scheduling of parallel jobs with unknown service requirements.
In: Handbook of Research on Methodologies and Applications of Supercomputing, pp. 18–40. IGI
Global, Hershey (2021)

40. Berg, B., Harchol-Balter, M., Moseley, B., Wang, W., Whitehouse, J.: Optimal resource allocation for
elastic and inelastic jobs. In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures. SPAA ’20, pp. 75–87 (2020)

41. Brill, P.H., Green, L.: Queues in which customers receive simultaneous service from a random number
of servers: a system point approach. Manag. Sci. 30(1), 51–68 (1984)

42. Rumyantsev, A., Morozov, E.: Stability criterion of a multiserver model with simultaneous service.
Ann. Oper. Res. 252(1), 29–39 (2017)

43. Hong, Y., Wang, W.: Sharp zero-queueing bounds for multi-server jobs (2021)
44. Ghaderi, J.: Randomized algorithms for schedulingVMs in the cloud. In: IEEE INFOCOM2016—The

35th Annual IEEE International Conference on Computer Communications, pp. 1–9 (2016)
45. Psychas, K., Ghaderi, J.: Randomized algorithms for scheduling multi-resource jobs in the cloud.

IEEE/ACM Trans. Netw. 26(5), 2202–2215 (2018)
46. Psychas, K., Ghaderi, J.: On non-preemptive VM scheduling in the cloud. Proc. ACM Meas. Anal.

Comput. Syst. 1(2), 35–13529 (2017)
47. Maguluri, S.T., Srikant, R.: Scheduling jobs with unknown duration in clouds. IEEE/ACM Trans.

Netw. 22(6), 1938–1951 (2014)
48. Baccelli, F., Foss, S.: On the saturation rule for the stability of queues. J. Appl. Probab. 32(2), 494–507

(1995)
49. Foss, S., Konstantopoulos, T.: An overview of some stochastic stability methods. J. Oper. Res. Soc.

Jpn. 47(4), 275–303 (2004)
50. Miyazawa, M.: Rate conservation laws: a survey. Queueing Syst. 15(1), 1–58 (1994)
51. Grosof, I., Scully, Z., Harchol-Balter, M.: SRPT for multiserver systems. Perform. Eval. 127–128,

154–175 (2018)
52. Sigman, K., Yao, D.D.: Finite moments for inventory processes. Ann. Appl. Probab. 4, 765–778 (1994)
53. Scheller-Wolf, A.: Finite moment conditions for stationary content processes with applications to fluid

models and queues. PhD thesis, Columbia University (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	WCFS: a new framework for analyzing multiserver systems
	Abstract
	1 Introduction
	2 The WCFS framework and WCFS models
	2.1 WCFS framework and WCFS models
	2.1.1 Finite skip
	2.1.2 Work conserving
	2.1.3 Non-idling

	2.2 Examples and non-examples
	2.3 Bounded expected remaining size: finite remsup
	2.4 Work, number, response time

	3 Important WCFS models
	3.1 Heterogeneous M/G/k
	3.2 Limited processor sharing
	3.3 Threshold parallelism
	3.4 Multiserver-jobs under the ServerFilling policy
	3.4.1 Multiserver-job setting
	3.4.2 ServerFilling
	3.4.3 Generalizations of ServerFilling

	4 Prior work
	4.1 M/G/k
	4.1.1 Fixed k
	4.1.2 Scaling k

	4.2 Heterogeneous M/G/k
	4.2.1 Heterogeneous M/M/k
	4.2.2 Heterogeneous M/Hm/k
	4.2.3 M/(M+G)/2 model

	4.3 Limited processor sharing
	4.3.1 Asymptotic regimes
	4.3.2 State-dependent server speed

	4.4 Threshold parallelism
	4.5 Multiserver jobs
	4.5.1 FCFS scheduling
	4.5.2 MaxWeight scheduling
	4.5.3 Nonpreemptive scheduling

	5 Theorems and proofs
	5.1 Outline of Proof of Theorem 2
	5.2 Two views
	5.3 Lemma 2: E[TQ] and E[W]
	5.4 Lemma 3: bounding E[W]
	5.5 Lemma 4: bounding E[TQ]
	5.6 Lemma 5: finite E[W]
	5.7 Lemma 6: bounding E[TF]

	6 Empirical comparison: WCFS and non-WCFS
	7 Conclusion
	References

