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Abstract

Correlations in traffic patterns are an important facet of the workloads faced by real systems,
and one that has far-reaching consequences on the performance and optimization of the systems
involved. However, all the existing analytical work on understanding the effect of correlations be-
tween successive service requirements (job sizes) is limited to First-Come-First-Served schedul-
ing. This leaves open fundamental questions: How do various scheduling policies interact with
correlated job sizes? Can scheduling be used to mitigate the harmful effects of correlations?
In this paper we take the first step towards answering these questions. Under a simple model for
job size correlations, we present the first asymptotic analysis of various common size-independent
scheduling policies when the job size sequence exhibits high correlation. Our analysis reveals
that the characteristics of various scheduling policies, as well as their performance relative to
each other, are markedly different under the assumption of i.i.d. job sizes versus correlated
job sizes. Further, among the class of size-independent scheduling policies, there is no single
scheduling policy that is optimal for all degrees of correlations and thus any optimal policy must
learn the correlations. We support the asymptotic analysis with numerical algorithms for exact
performance analysis under an arbitrary degree of correlation, and with simulations. Finally, we
verify the lessons from our correlation model on real world traces.

Keywords: Scheduling, Correlation, MMAP, M/G/1, Asymptotic analysis, Fluid analysis

1. Introduction1

Motivation2

The M/G/1 single-server queue has been used as a guiding model for performance analysis3

of widely varying systems, such as buffers for network switches, web server downlinks, and the4

CPU scheduler. There is a large body of work on the analysis of different scheduling policies and5
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their effects on response times of jobs (defined to be the time from the arrival to the completion of6

a job) [6]. However, almost all of the exact analysis has been performed under the assumptions7

of (i) Poisson arrival process and (ii) independent and identically distributed (i.i.d.) job sizes.8

Long ago, the need was recognized to relax these assumptions, as real systems workloads exhibit9

significant correlation patterns, and these patterns tend to greatly affect the accuracy of the tradi-10

tional results [9, 20]. Primarily, there are three kinds of correlations that exist in real workloads:11

(i) correlations between consecutive interarrival times (e.g., network traffic [12], and web server12

traffic [8, 14, 25]), (ii) correlations between interarrival times and the subsequent service require-13

ments (e.g., [3, 5, 12, 14]), and (iii) correlations between consecutive service requirements (e.g.14

packet sizes over network [12], supercomputing jobs [10, 16, 24], and disk request sizes [19]).15

In this paper we focus on studying the effects of correlations of type (iii).16

While there has been a lot of analytical work studying the effect of all three types of correlation17

on mean response time in single server queues, all of this work has assumed First-Come-First-18

Served (FCFS) queues only. Fendick et al. [12] study all three types of correlation via a Brownian19

approximation and propose a stationary workload approximation based on heavy traffic limits.20

Adan and Kulkarni [2] also use analysis to study autocorrelation and cross-correlation of interar-21

rival and service times in a MAP/G/1/FCFS queue. Riska et al. [22] use matrix-analytic methods22

to numerically calculate the mean response time in a MAP/PH/1/FCFS queue with correlated23

arrival stream. Ghosh and Squillante [14] propose a refinement to the Fendick et al. [12] approx-24

imation for FCFS queues, and propose approximations for a multi-class priority system with25

FCFS scheduling within each class. Cidon et al. [5] study correlations of type (ii) by deriving26

the Laplace transform of the workload using the theory of linear functional equations in a queue27

with an Interrupted Poisson arrival process.28

The effect of correlation has also been studied via simulation, see for example [17–19, 23, 28]. In29

all except [18], FCFS scheduling was assumed. In [18] the authors examine an approximation of30

Shortest-Job-First (SJF) scheduling, which the authors call SWAP, and compare it against FCFS31

scheduling via simulation.32

In summary, all the prior work dealing with correlations in successive job sizes has almost ex-33

clusively dealt with FCFS scheduling. Important questions have remained unanswered: How do34

different scheduling policies react to correlations in job sizes? Can scheduling be used to allay35

the detrimental effect of correlated job sizes on the performance?36

In this paper, we take an important first step by analyzing the mean response time under various37

scheduling policies in the presence of correlated job sizes (see Table 1 for a list of policies38

analyzed in this paper). We restrict ourselves to the class of size-independent policies. That is, we39

consider policies which know the generative correlation model, but not the actual realizations of40

the sizes (or the size-class) of jobs. In most applications, including scheduling of CPU, IP flows,41

database queries etc., the job sizes are often not known a priori, and hence size-independent42

policies are more realistic. We consider the question of how the optimality of size-independent43

policies is affected by the presence or absence of correlation in the job sizes.44

The MMAP Correlation Model45

We assume the following simple Markov Modulated Arrival Process (MMAP) model for job-size46

correlations: jobs belong to one of two classes called little (L) and huge (H), where jobs of class L47

(respectively H) are Exponentially distributed with mean 1
µL

(respectively 1
µH
> 1

µL
) 1. Therefore,48

1Note that the mean sizes of the two classes can in fact be close. We have chosen the names of the classes to map to
low (L) and high (H) load, respectively, in Section 2.
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Scheduling Policy Description

F-C-F-S (FCFS) Jobs are served in the order of arrival.

L-C-F-S (LCFS) Whenever a job completes service, the next job to be served is the one that arrived
last.

P LCFS  R (P-LCFS) New arrivals immediately begin service by preempting the job at the server. On
a service completion, the next job to resume service is the one that arrived last.

L-A-S (LAS) The job with the least amount of received service (age) gets to serve.

P S (PS) If there are n jobs in the system, each job gets 1
n th of the server’s capacity.

R-O--S (ROS) Whenever a job completes service, the next job to be served is picked uniformly
at random from amongst the jobs currently in the queue.

O O (OPT) A hypothetical optimal scheduling scheme that knows the class of all jobs, and
gives preemptive priority to class L jobs.

Table 1: A glossary of scheduling policies analyzed in this paper.

our jobs belong to a 2-phase hyperexponential (H2) distribution. The system operates under a49

2-state Markovian environment process with states L and H: while the environment process is50

in state L all arrivals are of class L, and while in state H all arrivals are of class H. The arrivals51

occur according to a Poisson process with rate λ independent of the environment process. The52

times spent in state L during each visit are i.i.d. Exponentially distributed with mean 1
αL

, and53

those in state H are i.i.d. Exponentially distributed with mean 1
αH

. Denote α = αL + αH , and54

p =
1/αL

1/αL+1/αH
= αH

α
. Thus the time-average probability of an arrival belonging to class L is p, and55

of belonging to class H is 1− p. We will use ρ = λ ·
(

p
µL

+
1−p
µH

)
to denote the long run fraction of56

time the system is busy. If we fix the job size distribution and arrival rate (i.e. µL, µH , p, λ) and set57

α = ∞, then the job sizes form an i.i.d. stream. As we decrease α and thereby increase the mean58

residence time per sojourn of L and H states, we increase the correlation among successive job59

sizes, since the probability that a class L job is followed by another class L job (pL,L = p+
λ(1−p)
λ+α

)60

increases. By expressing pL,L = α
λ+α

p + λ
λ+α

, we can alternately visualize the correlation model61

as: with probability λ
λ+α

the class of a job is the same as the class of the immediately preceding62

job, otherwise it is an independent sample from the H2 distribution.63

Let · · · , X−2, X−1, X0, X1, X2 · · · represent the sequence of job sizes. An appealing property of the
above correlation model is the simple closed-form autocorrelation function (acf). In particular,
the lag n correlation for n ≥ 1 is given by:

cor(Xm, Xm+n) =
E[XmXm+n] − E[Xm]E[Xm+n]
√

var(Xm)
√

var(Xm+n)
=

(
λ
λ+α

)n
[

p
µ2

L
+

1−p
µ2

H

]
+

(
1 −

(
λ
λ+α

)n)
E[X0]2

var(X0)
−

E[X0]2

var(X0)

=

(
λ

λ + α

)n E
[
X2

0

]
2 − E[X0]2

var(X0)
=

1
2

(
C2 − 1

C2

) (
λ

λ + α

)n

where C2 =
var(X0)
E[X0]2 > 1 denotes the squared coefficient of variation (SCV) of the H2 job size64

distribution.65

Scope of the MMAP correlation model:. The MMAP correlation model analyzed in this paper is66

similar to the model used in [2]. While MMAP models with more than 2 phases (e.g., [19]) or lo-67
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Figure 1: An example of the effect of job-size correlation on scheduling policies: (a) mean response time versus
α for low to medium correlation; (b) mean response time versus α for medium to high correlation; (c) mean re-
sponse time of the “little” (L) jobs versus α. Here ρ = 0.97 and C2 ≈ 1.08. Note that the E[T ] ordering changes
from FCFS=ROS=LCFS>PS=P-LCFS>LAS>OPT at α = ∞ (i.i.d. job sizes) to FCFS≈ROS>PS>LAS>LCFS=P-
LCFS=OPT as α→ 0 (high correlation).

cal sampling based models [11] are capable of modeling more general auto-correlation functions,68

the goal of this paper is to use an analytically tractable correlation model to explore qualitative69

behavior of different scheduling policies in the presence of correlated job sizes, and to gain in-70

sights for these behaviors and the effect of various system parameters on the performance.We71

believe that the qualitative behavior of scheduling policies discovered in this paper would extend72

to more general correlation structures, and we partially test this via real-world traces in Section 3.73

Summary of Contributions74

Most of our results look at the effect of the parameter α on mean response time, E[T ]. We75

prove that, although all scheduling policies we consider are hurt by increasing the correlation,76

the degree to which correlation affects different policies varies widely. We consider two regimes:77

(i) µL > µH > λ, where the server is never in overload, and (ii) µL > λ > µH , where the78

system is in overload during bursts of H jobs, although it is still stable on average. For the79

no-overload regime, we prove that, as α decreases (correlation increases), all size-independent80

scheduling policies become the same with respect to mean response time. For the transient-81

overload regime, we prove that as correlation decreases, there can be a large (up to a factor82

of µL
µH

) difference in E[T ] between the policies. Also, the ordering of policies from “best” to83

“worst” mean response time changes a lot under correlation. An example of performance of the84

various scheduling policies under the transient-overload regime is shown in Figure 1(a). Some85

particularly interesting findings include:86

• LAS is provably sub-optimal among size-independent policies when α → 0, while it has87

provably the best mean response time when α → ∞ for an H2 job size distribution (due to its88

decreasing failure rate [21]).89

• LCFS is provably best when α→ 0, while it is worst (along with FCFS, ROS) when α→ ∞.90

• P-LCFS is also provably best when α → 0, which is interesting because under α → ∞ (i.i.d.91

case) LCFS and P-LCFS can be far apart for high variability job size distributions.92

• PS can be arbitrarily worse than P-LCFS as α→ 0, while they are provably equal as α→ ∞.93

The effect of correlation on the mean response time of the L jobs, E[TL], is even more pro-94

nounced. In particular, we prove that:95
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• While E[TL] increases for most policies, as α decreases (correlation increases), E[TL] always96

decreases for P-LCFS and for LCFS. An example is shown in Figure 1(c).97

• LAS performs poorly for E[TL] compared to OPT, and even worse for E
[
T 2

L

]
. Thus, while98

LAS is designed to help the little jobs by biasing towards jobs with least attained service, it99

fails to do this under correlation, and policies like LCFS which are entirely oblivious to job100

size distribution can actually help the little jobs.101

The above results are primarily obtained by using fluid analysis and looking at asymptotic behav-102

ior of response time as α → 0, see Section 2. However, the effect of correlation under moderate103

α is also interesting. To study the moderate α regime, we derive numerical algorithms to analyze104

LCFS, OPT, P-LCFS, and FCFS. 2 For the other policies, we resort to simulations, see Section 3.105

These numerical and simulation results are useful for understanding the behavior of schedul-106

ing policies for intermediate α values and to explore how quickly scheduling policies converge107

to their asymptotically-limiting (α → 0) behavior. To see how our messages carry through to108

real-world scenarios, we end Section 3 with trace-driven simulation studies.109

2. Asymptotic Analysis of Scheduling Policies as α → 0110

Our goal in this section is to obtain an understanding of the “first-order effect” of correlations111

in the job sizes by considering the limiting case where the correlation approaches its maximum112

value under our model, that is, α → 0.3 While this extremal case implies arbitrarily long con-113

secutive streaks of only L and only H arrivals, an understanding of the behavior of the various114

scheduling policies under this asymptote gives us insights into why different scheduling policies115

react differently to correlation in job sizes, and should help guide the design of policies which116

are robust to correlation.117

In Section 2.1, we present the asymptotic results for the simpler case µH > λ. The non-trivial118

case of µH < λ is analyzed in Sections 2.2-2.5. A large number of scheduling policies that we119

will analyze will involve asymptotic analysis of busy periods. We have chosen to present the120

main results on busy period analysis in Appendix B and focus on the messages in the main body.121

For ready reference, we have summarized the notation used in this section in Table 2.122

Note on scaling and asymptotic notation:. The asymptotic analysis of the scheduling policies123

is performed by considering a sequence of systems, indexed by the parameter α. The system124

with index α is obtained by setting the switching rates of the environment process as αH = p · α125

and αL = (1 − p)α, where p, µL, µH and λ are held constant. We are interested in seeing the126

behavior of the scheduling policies in the asymptote α→ 0, and hence the expressions for mean127

response times presented in this section will be written in the asymptotic notation: We say that128

a function g(α) is of a ‘smaller order’ than h(α) (and make the limit α → 0 implicit), denoted129

g(α) = o(h(α)), when g(α)
h(α) → 0 when α → 0 (see Table 2). When we write the expressions130

for the mean response time under the αth system, we only identify the dominant term in the131

expression, expressing the remaining terms which become negligible in comparison as α→ 0 as132

2Due to lack of space, the asymptotic analysis of PS and ROS, and the results on exact numerical analysis of LCFS,
OPT, P-LCFS and FCFS are presented in the extended version [15].

3The analysis of the asymptote α→ 0 should be seen analogously to heavy traffic analysis where the traffic intensity
ρ is allowed to approach 1 to observe the “first order” effect of system parameters (variance, cross-correlations) on the
system performance.
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Notation Meaning Notation Meaning

E
[
T π

L

]
,E

[
T π

H

]
,E[T π] mean response time of a class

{L, H, avg} job under policy π
E
[
Dπ

L

]
,E

[
Dπ

H

]
,E[Dπ] mean delay of a class {L, H, avg}

job under scheduling policy π
E
[
T π

L(x)
]
,E

[
T π

H(x)
]

mean response time of a class L,
H job of size x under policy π

WL,WH stationary workload conditioned
on being in state L, H

rL = 1 − λ
µL

rL(x) = 1 − λsL(x)

rH = 1 − λ
µH

rH(x) = 1 − λsH(x)

ρ = λ (p/µL + (1 − p)/µH) ρ(x) = λ(psL(x) + (1 − p)sH(x))

sL(x) = E
[
min{Exp(µL), x}

]
= 1−e−µL x

µL

W∗
L,W

∗
H

stationary fluid workload in a sys-
tem with flow rates rL and rH , con-
ditioned on being in state L, H

sH(x) = E
[
min{Exp(µH), x}

]
= 1−e−µH x

µH

g(x) = Θ(h(x)) as x→ x0
0 < lim inf

x→x0

g(x)
h(x) ≤ lim sup

x→x0

g(x)
h(x) < ∞ W∗

L(x),W∗
H(x) stationary fluid workloads in a

system with flow rates rL(x), rH(x)

g(x) = o(h(x)) as x→ x0 limx→x0
g(x)
h(x) = 0 X̃(s) = E

[
e−sX

]
Laplace transform of r.v. X

Table 2: Notation used in Section 2.

being of a smaller order than the dominant term. Similarly, we say g(α) is of ‘the same order’133

as h(α) (again with the limit α → 0 implicit), denoted g(α) = Θ(h(α)) when intuitively g(α)
h(α) is134

eventually bounded between two strictly positive constants. Thus, for example, a Θ(1) function135

is eventually bounded between two strictly positive constants as α → 0. In proving theorems136

about response time, it will often suffice to just argue about the asymptotic order of busy period137

durations, probabilities and related quantities.138

2.1. Analysis for case µH > λ139

Let T π
L and T π

H denote the random variables for response time of class L and class H jobs, respec-140

tively, under scheduling policy π (see Table 2). When µH > λ, the system is stable during both L141

and H states, and we have the following intuitive result which we state without proof.142

Theorem 1. Let π be any work-conserving, size-independent policy. When µH > λ,143

lim
α→0

E
[
T π

L
]

=
1

µL − λ
; lim

α→0
E
[
T π

H
]

=
1

µH − λ
.

Remark 1: Theorem 1 says that as job sizes become more and more correlated, the behavior of144

all work-conserving, size-independent scheduling policies will tend to become the same, pro-145

vided µH > λ. This is because the system behaves as a mixture of two stable M/M/1 systems,146

and all size-independent scheduling policies have the same mean response time for an M/M/1147

system. The same argument does not apply when µH < λ because the M/M/1 during the H states148

is unstable and the workload built up during the H states results in significant transient effects.149

Remark 2: Since LAS is optimal (among size-independent policies) at each extreme, we intu-150

itively expect LAS to be near-optimal through the entire range of α, and thus for all levels of151

correlation. We verify that this is indeed true in Section 3, Figure 2.152
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2.2. Preliminaries: Workload analysis via Fluid model for the case µH < λ153

We begin our study of the case µH < λ by finding the distribution of stationary workload during154

the L and H states, respectively. To do this, we first introduce the fluid model of our MMAP155

correlation model.156

Definition 1. Under the fluid model, we assume that the workload increases at a constant rate of157

−rH during the H states (see Table 2), and decreases at a constant rate of rL during the L states158

as long as the workload is positive.159

Lemma 1. Let W∗L and W∗H denote the random variables for the stationary workload during L160

and H states under the fluid model, respectively (we will superscript fluid model random vari-161

ables by ∗). Let W̃∗
L(s) = E

[
e−sW∗L

]
and W̃∗H(s) = E

[
e−sW∗H

]
denote their Laplace transforms.162

Then,163

W̃∗H(s) =
γH − γL

s + (γH − γL)
; W̃∗L(s) =

(
1 −

γL

γH

)
+
γL

γH
·

γH − γL

s + (γH − γL)

where γL = αL
rL

and γH = −αH
rH

.164

Thus the workload during the H states, W∗
H , is distributed as an Exp(γH − γL) random variable,165

and the workload during the L states, W∗
L, is a mixture of an Exp (γH − γL) random variable and166

an atom at 0. Further, the mean of W∗
L and W∗

H are of the order Θ
(

1
α

)
. Thus, as α→ 0 , the fluid167

workload diverges at a rate of 1
α

.168

Lemma 2. WL
d
= W∗L + o(α−1) , WH

d
= W∗H + o(α−1).169

Remark 3: Lemma 2 says that, asymptotically as α → 0, the stationary workload, WL and WH ,170

of the stochastic system converge in distribution to the stationary workload, W∗L and W∗H , under171

the fluid model. While a convergence of workloads on a sample path basis was proved in [4], we172

are unaware of a proof of the convergence of stationary workloads.173

Proof of Lemma 1: We first note that by conditional PASTA [27], W∗L and W∗H are equal in174

distribution to the stationary workload at the end of L and H states respectively. Let τL and τH175

be Exponentially distributed random variables with mean 1
αL

and 1
αH

, respectively. We have the176

following stochastic fixed point equations:177

W∗H
d
= W∗

L − rHτH ; W∗L
d
= max

{
W∗

H − rLτL, 0
}

Taking Laplace transforms of the above equations, we get the following fixed point equations:178

W̃∗
H(s) = W̃∗L(s) ·

αH/rH

αH/rH − s
; W̃∗L(s) =

sW̃∗
H(αL/rL) − (αL/rL)W̃∗H(s)

s − αL/rL
,

which yield the expressions in Lemma 1.
Proof of Lemma 2: The lemma is proven by starting with Theorem 5 (Appendix A) which
gives the exact expressions for the Laplace transforms of WL and WH . According to Theorem 5:

W̃L(s) =
(1 − ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(1)

where, mL = µL + s, mH = µH + s, gL = µL − λ+ s, gH = µH − λ+ s, πL(0) =
(1−ρ)α(µH+ξ)
ξ(µH−λ+ξ) , and ξ179

denotes the unique root of the denominator of (1) (viewed as a cubic in s) in the interval (0,+∞).180
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The quantity πL(0) denotes the long run fraction of time that the system is empty conditioned on181

being in state L. Taking the limit α→ 0, we get182

ξ = (λ − µH) +
pαλ
λ − µH

+ Θ(α2)

and thus,183

πL(0) =
(1 − ρ)α(µH + ξ)
ξ(µH − λ + ξ)

=
(1 − ρ)α(λ + Θ(α))

(λ − µH + Θ(α))
(

pαλ
λ−µH

+ Θ(α2)
) =

1 − ρ
p

+ Θ(α)

Note that the above is not in disagreement with the result Pr
[
W∗L = 0

]
=

(
1 − γL

γH

)
as the latter is184

only equivalent to Pr
[
WL = o

(
1
α

)]
. The other roots of the denominator of (1) in the limit α → 0185

are given by:186

χ = (λ − µL) −
pαλ
µL − λ

+ Θ(α2) and η = −
αµLµH(1 − ρ)

(µL − λ)(λ − µH)
+ Θ(α2).

Canceling the common factor (s − ξ), and noting that αµLµH (1−ρ)
(µL−λ)(λ−µH ) = (γH − γL), we can rewrite:187

W̃L(s) = πL(0) + K1
−χ

s − χ
+ K2

−η

s − η
=

1 − ρ
p

+ K1
µL − λ + Θ(α)

s + (µL − λ + Θ(α))
+ K2

γH − γL

s + (γH − γL)
.

Matching the coefficients of s, we get K1 = 1−rL
rL

(
1−ρ

p

)
+Θ(α), and K2 = 1− 1−ρ

prL
+Θ(α) =

γL
γH

+Θ(α).188

Thus we have proved that, as α→ 0, the distribution of WL is a mixture of an Exponential distri-189

bution with mean 1
γH−γL

with probability ∼ γL
γH

, and with the remaining probability the stationary190

distribution of an M/M/1 with arrival rate λ and service rate µL.191

Goals of asymptotic analysis. Since we are interested in analyzing work-conserving policies,192

the stationary workload, W, is the same across policies. What differs from one policy to another193

is what types of jobs make up that work. Since we restrict ourselves to size-independent policies,194

we can bound the mean remaining size of any job under our H2 job size distribution between195

1
µL

and 1
µH

. This gives bounds on E[Nπ] – the mean number of jobs in the system for any work-196

conserving policy π – as µHE[W] ≤ E[Nπ] ≤ µLE[W]. Finally, by applying Little’s law, we get197
µH
λ

E[W] ≤ E[T π] ≤ µL
λ

E[W]. Since E[W] diverges as 1
α

as α→ 0, we have the following.198

Lemma 3. When µH < λ in the MMAP model, the mean response time of any work-conserving199

size-independent scheduling policy π grows as E[T π] = Kπ

α
+ o( 1

α
), for some constant Kπ which200

depends only on the scheduling policy and the parameters µH , µL, p and λ.201

Our goal is to identify the Kπ for different policies. This is analogous to heavy traffic analysis,202

where space (response time, number of jobs in system, etc.) is scaled by (1 − ρ) and analyzed in203

the limit ρ→ 1.204

2.3. FCFS205

Theorem 2. In the regime µH < λ,

E
[
DFCFS

L

]
=

(1 − p)
p(1 − ρ)

(
λ

µH
− 1

)2 1
α

+ o
(

1
α

)
E
[
DFCFS

H

]
=

1
(1 − ρ)

(
1 −

λ

µL

) (
λ

µH
− 1

)
1
α

+ o
(

1
α

)
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Proof: By conditional PASTA, the delay of class L jobs is distributed as WL, and that of class H206

as WH . Applying Lemmas 2 and 1, the result is immediate.207

Remark 4: We already see a divergence in the behavior of scheduling policies when job sizes208

become correlated. When α → ∞ (i.i.d. case), and under a Poisson arrival process, the mean209

delay under FCFS depends only on the first two moments of the job size distribution. However,210

as α→ 0, it depends on all the parameters of the H2 job size distribution.211

2.4. OPT, P-LCFS and LCFS212

While it is hard to characterize the optimal size-independent policy when job sizes are correlated213

since the optimal policy might (and will) exploit the correlation structure to predict classes of214

future jobs based on observed history of job sizes, a trivial lower bound is obtained by considering215

an omniscient scheduler – that is, a scheduler that knows the class (L,H) of each job in the system,216

but not the exact size, and gives preemptive priority to class L jobs. We call this policy OPT.217

Theorem 3. When µH < λ, we have for each policy π ∈ {OPT, P-LCFS, LCFS}:

E
[
Dπ

L
]

= Θ(1)

E
[
Dπ

H
]

=

[
µH

λ(1 − p)

]
(1 − p)λ
(1 − ρ)

(
1
µH
−

1
µL

) (
λ

µH
− 1

)
1
α

+ o
(

1
α

)
Corollary 1. For π ∈ {LCFS, P-LCFS, OPT}, when µH < λ: limα→0

E
[
T FCFS

]
E[T π] = λ

µH
.218

Proof of Theorem 3: We first consider class L jobs. Under OPT, class L jobs get priority, and219

hence their response time is stochastically upper bounded by that of an M/M/1 with arrival rate220

λ and service rate µL, and is Θ(1). Under P-LCFS, the response time of class L jobs is the busy221

period started by Exp(µL) work in state L. By Theorem 6, Case 2 (see Appendix B), this is Θ(1).222

Under LCFS, the delay of class L jobs is a busy period started either by Exp(µL), Exp(µH) or 0223

work. Again, by Theorem 6, Case 2, this is Θ(1).224

To understand the delay of class H jobs, note that the above implies that the mean number of225

class L jobs in the system, and hence their contribution to the total workload is Θ(1). However,226

the stationary average workload is Θ(α−1), and hence this must be composed (aside from a Θ(1)227

term) of class H jobs alone. Since, all scheduling policies are size-independent, the mean resid-228

ual size of these class H jobs is 1
µH

, yielding the mean number of class H jobs of pE[WL]+(1−p)E[WH ]
1/µH

.229

By Little’s law, we obtain the mean delay of class H jobs as pE[WL]+(1−p)E[WH ]
λ(1−p)/µH

.230

Remark 5: The proof does not extend to other policies in Table 1 as their E[TL] is not Θ(1).231

Remark 6: For the metric of E[T ], all three policies – OPT, P-LCFS and LCFS – are asymptot-232

ically optimal. However, E[TL] under the three policies is different, although always Θ(1), and233

given by the following lemma, whose proof we omit.234

Lemma 4. When µH < λ, E[TL] under OPT, LCFS and P-LCFS are given by:

E
[
T OPT

L

]
=

1
µL − λ

+ o(1)

E
[
T P−LCFS

L

]
= E

[
BL

L

]
+ o(1) =

1 − ρH

µL(1 − ρ)
+ o(1)

E
[
T LCFS

L

]
= θH(1 −

λ

µL
)E

[
BH

L

]
+
λ

µL
E
[
BL

L

]
+

1
µL

+ o(1)

where θH =
(1−p)(λ−µH )

(1−p)λ+(p−ρ)µH
, and E

[
BL

L

]
and E

[
BH

L

]
are given in Corollary 2 (see Appendix B).235
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Remark 7: Comparing with E
[
T P−LCFS

L

]
α→∞

= 1
µL
· 1

1−ρ , we see that the extreme correlated E[TL]236

for P-LCFS is always lower than the uncorrelated E[TL]. We can prove a similar result for LCFS.237

Remark 8: A further difference between the three policies emerges if one looks at higher order238

metrics, such as E
[
(T π

L)2
]
. As a byproduct of the proof of Theorem 6 (Case 2), we can see239

that E
[
(T P−LCFS

L )2
]

= Ω
(

1
α

)
, while it is Θ(1) for OPT. Thus, while simple policies such as P-240

LCFS and LCFS are asymptotically optimal for E[T ], learning-based scheduling policies might241

be preferred when one cares about more fine-grained metrics.242

2.5. LAS243

The asymptotic analysis of LAS presented below builds on the analysis under i.i.d. arrivals given244

in [7]. In short, to analyze the response time of a tagged arrival of size x, we consider a modified245

system where jobs of original size s are truncated to size min {s, x} when they enter the system.246

Under LAS, the response time of the tagged arrival is given by the busy period generated by the247

work it sees on arrival in this modified system.248

Theorem 4. When µH < λ, the mean response time of a job of size x under the LAS scheduling249

policy is given by:250

Case λsH(x) > 1:251

E
[
T LAS

L (x)
]

=
E
[
W∗

L(x)
]

1 − ρ(x)
+ o

(
1
α

)
; E

[
T LAS

H (x)
]

=
1
αH

+
E
[
W∗H(x)

]
+

λsH (x)−1
αH

1 − ρ(x)
+ o

(
1
α

)
Case λsH(x) < 1:252

E
[
T LAS

L (x)
]

= E
[
T M/M/1/LAS

L (x)
]

+ o(1); E
[
T LAS

H (x)
]

= E
[
T M/M/1/LAS

H (x)
]

+ o(1)

where E
[
T M/M/1/LAS

L (x)
]

and E
[
T M/M/1/LAS

H (x)
]

denote the mean response time of a job of size x253

under LAS scheduling in M/M/1 queues with arrival rate λ, and job size distribution Exp(µL)254

and Exp(µH), respectively.255

Proof: Case λsH(x) > 1: In this case, the modified system with truncated job sizes is in transient256

overload during the H states. Theorem 6, Case 1 (see Appendix B), gives us the expression for257

the required mean busy period.258

Case λsH(x) < 1: In this case, the modified system with truncated job sizes is stable during the259

H states. As α → 0, the system looks like a mixture of two independent stable M/G/1 queues260

with the modified job size distributions (similar to Theorem 1). The mean response time of a261

type L job of size x in this modified system thus converges to the mean response time of a job of262

size x under an M/M/1/LAS system with arrival rate λ and job sizes i.i.d. Exp (µL). A similar263

argument applies to type H jobs of size x.264

Remark 9: Under i.i.d. H2 job sizes, LAS is the optimal size-independent policy for minimizing265

E[T ] because it isolates the class L jobs from class H jobs. Intuitively we expect this behavior to266

carry over when correlations are introduced, but this is not the case. Not only does LAS perform267

suboptimally, but E[TL] under LAS grows as Θ
(

1
α

)
, while it is Θ(1) under LCFS and P-LCFS.268

The reason for this counter-intuitive behavior lies in the fraction of L jobs that do not get isolation269

and hence experience Θ
(

1
α

)
mean response time. Under LCFS and P-LCFS, this fraction is Θ(α)270

with a net effect of Θ(1). Under LAS, however, all L jobs with a size bigger than 1
µH

log
(

µH
λ−µH

)
,271

which is a Θ(1) fraction, experience Θ
(

1
α

)
mean response time.272
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3. Evaluation via Simulations273

While Section 2 provided fluid asymptotics as α → 0 for a wide range of size-independent274

scheduling policies, we are only able to perform exact numerical analysis of the case 0 < α < ∞275

for a smaller subset (FCFS, LCFS, P-LCFS, OPT) via algorithms proposed in the supplement276

[15]. This section studies the full range of policies for all α via numerical techniques for the277

policies mentioned above, and via simulation for the remaining policies in Table 1. We start with278

results for our MMAP model and then present results for trace-based experiments.279

0.010.1110
1

2

3

4

5

6

α

E
[T

]

 

 

FCFS
ROS
PS
LAS
LCFS
P−LCFS
OPT

PS≈P−LCFS
≈LAS≈OPT

FCFS

ROS

LCFS

Figure 2: Effect of job size correlation when µH > λ. The parameters chosen were µL = 50.73, µH = 1.0055, p =

0.5073, λ = 1 (ρ = 0.5,C2 ≈ 2.9).

MMAP under No transient overload: In Figure 2, we see the effect of correlation on scheduling280

policies when µH > λ, so that there is no transient overload in H states. We see that for moderate281

α, E[T ] of the different scheduling policies range from E[T ] = 1 to about E[T ] = 1.5, with FCFS282

being the worst and LAS being the best. As α decreases, we see that the relative performance283

difference between scheduling policies begin to vanish (E[T ] ranges from 6.9 to 7.5 for α ≈284

0.01). This behavior as α → 0 is consistent with Theorem 1. Observe also that while FCFS,285

ROS and LCFS are equal at the two extremes (α → ∞ and α → 0), for 0 < α < ∞ they are286

ordered as FCFS>ROS>LCFS with respect to E[T ].287

MMAP under Transient overload: Figure 3 shows the effect of correlation in the more inter-288

esting case of µH < λ, implying that there is transient overload during the H states. Figure 3(a)289

shows the E[T ] vs. α curves for the different scheduling policies. We see that FCFS is the worst290

policy and LAS is optimal or close to optimal throughout the range of α shown. On the other291

hand, P-LCFS starts out equal to PS when α→ ∞ and is clearly suboptimal; yet for low α (high292

correlation), P-LCFS approaches and even overtakes LAS, and becomes optimal. This is consis-293

tent with Theorem 3. Similarly, LCFS starts out equal to FCFS when α → ∞ and is worst in294

performance, but becomes optimal as α→ 0, again confirming Theorem 3.295

A major difference between Figure 3(a) (transient overload) and Figure 2 (no overload) is that the296

policies clearly do not converge to each other in Figure 3 as α→ 0, whereas they do in Figure 2.297

Furthermore, for each policy π in Figure 3(a), the E[T ] curve asymptotes to a line on the plotted298

scale, which corresponds to E[T π] ∼ Kπ

α
as in Lemma 3. Thus the mean response times grow299

unboundedly as α→ 0, unlike in Figure 2.300

Figure 3(b) verifies the expressions for Kπ obtained from our asymptotic analysis by showing301 (
α

1+α

)
E[T ] as a function of 1

1+α
. We choose to scale E[T ] by α

1+α
(instead of α) to show the302

results for α → ∞ asymptote and the α → 0 asymptote in the same plot. In the former case,303

limα→∞
α

1+α
E[T π] = limα→∞ E[T π] and in the latter case limα→0

α
1+α

E[T π] = limα→0 αE[T π] =304
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Kπ. The x-axis shows 1
1+α

which is bounded between 0 and 1 (unlike α). The αE[T π] curves305

clearly converge to the analytically obtained values of Kπ marked with a small x. In the limit306

α→ 0, E[T ] for the different policies follows the order LCFS = P-LCFS < LAS < PS < ROS <307

FCFS. Due to the parameter settings, the difference between LAS and LCFS = P-LCFS as α→ 0308

is very slight; this contrasts with Figure 1 where the difference was significant.
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(c) E[TL] vs. α
Figure 3: Effect of job size correlation when µH < λ. The parameters chosen were µL = 10, µH = 1, p = 0.95, λ = 6
(ρ = 0.87,C2 ≈ 4.66).

309

Figure 3(c) shows mean response time for “little” (class L) jobs, denoted E[TL], versus α. For the310

L jobs, there is a wide difference (several orders of magnitude) in performance across policies.311

Several policies (FCFS, ROS, PS, LAS) show E[TL] increasing in proportion to 1
α

(though this312

is less obvious in the case of LAS); however, other policies (LCFS, P-LCFS) show a decrease in313

E[TL] as α decreases, as pointed out in Remark 7. Under the first group of polices, E[TL] suffers314

from increased correlation, because L jobs are affected by H jobs. For LCFS and P-LCFS, this315

is not the case, since an L job is only affected by H jobs if they arrive during the L job’s busy316

period. This happens with probability proportional to α, which becomes zero as α→ 0.317

Trace-based experiments: While we garnered useful intuition by analyzing the MMAP corre-318

lation model, it is not obvious to what extent our results would extend to real-world applications.319

To investigate this, we consider two very different traces, one involving packets sizes (Bellcore)320

and a second involving supercomputing job sizes (SHARCNET). We have simulated FCFS, ROS,321

PS, LCFS and P-LCFS policies. In addition, we simulate PRIO-P, which gives preemptive pri-322

ority to class L jobs, where class L jobs are defined as jobs with size below some threshold.323

Hence the PRIO-P policy is similar to the OPT policy, but is not necessarily the optimal size-324

independent policy because class L and H jobs are no longer Exponentially distributed. We also325

simulate SRPT (Shortest Remaining Processing Time) policy, and our plots show E[T ] under the326

simulated policies normalized by the mean response time under SRPT scheduling.327

Figures 4(a)-4(d) show the results of our experiments with a trace of packet sizes seen on the328

Bellcore Ethernet [13]. The autocorrelation function of packet sizes (Figure 4(a)) shows signif-329

icant sequential job size correlation – the lag-1 correlation is approximately 0.45 with correla-330

tion persisting even at lags of up to 100 (unlike MMAP model where the correlation decreases331

exponentially in lag). Figure 4(b) shows the job size distribution which is almost a trimodal332

distribution. To perform the simulations, we modify the base trace as follows: In the first set of333

experiments (Figure 4(c)), we scale the interarrival times from the trace to vary the ‘load’. In the334

second set of experiments (Figure 4(d)), we keep the same sequence of job sizes as the original335

trace, but create a new Poisson arrival process to eliminate correlations in the arrival process336
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0.1 0.5 0.9

2

4

6

8

10

12

ρ

E
[T

]/E
[T

S
R

P
T ]

 

 

FCFS
ROS
PS
LCFS
P−LCFS
PRIO−P

FCFS

ROS

PRIO−P

P−LCFS
PS

LCFS

0.1 0.5 0.9
10

0

10
2

10
4

10
6

ρ

E
[T

L]/E
[T

LS
R

P
T ]

 

 

FCFS
ROS
PS
LCFS
P−LCFS
PRIO−P

FCFS

ROS

LCFS

PS

P−LCFS

PRIO−P

(h) Results for Poisson arrivals

Figure 4: Trace-based experiments. Simulation results for the Bellcore trace are shown in the top box, and for the
SHARCNET trace in the bottom box. For each set of traces, the top-left plot shows the autocorrelation function for job
size sequence; the bottom-left plot shows the cdf of the job size distribution; the two top-right plots show the performance
(as the ratio of E[T ] to E

[
T S RPT

]
, and of E[TL] to E

[
T S RPT

L

]
, respectively) when the interarrival times are taken from

the trace; the two bottom right plots show the performance obtained by creating a synthetic Poisson arrival process.

(the trace arrival process is bursty) and correlations between interarrival times and job sizes (the337

correlations between a job size and immediately following interarrival time is −0.15). We see338

that with respect to E[T ], the ordering of the policies largely obeys FCFS≈ROS≈PS>LCFS≈P-339

LCFS>PRIO-P>SRPT. This is consistent with the ordering we obtained via analysis using the340

MMAP correlation model. We also see that E
[
T FCFS

]
is up to 1.8 times worse than E

[
T LCFS

]
341

which contrasts with the uncorrelated case where they are equal. We also investigate the effect342

of scheduling on the little jobs by classifying packets of size less than 400 bytes as L. Under343

our criterion, the L jobs make up 70% of the packets, and 25% of the total bytes. We find that344
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E
[
T FCFS

L

]
is up to 3 to 4 times worse than E

[
T LCFS

L

]
and almost 10 times worse than E

[
T P−LCFS

L

]
.345

We also see that PS outperforms LCFS but not P-LCFS in terms of E[TL]. This can be explained346

by the fact that under the uncorrelated case PS and P-LCFS have identical performance and out-347

perform LCFS which suffers due to job size variability. Under moderate correlation, we see a348

behavior that is the mixture of uncorrelated and high-correlation cases: job size variability is still349

hurting class L jobs under LCFS and thus gives them worse performance than PS, however due to350

correlation P-LCFS is able to perform better than PS (our MMAP simulation results also suggest351

that for moderate correlations, PS still outperforms LCFS). The same observations hold under a352

Poisson arrival process, but the gains are more moderate. This suggests that in the presence of353

cross-correlations and bursty arrivals, the effect of scheduling will be more pronounced.354

Figures 4(e)-4(h) show the results for the SHARCNET trace [1], which is a supercomputing355

workload. Here job size is defined as the run time of jobs submitted to the server, and the356

correlation in the sequence of job sizes is very high (lag-1 autocorrelation is over .7, and even357

lag-100 correlation is over .4). The ordering of policies with respect to E[T ] largely obeys358

FCFS>ROS>PRIO-P>PS≈P-LCFS≈LCFS>SRPT. The gains of utilizing LCFS instead of FCFS359

for the SHARCNET trace are even more significant, as the ratio of E
[
T FCFS

]
to E

[
T LCFS

]
can be360

over 2. For the SHARCNET trace, we defined L jobs as those smaller than 54000 seconds ( 86%361

jobs, 25% of total load). There is again a significant difference between E
[
T FCFS

L

]
and E

[
T LCFS

L

]
,362

up to 4X when scaling the original interarrival times, and 15X to 20X when the arrival process has363

been converted to a Poisson process. Comparing E[TL] for LCFS, PS and P-LCFS, we see that PS364

does better than LCFS which can be explained by the presence of job size variability. However365

the ordering of PS and P-LCFS under arrival times from the SHARCNET trace switches when366

a Poisson arrival process is considered. While under a Poisson arrival process, PS performs367

worse than P-LCFS as predicted by our analysis of the MMAP correlation model, under the368

arrival sequence from the SHARCNET trace, PS outperforms P-LCFS. This suggests that the369

correlation between the arrival times (the SHARCNET arrival sequence has extremely bursty370

and variable interarrival times compared to the Bellcore trace) is also an important aspect to371

consider to fully understand the effect of scheduling under correlated traffic pattern.372

4. Conclusions373

To the best of our knowledge, this is the first paper to study analytically how common scheduling374

policies, like PS, LAS, ROS, P-LCFS, LCFS, etc. are affected by correlation among consecutive375

job sizes. We find the ranking of scheduling policies, from highest to lowest mean response376

time (E[T ]), changes dramatically under correlation: LCFS which performs poorly under no377

correlation becomes optimal among size-independent policies under high correlation; the optimal378

size-independent policy for i.i.d. job sizes, LAS, becomes sub-optimal under high correlation;379

the mean response times of policies which are insensitive to job-size variability when job sizes380

are i.i.d., like PS and P-LCFS, now depend on the entire job-size distribution, to cite a few381

examples. When examining the mean response time of “little” jobs only (E[TL]), the change in382

ranking is even more dramatic, with correlation actually making some policies like LCFS and383

P-LCFS perform better, and making other policies like LAS perform far worse.384

We have only scratched the surface of how correlation in job sizes affects performance. First, our385

correlation model is very simple, chosen for analytical tractability and to gain insights; extending386

the results presented here to richer models is left for future work. Second, while this paper387

shows that P-LCFS and LCFS perform optimally among size-independent policies under very388
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high correlation, the paper does not answer the question of which policy is best under moderate389

correlation. Furthermore, we have not even explored policies which might exploit the correlation390

structure to improve performance. Third, our model only captures correlations in consecutive391

job sizes, but we believe that the techniques introduced herein can be applied to understanding392

the effect of all three types of correlation on the performance of scheduling policies.393

Appendix A. Transforms for stationary workload394

Theorem 5. Let W̃L(s) and W̃H(s) denote the transform for the stationary workloads during the
L and H states, respectively, under the MMAP model. Then:

W̃L(s) =
(1 − ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(A.1)

where,

mL = µL + s ; mH = µH + s
gL = µL − λ + s ; gH = µH − λ + s ; πL(0) =

(1 − ρ)α(µH + ξ)
ξ(µH − λ + ξ)

and ξ denotes the unique root of the denominator of (A.1) in the interval (0,+∞). The quantity395

πL(0) denotes the long run fraction of time that the system is empty conditioned on being in state396

L. The expression for W̃H(s) is obtained by flipping µH and µL, and flipping αL and αH .397

Proof: The first step is analysis of the transient workload in an M/G/1. Consider an M/G/1398

with arrival rate λ, i.i.d. job sizes X1, X2, . . . with Laplace transform of the job size distribution399

given by E
[
e−sX1

]
= X̃(s). We can write the following equation for the evolution of the workload400

W(t) in this M/G/1:401

W(t + δt) = W(t) − δt1W(t)>0 +
∑

n

Xn1nth arrival in (t,t+δt)

Let W̃t(s) = E
[
e−sW(t)

]
. Taking Laplace transforms in the above equation, and then letting δt → 0,402

d
dt

W̃t(s) = W̃t(s)
(
s − λ(1 − X̃(s))

)
− sPr[Wt = 0]

Let T be an Exp(ν) random variable and W̃T (s) = E
[
e−sW(T )

]
. Using integration by parts, we get:

W̃T (s) ≡
∫ ∞

u=0
W̃u(s)νe−νudu =

W̃u(s)νe−νu

−ν

∞
u=0

+

∫ ∞

u=0

dW̃u(s)
du

e−νudu

= W̃0(s) +
1
ν

∫ ∞

u=0

(
W̃u(s)

[
s − λ(1 − X̃(s))

]
− sPr[Wu = 0]

)
νe−νudu

= W̃0(s) +
1
ν

(
W̃T (s)[s − λ(1 − X̃(s))] − sPr[W(T ) = 0]

)
Specializing to our problem, we obtain the following two relations by applying the above equa-
tion during L and H states, and noting that by PASTA W̃L(s) and W̃H(s) also denote the stationary
workloads at the ends of L and H states, respectively:

W̃L(s) = W̃H(s) +
s
αL

[
W̃L(s)

(
1 −

λ

µL + s

)
− πL(0)

]
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W̃H(s) = W̃L(s) +
s
αH

[
W̃H(s)

(
1 −

λ

µH + s

)
− πH(0)

]
Eliminating W̃H(s), and πH(0) by using the fact πL(0)

αL
+

πH (0)
αH

= (1 − ρ)
(

1
αL

+ 1
αH

)
, we obtain403

the expression for W̃L(s) shown in the Theorem. It now remains to determine the unknown404

πL(0). To obtain this, we note that the polynomial in the denominator of W̃L(s) is a cubic in s405

which approaches −∞ as s → ∞. Further, the denominator is positive at s = 0 but negative at406

s = λ − µL < 0. Therefore there is exactly one root of the denominator in the interval (0,+∞),407

which we denote by ξ, at which there is a degeneracy in the denominator. Since the transform408

must converge in Re(s) > 0, the numerator must share this root, yielding the unknown πL(0).409

Appendix B. Asymptotic Expressions for Mean Busy Periods410

Busy periods form the core of the analysis for scheduling policies, and therefore we deal with411

the problem of analyzing busy periods in as much generality as possible.412

We consider a system with an environment controlled by a 2-state Markov chain with states L and413

H. The time spent in state L during each visit is Exp (αL) and time spent in state H is Exp (αH).414

Let α = αL + αH , p = αH
α

. The arrivals occur at a rate λ in each state. The arrivals during an L415

state have i.i.d. general job sizes and are denoted by random variable S L. Similarly, the arrivals416

during an H state have i.i.d. general job sizes denoted by random variable S H . We will assume417

E[S L] < E[S H]. We index this system by α.418

The scaling: We consider a sequence of systems, indexed by α, obtained by setting the switching419

rates as αL + αH = α, while fixing p = αH
α

. We start the αth system in a prescribed state with420

initial workload (a random variable) denoted by Wα. We will say that the workload sequence421

Wα is Θ(g(α)) if the sequence
{

Wα

g(α)

}
is uniformly integrable and limα→0

Wα

g(α)
d
→ W, where W is422

some non-degenerate random variable. Similarly, we say Wα = o(h(α)) if Wα = Θ(g(α)) and423

limα→0
g(α)
h(α) = 0, or Wα = ω(h(α)) if Wα = Θ(g(α)) and limα→0

h(α)
g(α) = 0.424

Goal: Let BL(Wα) and BH(Wα) denote the random variables for the busy periods started by work425

Wα in states L and H, respectively, in the αth system. We will be interested in obtaining the mean426

busy period in the asymptotic regime α→ 0. That is, we are interested in obtaining the dominant427

term in E[BL(Wα)] or E[BH(Wα)], as the switching rate α→ 0.428

Notation: S̃ L(s) = E
[
e−sS L

]
; S̃ H(s) = E

[
e−sS H

]
rL = 1 − λE[S L] ; rH = 1 − λE[S H]; ρ = λ(pE[S L] + (1 − p)E[S H])

We first present the theorems on asymptotic expressions for the mean busy periods. After pre-429

senting the theorems, we first present a brief proof sketch to elucidate how the theorems were430

derived, and then the detailed proofs. Theorem 6 considers the case λE[S H] > 1, and Theorem 7431

considers the case λE[S H] < 1.432

Theorem 6. Let rH < 0. That is, the system is under temporary overload during H states.
Case 1: Wα = ω(1), Pr

[
W = 0

]
= 0:

E[BL(Wα)] =
E[Wα]
1 − ρ

+ o(Wα)

E[BH(Wα)] =
E[Wα] +

1−ρ−rH
αH

1 − ρ
+ o(max

{
Wα, α

−1
}
)
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Case 2: Wα = Θ(1):

E[BL(Wα)] =
E
[
W

]
rL

+ pswitch · (1 − Q f )
1 − ρ − rH

αH(1 − ρ)
+ o(1)

E[BH(Wα)] = (1 − P f ) ·
E
[
W

]
+

1−ρ−rH
αH

1 − ρ
+ O(1)

where, pswitch denotes the probability that the environment state switches to H before the busy433

period started by W in state L ends. We call this event a ‘switch’. The expression for pswitch is434

given by pswitch =
E
[
W

]
αL

rL
+ o(α). The quantity Q f denotes the probability that, given a ‘switch’435

occurs, the residual busy period is finite if the H state were to last indefinitely from then on:436

Q f = Ṽ(λ(1 − p f )) + o(1)

where Ṽ(·) is given by 4: Ṽ(s) =
rL·

1−W̃(s)
E[W]

s−λ(1−S̃ L(s))
, and p f ∈ (0, 1) solves the fixed point equation5:437

p f = S̃ H(λ(1 − p f )).438

The quantity P f denotes the probability that the busy period started by W during an H state is439

finite if the H state were to last indefinitely and is given by P f = W̃(λ(1 − p f )).440

Corollary 2. Consider the case S L ∼ Exp (µL) and S H ∼ Exp (µH), µL > λ > µH . Let Bc
s

(c, s ∈ {L,H}) denote the busy period duration started by a class c job in environment state s.
Then,

E
[
BL

L

]
=

1
µL − λ

1 +
1 − p

p
·
λ − µH

µL − µH
·

λ
µH
− ρ

1 − ρ

 + o(1);

E
[
BH

L

]
=

µL

µH(µL − λ)

1 +
1 − p

p
(1 − Q fH )

λ
µH
− ρ

1 − ρ

 + o(1)

and:

E
[
BH

H

]
=

(
1 −

µH

λ

)
·

λ
µH
− ρ

αH(1 − ρ)
+ o(α−1)

E
[
BL

H

]
=

(
1 −

µL

µL + λ − µH

)
·

λ
µH
− ρ

αH(1 − ρ)
+ o(α−1).

In the above, 1 − Q fH = 1 − ṼH(λ(1 − φ f )), where φ f =
µH
λ

, and ṼH(s) =

(
1− λ

µL

)(
µH
µH +s

)
1− λ

µL

(
µL
µL+s

) .441

4 The function Ṽ(s) denotes the Laplace transform of the workload in the system just before the ‘switch’ event occurs.
Ṽ(s) is obtained as the Laplace transform of the stationary workload conditioned on server being busy in an M/G/1 with
repeated vacations, with service distribution S L and i.i.d. vacations distributed as W.

5The quantity p f denotes the probability that a busy period started by an H job in an H state is finite if the H state
were to last indefinitely.
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Theorem 7. Let rH > 0. That is, the system is stable during H states.442

Case 1: Wα = ω(α−1)443

E[BL(Wα)] =
E[Wα]
1 − ρ

+ o(Wα) ; E[BH(Wα)] =
E[Wα]
1 − ρ

+ o(Wα).

Case 2: Wα = Θ(α−1)

E[BL(Wα)] =
E[Wα]
1 − ρ

(1 − uα) +
E[Wα]

rL
uα + o(α−1)

E[BH(Wα)] =
E[Wα]
1 − ρ

(1 − uα) +
E[Wα]

rH
uα + o(α−1)

where uα ≡

 1−W̃α

(
αL
rL

+
αH
rH

)
E[Wα]

(
αL
rL

+
αH
rH

)
, 0 < uα < 1, and limα→0 uα = u =

 1−W̃
(

1−p
rL

+
p

rH

)
E
[
W

](
1−p
rL

+
p

rH

)
; and recall444

W = limα→0 αWα.445

Case 3: Wα = o(α−1)446

E[BL(Wα)] =
E[Wα]

rL
+ o(Wα); E[BH(Wα)] =

E[Wα]
rH

+ o(Wα).

Proof Sketch of Theorems 6 and 7: Recall our fluid model, in which the workload decreases at447

deterministic rate rL during the L states, and increases at rate −rH during the H states. We would448

like to believe that given an initial workload Wα, asymptotically the busy period started by Wα is449

the same as the duration of the busy period started by Wα under the fluid model. However, this is450

only partially true. When Wα = Θ(α−1), this asymptotic equivalence is justified by [4, Theorem451

1(b)] which proves the convergence of workload sample paths of the stochastic and fluid systems452

(although one needs to do a little more work to convert it to convergence of busy periods). For the453

remaining cases, we must consider the tree of events that may occur until each leaf corresponds454

to an empty system, or one with workload that is Θ(α−1) so that we can apply [4, Theorem 1(b)].455

We describe this below.456

Case: Wα = ω(α−1): In this case, the initial workload is of a higher order than the scale at which457

the system switches. Thus, asymptotically, the number of times the system switches states before458

Wα drains goes to ∞ as α → 0, and the workload sees the “average system” during its sojourn.459

Thus the mean busy period is E[Wα]
1−ρ + o(Wα).460

Case: Wα = Θ(α−1): As noted above, in this case from [4, Theorem 1(b)] asymptotically the461

mean busy period is given by the busy period under the fluid model. The final expressions are462

obtained by setting up and solving recurrences for the mean busy period under the fluid model.463

Remark 10: When rH > 0, the mean busy period started in state s is a convex combination of the464

busy period if the state s were to last indefinitely, and the busy period of the “average system”,465

with the coefficient being a function of the Laplace transform of the workload.466

Case: Wα = o(α−1), rH > 0: In this case, the system is stable in both states. Consider a busy467

period starting in state L. If the L state were to last forever, the busy period would exactly be468

E[Wα]
rL

. However, since we may switch at rate Θ(α), there is a o(1) probability that the system469

switches to state H before the busy period finishes. If this switch were to happen, the remaining470

busy period would be stochastically bounded by a Θ(Wα) random variable, as the system is471

always stable, thus giving a o(Wα) contribution to the overall busy period after multiplying by472
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the probability of switching. Thus asymptotically, the mean busy period started by Wα workload473

in state L would be E[Wα]
rL

+ o(Wα).474

Case: Wα = Θ(1), rH < 0: This case is the most non-trivial of all, and clearly explains the475

failure of fluid modeling of busy periods. First, consider a busy period started in state H by476

Wα = Θ(1) work. The fluid model would imply that the workload keeps increasing at rate −rH477

until the system switches to L. At this point we have Θ(α−1) workload built up, and we could478

apply [4, Theorem 1(b)]. However, given that we start with Θ(1) workload in state H (which is479

in transient overload), there is still a constant (Θ(1)) probability that the stochastic busy period480

started by the Θ(1) workload is finite! This probability is denoted by P f in Theorem 6, and given481

that this event does not happen, we can use the fluid busy period expressions. Next, consider a482

busy period started in state L by Wα = Θ(1) work. In this case, with Θ(α) probability (given by483

pswitch), there is a class H arrival before the busy period ends. We are now in state H with Θ(1)484

workload (whose transform is given by L̃(s) · S̃ H(s)). Given that a class H arrival happens, the485

residual busy period (from our argument above) is Θ(α−1). After multiplying it with pswitch, we486

see that the contribution of this term to the overall busy period is Θ(1), and hence is of the same487

asymptotic order as the duration of the busy period started in state L conditioned on it ending in488

state L (= E[Wα]
rL

+ o(1)). Therefore, we need to be precise with each of the terms involved, and489

applying the fluid method does not yield the correct expressions.490

Proof of Theorem 6:491

Case 1: Wα = ω(1), Pr
[
W = 0

]
= 0: We first show that under the fluid regime, the expres-492

sions for the busy periods are as given. Then we will argue that when Wα = ω(1), the fluid493

approximation for the mean busy period is asymptotically the same as the stochastic busy period.494

Let Wα be deterministic x, and τL ∼ ExpαL. Then we can write the following recurrence relation
for the fluid busy period started in L or H state by workload x.

E[BH(x)] =
1
αH

+ E
[
BL

(
x −

rH

αH

)]
E[BL(x)] = E

[
min

{
x
rL
, τL

}]
+ E

[
BH

(
x − rL min

{
x
rL
, τL

})
· 1{x>rL·τL}

]
.

Now we assume E[BL(x)] = bLx and E[BH(x)] = aH + bH x for some constants bL, aH , bH , and495

then verify that these forms are indeed correct by identifying the unknown constants. Under the496

assumed forms for fluid busy periods, the recurrences reduce to:497

aH + bH x =
1
αH

+ bLx − bL
rH

αH
; bLx =

1 − e−
αL
rL

x

αL
+ aH(1 − e−

αL
rL

x) + bH x − bHrL
1 − e−

αL
rL

x

αL

Since the above equations should be satisfied for all x, we get bL = bH = 1
1−ρ and aH =

1−ρ−rH
αH (1−ρ)498

yielding the expressions in the theorem statement.499

Now we verify that when Wα = ω(1), the fluid busy period expressions are asymptotically cor-500

rect. In the simple case Wα = ω(α−1), the system switches on a faster time-scale (Θ(α−1)) than501

the initial amount of work (ω(α−1)). Thus this workload sees the “average” system (rather than502

the transient system) and its busy period is simply E[Wα]
1−ρ + o(Wα).503

When the workload is Θ(α−1), then using [4], the sample paths of the stochastic system (scaled504

by α) converge as α → 0 to the fluid sample path in the space D[0,∞). Thus, the mean busy505

period of the stochastic system is within o(α−1) of the mean busy period of the fluid system.506
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Now consider the case Wα = Θ(g(α)) where g(α) = ω(1), but g(α) = o(α−1) (e.g., g(α) = 1
√
α

).507

Subcase 1: Busy period beginning in state H: We will show that even though the initial workload508

is o(α−1), since it is ω(1), with overwhelming probability, the sample paths will follow the fluid509

trajectory. Let W̃α(s) = E
[
e−sWα

]
. Since reordering the jobs served in a busy period does not510

change the busy period duration, consider the case where the initial workload Wα is served first.511

If the H state were to last forever, the z−transform for the number of arrivals of class H jobs512

while workload Wα is served is given by W̃α(λ(1 − z)). The main idea is to show that since the513

H state is in overload, with probability tending to 1, at least one of the class H jobs will start a514

busy period that lasts until the end of the H state, whereby by the Strong Law of Large Numbers515

the accumulated workload will be Θ(α−1). Consider the busy period that one class H job starts,516

provided the H state continues forever. The Laplace transform of the busy period in an M/G/1517

with only class H jobs, B̃H(s), satisfies:518

B̃H(s) = S̃ H(s + λ(1 − B̃H(s))).

Since the M/G/1 is in overload, there is a constant probability that the busy period is infinite.519

The probability that the busy period is finite is obtained as520

p f = lim
s→0

B̃H(s).

Taking limit in the expression for B̃H(s), we obtain:521

p f = S̃ H(λ(1 − p f ))

The busy period started by Wα, given the H phase lasts forever, is finite if and only if the busy522

period started by each H arrival while Wα was served is finite. This probability, then is given by523

Pr
[
busy period started during H is finite

]
=

∞∑
i=0

Pr
[
i arrivals during Wα

]
·pi

f = W̃α(λ(1−p f ))→ 0.

The last fact is true since Wα

g(α) → W, W̃α(s) → W̃(s · g(α)) → 0 as α → 0 (W̃(s) is a decreas-524

ing function from 1 to 0, and g(α) = ω(1)). The fact that lims→∞ W̃(s) = 0 follows from the525

assumption Pr
[
W = 0

]
= 0.526

Therefore, with probability approaching 1, the busy period started by Wα in phase H (under the527

assumption that the H phase lasts forever) is not finite. In other words, during the H phase, the528

workload increases asymptotically along the fluid trajectory, and then the system switches to the529

L phase. Since the work built up during the H state is Θ(α−1), the workload follows the fluid530

trajectory after switching to the L state. Therefore, the expression for the mean busy period531

started in H phase by ω(1) work is indeed given by the mean busy period under the fluid regime532

within a o(max {Wα, α
−1}) term.533

Subcase 2: Busy period beginning in state L: Now we consider the case where the busy period534

starts in the L phase. If the L phase were to last forever, the workload in the system, scaled by535

g(α), would follow the fluid trajectory, and hence the mean busy period would be the mean busy536

period under the fluid regime within a o(Wα) term. However, with probability Θ(α · g(α)) the537

system switches to H state before the fluid workload reaches 0. Conditioned on switching to the538

H state before the period ends, the workload at the beginning of the H state is again Θ(g(α)).539

We have already argued above that subsequently the workload follows the fluid trajectory – and540
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the residual busy period will be Θ(α−1) within an o(α−1) term. Therefore, the mean busy period541

started in L phase will be the mean busy period under the fluid regime, within a o(Wα) term.542

Case 2: Wα = Θ(1): We first consider the case where the busy period begins in the H state543

by workload W with Laplace transform W̃(s). As we have argued above, since the H state is544

in overload, there is a constant probability that the busy period does not end before the system545

switches to the L state. This probability is given by 1 − P f where,546

P f = W̃(λ(1 − p f ))

and p f is the solution to the fixed point equation p f = S̃ H(λ(1 − p f )). P f denotes the proba-547

bility that a busy period started by work W in the M/G/1 under overload is finite, and p f is the548

probability that a busy period started by a single class H job is finite.549

Given that the busy period does not end before the system switches, the work that builds up in550

the system is given by τH( λ
µH
− 1) + o(α−1) where τH denotes the duration of the H state and551

is Θ(α−1). We can thus apply the previous case and conclude that the mean busy period in this552

case, that is with probability 1 − P f , is given by 1
αH
−

rH
αH (1−ρ) . In simpler terms, we are starting553

the busy period with Θ(1) work in the H state. With Θ(1) probability, the busy period does not554

end in the H phase, in which case we start the subsequent L state with Θ(α−1) work, with an555

overall contribution to the mean busy period of Θ(α). If however, the original busy period ends556

in the H state itself, then this event contributes a Θ(1) term and hence is asymptotically negligible557

compared to the contribution of the event where the busy period does not end in the H state.558

Now we consider the case where the busy period begins in an L state. Again, we have two cases559

– either the busy period ends in the L state itself, or the system switches to an H state before the560

busy period ends. If the busy period ends in the L state, an event which happens with probability561

1 − Θ(α), then the mean busy period conditioned on this event is given by
E
[
W

]
rL

. However,562

the system can switch with probability Θ(α), and the contribution of the residual busy period563

conditioned on this event can be Θ(α−1) (from the previous subcase). Therefore, this event also564

contributes a Θ(1) term to the mean busy period, and we handle this event next.565

Consider an M/G/1 busy period started by work W. We let this M/G/1 evolve in the L state, and566

consider an independent Poisson(αL) marking process. Our aim is to find the workload in the567

M/G/1 when the first mark arrives during the busy period. The probability that no mark arrives568

is given by 1 −
E
[
W

]
αL

rL
, which we denote by 1 − pswitch in the theorem statement. Thus, with569

probability pswitch, at least one mark arrives, or equivalently, the environment processes switches570

before the busy period ends and hence the busy period now evolves in the H state.571

The subsequent busy period (that which evolves after the system switches to H) is given by the572

the busy period that starts in H state with work Ṽ(s), where Ṽ(s) denotes the transform of the573

work that is seen by the Poisson(αL) marking process conditioned on being the first mark of a574

busy period. We will now argue that this is asymptotically given by the stationary work in an575

M/G/1 conditioned on the server being busy, with exceptional service distribution for the job576

that starts the busy period given by W, and service distribution S L. We first note that if we577

have such an M/G/1 where we consider the distribution of work seen by all marks, then this578

is indeed the stationary work conditioned on the server being busy, and hence is given by the579

stationary delay seen by arrivals finding the server busy in an M/G/1 system with special first580

service (this expression, Ṽ(s) =
rL·

1−W̃(s)
E
[
W

]
s−λ(1−S̃ L(s))

, is given in the theorem statement; see [26] or [15,581

Appendix B] for proof). However, we are interested in the work that the first mark sees in a582
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busy period, call this W1. We will argue that as the probability of marking goes to 0, the work583

seen by the first mark converges in distribution to the stationary work conditioned on the server584

being busy (and that this sequence of random variables remains uniformly integrable so that the585

Laplace transforms converge). We first note that the work seen by the first mark is stochastically586

bounded above by the supremum of the work in a busy period started by work W, denote this587

by W∗1 . Further, conditioned on a second marked arrival, we can upper bound the work that this588

mark sees by the supremum of the work in the busy period started by W∗1 (which is an upper589

bound on the work after the arrival of the first mark), denote this by W∗2 . Similarly, we can obtain590

an upper bound on the work seen by the nth marked arrival in a busy period. We also have the591

trivial lower bound of 0 on the work seen by the nth marked arrival in a busy period. Note that592

both these upper and lower bounds are independent of the marking probability. Let pi denote the593

probability that there are i marked arrivals in a busy period. We can thus sandwich the stationary594

work of the M/G/1 conditioned on it being busy between p1·W1∑∞
i=1 pi

and p1·W1+
∑∞

i=2 p2·W∗i∑∞
i=1 pi

. However, as595

the marking probability (Θ(α)) goes to 0, pi ∼ Θ(αi). Therefore, W1 converges to the stationary596

work in the M/G/1 with special service, conditioned on server being busy.597

Proof of Theorem 7:598

Recall that the work is decreasing during both the L and H states. There is a negative drift of599

rL = 1 − λ
µL

during the L phase and a negative drift of rH = 1 − λ
µH

during the H phase.600

Case 1: Wα = ω(α−1): As in the proof of Theorem 6, since the system switches at a faster time601

scale (Θ(α−1)) than the initial work (ω(α−1)), the work during its sojourn sees an average system,602

and hence the busy period is E[Wα]
1−ρ + o(Wα).603

Case 2: W = Θ(α−1): We begin by noting that since the initial work is Θ(α−1), the workload604

trajectory of the stochastic system, scaled by α, converges to the fluid trajectory. Hence the busy605

period of the stochastic system is given by the fluid busy period and an additional o(α−1) term.606

We now set up the recurrences for busy periods started by deterministic work x during the H and
L phases under the fluid regime:

E[BH(x)] = E
[
min

{
x

rH
, τH

}]
+ E

[
BL

(
x − rH min

{
x

rH
, τH

})
· 1{x>rH ·τH }

]
E[BL(x)] = E

[
min

{
x
rL
, τL

}]
+ E

[
BH

(
x − rL min

{
x
rL
, τL

})
· 1{x>rL·τL}

]
where τH is an Exp (αH) random variable and τL is an Exp (αL) random variable.607

We now guess and verify that E[BH(x)] and E[BL(x)] have the following function form:608

Bi(x) = ai + bix + cie
−

(
αL
rL

+
αH
rH

)
x

where ai, bi and ci, i ∈ {L,H}, are constants to be determined. The ‘guess’ is in fact an educated
attempt arrived at by exact analysis of the mean busy period started by n jobs in an alternate
discrete system which is identical on fluid scale to the system we want to analyze, but with 0
arrival rate. Since Bi(0) = 0, we have ai = −ci. Since the Laplace transform for x − ri min

{
x
ri
, τi

}
is E

[
e
−s

(
x−min

{
x
ri
,τi

})]
=

se−
αi
ri

x
−
αi
ri

e−sx

s− αi
ri

and E
[
min

{
x
ri
, τi

}]
= 1−e−

αi
ri

x

αi
, our recurrences become:

aL + bLx + cLe
−

(
αL
rL

+
αH
rH

)
x

=
1 − e−

αL
rL

x

αL
+ aH + bH

x −
1 − e−

αL
rL

x

αL
rL

 + cH


(
αL
rL

+ αH
rH

)
e−

αL
rL

x
−

αL
rL

e
−

(
αL
rL

+
αH
rH

)
x

αH
rH


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aH + bH x + cHe
−

(
αL
rL

+
αH
rH

)
x

=
1 − e−

αH
rH

x

αH
+ aL + bL

x −
1 − e−

αH
rH

x

αH
rH

 + cL


(
αL
rL

+ αH
rH

)
e−

αH
rH

x
−

αH
rH

e
−

(
αL
rL

+
αH
rH

)
x

αL
rL

 .
Since the above equalities hold for all x, together with ai = −ci, we get:

bL = bH =

 rL
αL

+ rH
αH

1
αL

+ 1
αH

−1

=
1

1 − ρ
,

−aL = cL =
rL − rH

αLαH

(
rL
αL

+ rH
αH

)2 ·
rH

αH
,

−aH = cH = −
rL − rH

αLαH

(
rL
αL

+ rH
αH

)2 ·
rL

αL
.

Therefore the expected busy period started by a work of size x during L and H phases, respec-
tively, can be expressed in the following convenient/intuitive form:

E[BL(x)] =
x

1 − ρ
−

(
x

1 − ρ
−

x
rL

)
·

1 − e
−

(
αL
rL

+
αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (B.1)

E[BH(x)] =
x

1 − ρ
−

(
x

1 − ρ
−

x
rH

)
·

1 − e
−

(
αL
rL

+
αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (B.2)

which show that E[BL(x)] and E[BH(x)] are weighted averages of the busy periods of the α →609

0 and α → ∞ cases. Taking expectation over x (which is distributed as Wα), we obtain the610

expressions given in the theorem.611

Case 3: Wα = o(α−1) : Since the system is stable during both the L and H states, the busy period612

is Θ(Wα) (being upper bounded by the busy period started by Wα in an M/G/1 with service613

distribution S H). Suppose the busy period starts in the L state. If the L state were to last forever,614

the busy period would indeed be E[Wα]
rL

. Now either the system switches to the H state before615

this busy period ends, and this event happens with probability 1 − o(1). In this case, the length616

of the busy period conditioned on it being smaller than Exp(αL) will be E[Wα]
rL

+ o(Wα) since617

Wα = o(α−1). However, if the system switches before the busy period ends, which happens with618

probability o(1), the residual busy period is still Θ(Wα). The overall contribution of the second619

event to the mean busy period started by Wα is o(Wα). By law of total probability, the mean busy620

started in L phase is E[Wα]
rL

+ o(Wα).621

The proof for busy periods started during H phases is identical.622
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[3] S. C. Borst, O. J. Boxma, and M. B. Combé. Collection of customers: a correlated M/G/1 queue. In SIGMET-627

RICS/Performance, pages 47–59, New York, NY, USA, 1992. ACM.628

[4] G. L. Choudhury, A. Mandelbaum, M. I. Reiman, and W. Whitt. Fluid and diffusion limits for queues in slowly629

changing environments. Stoch. Mod., 13:121–146, 1997.630

http://www.cs.huji.ac.il/labs/parallel/workload/


/ Performance Evaluation 00 (2010) 1–24 24

[5] I. Cidon, R. Gurin, A. Khamisy, and M. Sidi. Analysis of a correlated queue in a communication system. In631

INFOCOM’93, pages 209–216, 1993.632

[6] J. Cohen. The single server queue. North Holland, 1969.633

[7] R. Conway, W. Maxwell, and M. Miller. Theory of Scheduling. Addision-Wesley, 1967.634

[8] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: Evidence and possible causes. In635

ACM SIGMETRICS’96, pages 160–169, May 1996.636

[9] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with long-range dependent packet637

traffic. IEEE/ACM Trans. on Networking, 4:209–223, 1996.638

[10] D. G. Feitelson. Packing schemes for gang scheduling. In IPPS, pages 89–110, London, UK, 1996. Springer-639

Verlag.640

[11] D. G. Feitelson. Locality of sampling and diversity in parallel system workloads. In Proceedings of the 21st annual641

International Conference on Supercomputing, pages 53–63, New York, NY, USA, 2007. ACM.642

[12] K. Fendick, V. Saksena, and W. Whitt. Dependence in packet queues. IEEE Trans. Commun., 37:1173–1183, 1989.643

[13] H. J. Fowler, W. E. Leland, and B. Bellcore. Local area network traffic characteristics, with implications for644

broadband network congestion management. IEEE Journal on Selected Areas in Communications, 9:1139–1149,645

1991.646

[14] S. Ghosh and M. Squillante. Analysis and control of correlated web server queues. Computer Communications,647

27(18):1771–1785, 2004.648

[15] V. Gupta, M. Burroughs, and M. Harchol-Balter. Analysis of scheduling policies under correlated job sizes. Tech-649

nical Report CMU-CS-10-107, School of Computer Science, Carnegie Mellon University, 2010.650

[16] H. Li, D. Groep, and L. Wolters. Workload characteristics of a multi-cluster supercomputer. pages 176–193.651

Springer Verlag, 2004.652

[17] M. Livny, B. Melamed, and A. K. Tsiolis. The impact of autocorrelation on queuing systems. Manage. Sci.,653

39(3):322–339, 1993.654

[18] N. Mi, G. Casale, and E. Smirni. Scheduling for performance and availability in systems with temporal dependent655

workloads. In DSN’08, pages 336–345, 2008.656

[19] N. Mi, G. Casale, Q. Zhang, A. Riska, and E. Smirni. Autocorrelation-driven load control in distributed systems.657

In MASCOTS’09, 2009.658

[20] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking,659

3(3):226–244, 1995.660

[21] R. Righter, J. G. Shanthikumar, and G. Yamazaki. On extremal service disciplines in single-stage queueing systems.661

J. Appl. Probab., 27(2):409–416, 1990.662

[22] A. Riska, M. Squillante, S.-Z. Yu, Z. Liu, and L. Zhang. Matrix-analytic analysis of a MAP/PH/1 queue fitted to663

web server data. Matrix-Analytic Methods: Theory and Applications, pages 335–356, 2002.664

[23] E. Smirni, Q. Zhang, N. Mi, A. Riska, and G. Casale. New results on the performance effects of autocorrelated665

flows in systems. In IEEE IPDPS’07, pages 1–6, 2007.666

[24] B. Song, C. Ernemann, and R. Yahyapour. Parallel computer workload modeling with markov chains. In Proc. of667

the 10th Job Scheduling Strategies for Parallel Processing (JSSPP), pages 47–62. Springer, 2004.668

[25] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic: periodicity, tail behavior, and performance implications.669

System performance evaluation: methodologies and applications, pages 23–37, 2000.670

[26] H. Takagi. Queueing Analysis, Vol. 1: Vacation and Priority Systems. North-Holland, 1991.671

[27] E. van Doorn and J. Regterschot. Conditional PASTA. Oper. Res. Lett., 7:229–232, 1988.672

[28] Q. Zhang, N. Mi, A. Riska, and E. Smirni. Load unbalancing to improve performance under autocorrelated traffic.673

In ICDCS’06, Lisboa, Portugal, 2006.674


	Introduction
	Asymptotic Analysis of Scheduling Policies as 0
	Analysis for case H > 
	Preliminaries: Workload analysis via Fluid model for the case H < 
	FCFS
	OPT, P-LCFS and LCFS
	LAS

	Evaluation via Simulations
	Conclusions
	Transforms for stationary workload
	Asymptotic Expressions for Mean Busy Periods

