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ABSTRACT
In this paper, we consider an M/M/k queueing system with
setup costs. Servers are turned off when there is no work
to do, but turning on an off server incurs a setup cost.
The setup cost takes the form of a time delay and a power
penalty. Setup costs are common in manufacturing systems,
data centers and disk farms, where idle servers are turned
off to save on operating costs. Since servers in setup mode
consume a lot of power, the number of servers that can be
in setup at any time is often limited. In the staggered setup
model, at most one server can be in setup at any time. While
recent literature has analyzed an M/M/k system with stag-
gered setup and exponentially distributed setup times, no
closed-form solutions were obtained. We provide the first an-
alytical closed-form expressions for the limiting distribution
of the system states, the distribution of response times, and
the mean power consumption for the above system. In par-
ticular, we prove the following decomposition property: the
response time for an M/M/k system with staggered setup
is equal, in distribution, to the sum of response time for an
M/M/k system without setup, and the setup time.

1. INTRODUCTION
Motivation
Server farms are ubiquitous in manufacturing systems, call
centers and service centers. In manufacturing systems, ma-
chines are usually turned off when they have no work to do,
in order to save on operating costs. Likewise, in call centers
and service centers, employees can be dismissed when there
are not enough customers to serve. However, there is usually
a setup cost involved in turning on a machine, or in bringing
back an employee. This setup cost is typically in the form
of a time delay, which we refer to as the setup time.

Server farms are also prevalent in data centers. In data
centers, servers consume peak power when they are servicing
a job, but still consume about 60% [3] of that peak power,
when they are idle. Idle servers can be turned off to save
power. Again, however, there is a setup cost involved in
turning a server back on. This setup cost is in the form
of a setup time, and a power penalty, since the server con-
sumes peak power during the entire duration of the setup
time. Now, if there is a sudden burst of arrivals into the
system, then many servers might be turned on simultane-
ously, resulting in a huge power draw, since servers in setup
consume peak power. To avoid excessive power draw, data
center operators sometime limit the number of servers that
can be in setup at any point of time. This is referred to
as “staggered setup”. The idea behind staggered setup is
also employed in disk farms, where at most one disk is al-
lowed to spin up at any point of time, to avoid excessive
power draw. This is referred to as “staggered spin up” [4, 6].
While staggered setup may help reduce power, its effect on

the distribution of response time is not obvious.
Model
Abstractly, we can model a server farm with setup costs
using an M/M/k queueing system, with a Poisson arrival
process with rate λ, and exponentially distributed job sizes,
denoted by the random variable S ∼ Exp(µ). Let ρ = λ

µ
denote the system load, where 0 ≤ ρ < k. In this model,
a server can be in one of three states: on , off, or in setup.
A server is in the on state when it is serving jobs. When
the server is on, it consumes power Pon. If there are no jobs
to serve, the server turns off instantaneously. While in the
off state, the server consumes no power. To turn on an off
server, it must first be put in setup mode. However, for the
staggered setup model, at most one server can be in setup
at any time. While in setup, a server cannot serve jobs. The
time it takes for a server in setup mode to turn on is called
the setup time, and during that entire time, power Pon is
consumed. We model the setup time as an exponentially
distributed random variable, I, with rate α = 1

E[I]
.

As in an M/M/k queueing system, we assume a First
Come First Serve central queue, from which servers pick
jobs when they become free. However, setup costs make
things more complicated. From the perspective of a job, if a
job arrives and finds a server in setup, then it simply waits
in the queue. However, if the job finds no servers in setup,
then it randomly picks an off server and puts it into the
setup state. If the job finds no off servers, it simply waits
in the queue.

When a job completes service at a server, j, the job at
the head of the queue is moved to server j, without the need
for setup, since server j is already on. Note that even if
the job at the head of the queue was already waiting on
another server i in setup, the job at the head of the queue is
still directed to server j; server i is then either turned off if
the queue is empty, or remains in setup if the queue is non-
empty. We refer to this model as the M/M/k/STAG model.
Fig. 1 shows the Markov chain for an M/M/k/STAG. We
use TM/M/k/STAG (respectively, PM/M/k/STAG) to denote
its response time (respectively, power consumption).
Results
In this paper, we provide the first analysis of M/M/k/STAG,
and derive simple closed-form expressions for the limiting
distribution of the system states. These in turn yield the
mean power consumption and the distribution of response
time for the M/M/k/STAG. Interestingly, we prove that the
response time for an M/M/k/STAG is equal, in distribu-
tion, to the sum of response time for an M/M/k system
without setup, and the setup time:

TM/M/k/STAG
d
= I + TM/M/k (1)

Prior work
Prior work on server farms with setup costs has focussed



Figure 1: Markov chain for an M/M/k/STAG.

largely on single servers. There is very little work on multi-
server systems with setup costs. In particular, no closed-
form solutions exist for the M/M/k/STAG system.

In [2], the authors consider an M/M/k/STAG queueing
system and solve the steady state equations for the associ-
ated Markov chain using a combination of difference equa-
tions and matrix analytic methods. The recursive nature of
the difference equations does not yield a closed-form solu-
tion, but can be solved numerically. The difference equations
method used by [2] was previously used in [1], where the au-
thors consider a Markov chain similar to an M/M/k/STAG.
Again, the authors provide recursive formulations for various
performance measures, which are then numerically solved for
various examples.

The above approach differs from ours in that the above
papers do not determine closed-form solutions for the lim-
iting probabilities or the distribution of response time. In
particular, while the authors of [2] assume the exact same
M/M/k/STAG model as ours, they do not derive the de-
composition property, Eq. (1), nor do they observe this de-
composition property in their graphs.

2. M/M/k/STAG
In this section, we derive the limiting probabilities of the

system states (Theorem 1), the distribution of response time
(Theorem 2), the mean response time (Corollary 1), and the
mean power consumption (Theorem 3) for an M/M/k/STAG.
Due to lack of space, we only present proof sketches. Ad-
ditional details of the proofs can be found in our technical
report [5].

Fig. 1 shows the Markov chain for an M/M/k/STAG. The
states in the Markov chain are denoted as (a, b), where a rep-
resents the number of servers that are on, and b represents
the number of jobs in the system. The Markov chain con-
sists of k + 1 rows. The first row (from the top) consists
of states where we have no on servers, the second row con-
sists of states where we have exactly one on server, and so
on. For the setup time, recall that only one server can be in
setup at any time. Thus, the rate of going from state (i, j)
to state (i+ 1, j) is α for any 0 ≤ i < k and i < j.

We’ll now solve the Markov chain shown in Fig. 1 for the
limiting probabilities of being in any state. We first find the
limiting probabilities for the states in the 1st row, in terms of
π0,0. Next, we solve for the limiting probabilities of being in

the states of the 2nd row, in terms of the solution for the 1st
row, which in turn is expressed in terms of π0,0. Continuing
in this way, we can solve for the limiting probabilities of all
the states of the Markov chain in terms of π0,0. We’ll then

solve for π0,0 using the equation
∑
i,j

πi,j = 1.

Theorem 1. The limiting probabilities for an M/M/k/STAG
are given by:

πi,j =
π0,0 · γi

i!
βj for 0 ≤ i < k and j ≥ i

πk,j =
π0,0γ

kkµ

k!(kµ− (λ+ α))
βj − π0,0k

k(λ+ α)

k!(kµ− (λ+ α))

(ρ
k

)j
for j ≥ k

π0,0 = (1− β) ·

 ∑
0≤i<k

ρi

i!
+

ρkµ

(k − 1)! · (kµ− λ)


−1

where α = 1
E[I]

, β = λ
λ+α

and γ = λ+α
µ

.

Proof. The relevant balance equations for the 1st row
are given by:

π0,j · (λ+ α) = π0,j−1 · λ for j > 0

=⇒ π0,j = π0,0 · βj for j ≥ 0, where β = λ
λ+α

(2)

The relevant balance equations for the 2nd row are given
by, when j > 1:

π1,j · (λ+ α+ µ) = π1,j−1 · λ+ π0,j · α+ π1,j+1 · µ(3)

The RHS of Eq. (3) above consists of states of the 2nd row as
well as states of the 1st row. Thus, we use difference equa-
tions (see [1] for more information on difference equations)
to solve for π1,j .

π1,j = A1,1x
j +A1,2β

j for j > 1, (4)

where x is a solution of the homogeneous equation:

x · (λ+ α+ µ) = λ+ x2 · µ (5)

We now solve for A1,2 by plugging in Eqs. (2) and (4)
into Eq. (3) for j > 2. This gives us A1,2 = π0,0 · γ, where
γ = λ+α

µ
.

To get A1,1, we use the balance equation for π1,2, which
will contain π1,1. Using the balance equation for π0,0:

π0,0 · λ = π1,1 · µ
=⇒ π1,1 = π0,0 · ρ (6)

We now use Eqs. (2) and (4) in Eq. (3) for j = 2. This
gives us A1,1 = 0.

Thus, we have from Eqs. (4):

π1,j = π0,0 · βj · γ for j > 0 (7)

For row i, 3 ≤ i ≤ k, we again use difference equations,
and derive the values of A1,1 and A1,2 as above. We find

that A1,1 = 0 and A1,2 =
π0,0·γi

i!
. Thus:

πi,j =
π0,0 · γi

i!
βj for j ≥ i and i ≤ k (8)

For row (k + 1), the difference equations suggest:

πk,j = Ak,1x
j +Ak,2β

j for j > k , (9)

where x is a solution of the homogeneous equation:

x · (λ+ kµ) = λ+ x2 · kµ (10)



This time, Ak,1 will not be zero. Thus, we need to solve the
above equation for x. Solving Eq. (10) for x, we find x = ρ

k
(the other solution x = 1 is trivially discarded). Thus, we
have:

πk,j = Ak,1
(ρ
k

)j
+Ak,2β

j for j > k , (11)

We now solve for A1,1 and A1,2 as we did for row 2, and
find that, for j ≥ k:

πk,j =
π0,0γ

kkµ

k!(kµ− (λ+ α))
βj − π0,0k

k(λ+ α)

k!(kµ− (λ+ α))

(ρ
k

)j
Finally, we derive π0,0 by setting

∑
i,j

πi,j = 1.

Interestingly, we have π0,0 = (1 − β) · π′0, where π′0 is the
limiting probability of having 0 jobs in an M/M/k system
without setup.

We now use the limiting probabilities to derive the distri-
bution of response times for an M/M/k/STAG.

Theorem 2. For an M/M/k/STAG, we have:

TM/M/k/STAG
d
= I + TM/M/k

where TM/M/k is the random variable representing the re-
sponse time for an M/M/k system, which is independent of
the setup time, I.

Proof. In order to derive the distribution of response
times for an M/M/k/STAG, we’ll first derive the z-transform

of the number of jobs in queue, N̂Q(z). Then, we’ll use this

to obtain T̃Q(s), the Laplace-Stieltjes transform for the time
in queue of an M/M/k/STAG.

Using Theorem 1, the limiting probabilities for the num-
ber of jobs in queue, NQ, for an M/M/k/STAG can be ex-
pressed as:

Pr[NQ = i] = π0,i + π1,1+i + π2,2+i + . . .+ πk,k+i

= π0,0

(
k∑
j=0

ρj

j!

)
βi +

π0,0ρ
k(λ+ α)

(
βi −

(
ρ
k

)i)
k!(kµ− λ− α)

N̂Q(z) =

∞∑
i=0

Pr[NQ = i] · zi

=

π0,0

(
k∑
j=0

ρj

j!

)
1− βz +

π0,0ρ
k(λ+ α)λz

k!(kµ− λz)(λ+ α− λz)

To convert N̂Q(z) to T̃Q(s), observe that, by PASTA, an
arrival sees the steady state number in the queue, which is
the same (in distribution) as the number of jobs seen by a
departure in the queue. However, the jobs left behind by a
departure are exactly the ones that arrived during the job’s
time spent in the queue. Thus we have N̂Q(z) = T̃Q(λ(1 −
z)), or equivalently, T̃Q(s) = N̂Q(1− s

λ
). This gives us:

T̃Q(s) =
π0,0(λ+ α)

s+ α

{
ρk

k!

(
λ− s

kµ− λ+ s
− λ

kµ− λ

)
+

απ−1
0,0

(λ+ α)

}
After a few steps of algebra, we get:

T̃Q(s) =

(
α

s+ α

){
(1− PQ) + PQ

kµ− λ
kµ− λ+ s

}
= Ĩ(s) · T̃QM/M/k

(s) (12)

where PQ is the probability of queueing in an M/M/k. Thus:

TQM/M/k/ST AG

d
= I + TQM/M/k

=⇒ TM/M/k/STAG
d
= I + TM/M/k

Corollary 1.

E
[
TM/M/k/STAG

]
=

1

α
+ E

[
TM/M/k

]
(13)

Theorem 3. For an M/M/k/STAG, the mean power con-
sumption is given by:

E
[
PM/M/k/STAG

]
= Pon

(
β + ρ− π0,0ρ

kβ

k!(1− β)(1− ρ
k

)

)
where α = 1

E[I]
, β = λ

λ+α
and π0,0 is given by Theorem 1.

Proof. From Section 1, we know that a server can be
in any of the following three states: (i) off, (ii) on or (iii)
setup. The server consumes zero power in the off state and
Pon power in the on or setup states. Thus, we can compute
E
[
PM/M/k/STAG

]
by conditioning on the power consumed

in state (i, j).

3. CONCLUSION
In this paper, we derive closed-form expressions for the

limiting probabilities in an M/M/k with staggered setup.
From these, an interesting decomposition property is illumi-
nated: the response time for an M/M/k with staggered setup
is distributed as the sum of two independent random vari-
ables, one corresponding to the response time for an M/M/k
system without setup and the other to the setup time. The
simplicity of this result makes it extremely appealing to sys-
tem designers who can immediately ascertain the effect of
setup costs on response time in data centers. Further, using
the limiting probabilities of the system states, one can eas-
ily derive other relevant performance measures such as mean
power consumption (included herein), as well as the variance
of response time and the variance of power consumption.
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