
SOAP Bubbles: Robust Scheduling Under Adversarial Noise

Ziv Scully
Carnegie Mellon University

zscully@cs.cmu.edu

Mor Harchol-Balter
Carnegie Mellon University

harchol@cs.cmu.edu

Abstract— A great many scheduling policies for the M/G/1
queue are so-called SOAP policies [1], meaning they assign each
job a priority based on its age, the amount of service it has
received so far. Perhaps the most notable example is the Gittins
policy, which minimizes mean response time when job sizes are
unknown. However, in some computer systems even job ages,
let alone job sizes, are not precisely known by the scheduler.
This can occur when scheduling in a time-shared system or
over a network. Given that the Gittins policy relies on knowing
exact job ages, it is not clear how to minimize mean response
time in such settings.

In this paper we study scheduling for the M/G/1 when
the scheduler knows only approximate job ages. We find
that naively using the traditional Gittins policy is not robust,
meaning that introducing even an infinitesimal amount of noise
in job ages can cause a large jump in mean response time. By
examining the ways in which this naive policy fails, we construct
a simple variation of the Gittins policy, called the shift-flat
Gittins policy, which is indeed robust to noise and therefore has
near-optimal mean response time. Moreover, we show that our
shift-flat construction generalizes, yielding a robust variation of
any SOAP policy.

I. INTRODUCTION

Scheduling jobs in the M/G/1 queue to minimize mean
response time is a classic problem. In a preemptive setting
where job sizes are unknown to the scheduler, the optimal
scheduling algorithm is the Gittins policy [2; 3; 4]. Based on
the job size distribution, the Gittins policy assigns each job a
number, called the job’s Gittins index, and serves the job of
maximum Gittins index. A job’s Gittins index depends only
on its age, the amount time the job has been served so far. In
particular, a job’s Gittins index is independent of other jobs.

Although the Gittins policy has been known to be optimal
for some time, its mean response time was analyzed only
recently, when Scully et al. [1] analyzed all policies in the
broad class of SOAP policies. A SOAP policy is any policy
in which a job’s priority, or rank, is determined by its age
according to a rank function. Specifically, a SOAP policy
always serves the job of minimum rank. Fig. 1 shows the
rank function of an example of the Gittins policy.

To implement the Gittins policy or any other SOAP
policy, the scheduler needs to know each job’s exact age at
every moment in time. However, in some computer systems
the scheduler only knows each job’s approximate age. For
example, in a time-shared system, it can be hard to precisely
track the CPU time allocated to a particular job without

This research was supported by NSF-XPS-1629444, NSF-CSR-180341,
and a 2018 Faculty Award from Microsoft. Ziv Scully was supported by an
ARCS Foundation scholarship and a NSF Graduate Research Fellowship
under Grant No. DGE-1745016.

2 3 7 15

6

9
8

0 a
0

rG(a)

X =


2 with probability 1

3
7 with probability 1

3
15 with probability 1

3

lo
w

er
ra

nk
w

in
s

The rank function of the Gittins policy when each job is equally likely to be
size 2, 7, or 15. For each age a, the rank function specifies the rank rG(a)
assigned to jobs of age a. The scheduler always serves the job of minimum
rank, so we set rG(a) to be the reciprocal of the job’s Gittins index at age a.

Fig. 1. Rank Function of the Gittins Policy

incurring significant overhead. As another example, in a
networked system, a controller may not be on the same
machine as the jobs it is scheduling, in which case updating
age information over the network incurs a delay or cost.

Motivated by such examples, we create a model of M/G/1
scheduling with noisy age information. When a job’s exact
age is a, the scheduler sees a perturbed age b ∈ [a−∆, a+∆],
where ∆ ≥ 0 is the system noise. To conservatively model
potential correlations between the age errors of different jobs,
we assume that b is chosen adversarially from [a −∆, a +∆].

The Gittins policy requires jobs’ exact ages, so we ask:

What scheduling policy has optimal or near-optimal
mean response time when the job ages reported to
the scheduler are adversarially perturbed?

As a first attempt, we might try the naive Gittins policy,
which simply plugs perturbed ages into the Gittins policy’s
rank function (Fig. 1) and serves the job of minimum
rank. The hope is that introducing a small amount of noise
increases mean response time by only a small amount.
Unfortunately, we find that the naive Gittins policy performs
poorly: introducing any noise, even infinitesimal, causes a
large upward jump in mean response time. Specifically, we
prove lim∆→0 E[T(∆)] , E[T(0)], where is E[T(∆)] is the
mean response time under system noise ∆.

We call a scheduling policy robust if
lim∆→0 E[T(∆)] = E[T(0)]. We have seen already that
the naive Gittins policy is not robust, so we ask:

How do we construct a robust variation of the
Gittins policy?

In this paper we present the first M/G/1 scheduling policies
that are robust to adversarial noise. We make the following
contributions:
• We give a definition of robustness for scheduling policies

under adversarial age noise (Section III).
• Through a case study, we construct a variation of the

Gittins policy called the shift-flat Gittins policy, which
we prove is robust (Section IV). Remarkably, the shift-
flat construction consists of just two simple steps:
– Shift: subtract ∆ from each job’s perturbed age before

applying the rank function (Section IV-A).
– Flatten: turn each local maximum of the rank function

into a plateau of length at least 2∆ (Section IV-B).
• As part of evaluating robustness, we develop a new

technique for computing an upper bound on the mean
response time of any SOAP policy in an M/G/1 system
with adversarial age noise (Section V).

• We show that the shift-flat construction generalizes
beyond the Gittins policy to give a robust variation
of any SOAP policy (Section VI).

II. SYSTEM MODEL

We consider an M/G/1 queue with Poisson job arrivals at
rate λ and job sizes drawn i.i.d. from distribution X . The load
of the system is ρ = λE[X], and we assume ρ ∈ (0, 1). We use
a preempt-resume model, meaning preemption and processor
sharing are permitted without penalty or loss of work. At
any moment in time, a job’s exact age, or simply age, is the
amount of service it has received so far. We are interested in
minimizing mean response time E[T], the expected amount
of time a job spends in the system from arrival to completion.

Throughout this paper, we discuss SOAP scheduling
policies [1]. A SOAP policy1 is specified by a rank function

r : R≥0 → R

which maps a job’s exact age to its rank, or priority. At every
moment in time, the scheduler serves the job of minimum
rank, meaning lower rank corresponds to better priority. When
multiple jobs have the same rank, the scheduler breaks the
tie first-come, first-served.

A. Adversarial Age Noise

To implement a SOAP policy, the scheduler needs to know
the exact age of each job at all times. We study a setting
where the scheduler does not know exact ages. When a job’s
exact age is a, the scheduler sees only the job’s perturbed
age, an adversarially chosen b ∈ [a − ∆, a + ∆], where ∆ ≥ 0
is the system noise. We typically write a for a job’s exact
age and b for a job’s perturbed age.

For the most part, we work with a very powerful adversary,
allowing it complete knowledge of the current system state,
including job sizes, but not of the future arrival sequence.

1Described below is actually a subclass of SOAP policies. See Scully
et al. [1, Section 2] for the fully general definition. The subclass considered
herein is SOAP policies with a single descriptor and ranks R. For ease of
exposition, we prove results for only this subclass, but the proofs generalize
to all SOAP policies.

2 7 15

6

9
8

0 a
0

rG(a)

The rank function (blue line), the lower and upper rank functions (lower and
upper dashed orange lines, respectively), and the rank bubble function rG
(orange region) of the naive Gittins policy when each job is equally likely
to be size 2, 7, or 15. The system noise is ∆ = 1/2.

Fig. 2. Rank Bubble Function of the Naive Gittins Policy

While a job is being served, the adversary can at every
moment in time choose a new perturbed age for the job.
However, while a job is waiting in the queue, its perturbed
age must remain constant.

Even though the scheduler knows only perturbed ages,
we can still use a rank function r to determine a scheduling
policy. At every moment in time, we serve the job of minimal
rank r(b), where b is the job’s perturbed age. We call this a
perturbed SOAP policy with rank function r. For example,
the naive Gittins policy is the perturbed SOAP policy with
rank function rG (Fig. 1).

B. SOAP Bubble Policies

A perturbed SOAP policy is a special case of what we call
a SOAP bubble policy. Instead of a single rank function, a
SOAP bubble policy has a rank bubble function r , which
maps each exact age a to an interval of ranks

r (a) = [r (a), r (a)],
where2

r (a) = infb∈[a−∆,a+∆] r(b)
r (a) = supb∈[a−∆,a+∆] r(b)

(1)

are the lower and upper rank functions, respectively. For
example, Fig. 2 shows the rank bubble function of the naive
Gittins policy. While one could in principle define SOAP
bubble policies using arbitrary rank bubble functions, our
main focus is on perturbed SOAP policies, which always
have lower and upper rank functions given by (1).

At any moment in time, when a job’s exact age is a, its rank
is adversarially chosen from r (a). A SOAP bubble policy
always serves the job of minimum rank, but now the rank of
a job depends not just on its age but also on the adversary’s
choice within r (a). The adversary can only change a job’s
rank while the job is being served.

Strictly speaking, the SOAP bubble formulation of per-
turbed SOAP policies makes the adversary even more

2For the specific rank functions discussed in this paper, the supremum
in r (a) is always attained. Handling the case where the supremum is not
attained requires, roughly speaking, treating ranks where the supremum is
not attained as “just below” ranks where the supremum is attained. The
changes are similar to those explained by Scully et al. [1, Appendix C].

powerful: we allow the adversary to pick any rank from
the interval r (a), even though not all ranks in the interior
of r (a) are necessarily attained as r(b) for some perturbed
age b ∈ [a − ∆, a + ∆]. Fortunately, giving the adversary this
additional power turns out not to weaken our results.

To review, a job’s rank in a perturbed SOAP policy is
determined as follows:
• Suppose a job J has exact age a.
• The adversary reports J’s perturbed age b ∈ [a−∆, a+∆].
• Based on b, the scheduler assigns J’s rank r(b) ∈ r (a).

III. WHY NAIVE POLICIES CAN FAIL TO BE ROBUST

We begin with a case study of the mean response time
of the naive Gittins policy. As a running example, in this
section and the next we will use job size distribution

X =


2 with probability 1

3
7 with probability 1

3
15 with probability 1

3 .

The naive Gittins policy for job size distribution X is the
perturbed SOAP policy, denoted G, with rank function rG

(Fig. 1). We can also view it as a SOAP bubble policy3 with
rank bubble function rG (Fig. 2).

Let E[T(∆)]G be the mean response time of the naive
Gittins policy under system noise ∆. We know the naive
Gittins policy is optimal when ∆ = 0, so we might hope
that E[T(∆)]G is not much greater than E[T(0)]G when ∆
is small. We call this property robustness, formally defined
below. Unfortunately, as we will soon show, the naive Gittins
policy is not robust.

Definition 1. A perturbed SOAP policy P is robust for a
given arrival rate λ and job size distribution X if its mean
response time E[T(∆)]P satisfies4

lim
∆→0

E[T(∆)]P = E[T(0)]P .

Determining whether or not a perturbed SOAP policy is
robust requires analyzing its mean response time. Exactly
computing mean response time is challenging because it re-
quires analyzing a system with both stochastic and adversarial
features. Fortunately, for our purposes it suffices to bound
mean response time.
• To show that a policy is not robust, we need a lower

bound. One way to find a lower bound is to fix a strategy
for the adversary. If the strategy is simple enough, we
obtain a system which is purely stochastic and can thus
be analyzed as an ordinary SOAP policy [1].

• To show that a policy is robust, we need an upper bound.
This is outside the scope of existing techniques. We give
a new method for computing such upper bounds in
Section V.

3Strictly speaking, saying a perturbed SOAP policy is a SOAP bubble
policy slightly abuses terminology. A perturbed SOAP policy actually
corresponds to many SOAP bubble policies, one for each choice of ∆,
because r in (1) depends on ∆.

4We will later generalize this definition by allowing P to depend on ∆
(Section IV) and relaxing the condition by replacing = with ≤ (Section VI).

0.9

8

77

54.6
40% gap

0 ρ

0

E[T(∆)]G

∆ = 0
(exact analysis)

∆→ 0 limit
(lower bound)

Fig. 3. Response Time of the Naive Gittins Policy

We aim to show that the naive Gittins policy G is not
robust, so we must compute a lower bound `(∆) ≤ E[T(∆)]G
such that E[T(0)]G < lim∆→0 `(∆). To compute the lower
bound `(∆), we have the adversary follow a simple fixed
strategy: always give each job the worst possible rank. If the
adversary follows this strategy, we exactly can analyze mean
response time, as the scheduler effectively follows a SOAP
policy with rank function rG (Fig. 2, upper orange line). We
omit the routine SOAP analysis, which follows the method
given by Scully et al. [1, Section 6.4], and simply state the
resulting mean response times. For ∆ = 0, we obtain

E[T(0)]G = `(0) =
139
36 ρ

(1 − ρ)
(
1 − 1

4 ρ
) + 37

6

1 − 1
4 ρ
+

11
6
,

and for ∆ > 0, we obtain

lim
∆→0

E[T(∆)]G ≥ lim
∆→0

`(∆)

=

139
24 ρ

(1 − ρ)
(
1 − 1

4 ρ
) + 6

1 − 1
4 ρ
+ 2

= E[T(0)]G +
17
9 ρ +

1
24 ρ

2

(1 − ρ)
(
1 − 1

4 ρ
) . (2)

Fig. 3 shows the above mean response times.
From (2) we conclude that the naive Gittins policy is not

robust. In fact, at load ρ = 0.9, introducing even infinitesimal
noise increases mean response time by over 40%. This
is a lower bound on the true increase because a different
adversarial strategy may further increase mean response time.

Why does adding such a small amount of noise cause
such a large jump in mean response time? It turns out
that the noise has the largest effect on size 2 jobs, so we
focus on those. Recall that the adversary’s strategy means
the scheduler effectively uses a SOAP policy with rank
function rG. Examining Fig. 2, we see that rG(a) jumps up
to rank 9, the worst possible rank, at age a = 2 − ∆.
• When ∆ = 0, a size 2 job completes before this jump.
• When ∆ > 0, a size 2 job has ∆ work left when this

jump happens. The job then has the worst possible rank,
so it has to wait for every job that arrived before it to
complete.

IV. CREATING A ROBUST POLICY

Our goal in this section is to create a policy P with near-
optimal response time, at least for small system noise ∆.

Because the naive Gittins policy G is optimal when ∆ = 0, it
suffices for P to be both
• robust, as defined in Definition 1, and
• noiseless-optimal, meaning E[T(0)]P = E[T(0)]G.

To achieve both of these, our policy must depend on the
system noise ∆.5 This is because any noiseless-optimal policy
must be essentially equivalent to the Gittins policy [3], so
the adversary can report perturbed age 2 for jobs of exact
age 2 − ∆, which prevents robustness.

We have discovered multiple methods for constructing a
robust variation of our running example G. We focus our
presentation on just one of them: the shift-flat construction,
summarized in Fig. 4. Although shift-flat will be motivated
by the specific running example, we show in Section VI that
it generalizes to yield a robust version of any SOAP policy.

A. Shifting the Rank Function

We saw in Section III that one way the adversary can
increase mean response time is to make jobs’ ranks jump
upward earlier than they are supposed to. How can we prevent
this? One approach is to delay the rank jump at age 2 to age
2 + ∆. When the jump happens at age 2 + ∆, the earliest the
adversary can make a job’s rank jump is age 2, which means
size 2 jobs do not reach the jump, as desired.

Motivated by the need to delay rank jumps, we define the
shift Gittins policy, denoted S∆, to be the perturbed SOAP
policy with rank function6

rS∆(b) = rG(b − ∆).

The shift Gittins policy is ∆-parametrized, which is why ∆
appears in the notation S∆. Fig. 4(b) shows the resulting rank
bubble function rS∆.

The shift Gittins policy improves upon the naive Gittins
policy. Specifically, the adversarial strategy of always assign-
ing every job the worst possible rank hurts mean response
time of the naive Gittins policy but has almost no effect
on that of the shift Gittins policy. However, the shift Gittins
policy is still not robust, because it is vulnerable to a different
strategy for the adversary.

Recall from Section II-A that we allow the adversary
access to job sizes. We consider the following strategy for the
adversary: honestly report the exact ages of all jobs, except
give rank 0 to size 15 jobs with exact age a ∈ (2, 2 + 2∆).
This forces us to give size 15 jobs priority over size 7 jobs
near age 2. In the ∆→ 0 limit, the effect of this is that the
system behaves as if ∆ = 0, except ties between jobs at age 2
are broken in favor of the larger size 15 jobs, which increases
mean response time. Fig. 5, which shows the mean response
time bound, confirms this. At load ρ = 0.9, introducing even
infinitesimal noise increases mean response time over 40%.

The adversary knowing job sizes is perhaps too pessimistic
in some applications. We conjecture that the shift Gittins
policy is robust if the adversary does not know job sizes.

5We generalize Definition 1 by allowing P to vary with ∆.
6We let rG(a − ∆) = rG(0) for a < ∆.

(a) Naive

2 7 15

6

9
8

0 a
0

rG(a)

(b) Shift

2 7 15

6

9
8

0 a
0

rS∆(a)

(c) Shift-Flat

2 7 15

6

9
8

0 a
0

rSF∆(a)

The rank function (blue line), the lower and upper rank functions (dashed
orange lines), and the rank bubble function (orange region) of each of three
policies: (a) the naive Gittins policy G, (b) the shift Gittins policy S∆, (c) the
shift-flat Gittins policy SF∆. Each job is equally likely to be size 2, 7, or 15,
and the system noise is ∆ = 1/2.

In (a), a job’s rank can jump upward as early as age 2−∆, which greatly
increases the mean response time of size 2 jobs. In (b), we solve this problem
by shifting the rank function by ∆, but the gap between the lower and upper
rank functions at local maxima leaves us vulnerable to a size-aware adversary,
who can give size 15 jobs priority over size 7 jobs near age 2. In (c), we
flatten the local maxima into plateaus of length 2∆ so that the lower and
upper rank functions meet, removing this vulnerability.

Fig. 4. Constructing the Shift-Flat Gittins Policy

0.9

8

79.4

54.6
40% gap

0 ρ

0

E[T(∆)]S∆

∆ = 0
(exact analysis)

∆→ 0 limit
(lower bound)

Fig. 5. Response Time of the Shift Gittins Policy

B. Flattening the Rank Function

We saw in Section IV-A that one way the adversary can
increase response time is to discriminate based on job sizes,
giving larger jobs priority over shorter ones. How can we
prevent this? Under the shift Gittins policy S∆, the adversary
takes advantage of the gap between the lower and upper rank
functions near local maxima. For instance, in Fig. 4(b), the
maximum rank attained by rS∆ is 9 but the maximum rank
attained by rS∆ is 9 − 2∆. The adversary can use this gap to
let larger jobs to bypass smaller ones. To prevent this, we
need to collapse the rank bubble near each local maximum,
meaning the lower and upper rank functions must meet.

How do we force the lower and upper rank functions to
meet? Our idea is to flatten the rank function so that each
local maximum is attained over an interval of width 2∆.
This forces the rank bubble to collapse at the center of that
interval. Specifically, if the rank function of a perturbed SOAP
policy P satisfies rP(b) = k for all b ∈ [a − ∆, a + ∆], then
rP(a) = rP(a) = k by (1).

Motivated by the need to flatten the rank function near local
maxima, we define the shift-flat Gittins policy, denoted SF∆,
to be the perturbed SOAP policy with rank function

rSF∆(b) = supa∈[b−2∆,b] rS∆(a) = supa∈[b−3∆,b−∆] rG(a). (3)

That is, the shift-flat Gittins policy shifts the rank function
by ∆ then takes a rolling maximum over an age interval of
width 2∆.

As we will show formally in Sections V and VI, the shift-
flat Gittins policy is robust. The argument goes roughly as
follows. Assume the system noise ∆ is small but nonzero.
By (3), each local maximum of rSF∆ is attained over an
interval of width 2∆, ensuring the rank bubble collapses.
Specifically, suppose rG has a local maximum at age a. Then
rSF∆(b) = rG(a) for all b ∈ [a + ∆, a + 3∆], which implies

rSF∆(a + 2∆) = rSF∆(a + 2∆) = rG(a).

The shift-flat Gittins policy therefore behaves similarly to the
Gittins policy without system noise, except upward rank jumps
are delayed by at most 2∆. This means, roughly speaking,
from the perspective of any job J:

While J is in the system, each other job is served
for at most 2∆ more time under the shift-flat Gittins
policy than under the Gittins policy without noise.

This increase is continuous in ∆, implying robustness.
Formalizing the above robustness argument takes two steps:
• Theorem 6 gives an upper bound on E[T(∆)]SF∆, and
• Theorem 8 proves robustness from the upper bound.

Fig. 6 plots the upper bound we obtain from Theorem 6. We
see that at load ρ = 0.9, introducing noise ∆ = 1/2 increases
mean response time by under 11%. This is much better
performance under much more noise than the naive and shift
Gittins policies, highlighting the importance of robustness.

V. BOUNDING RESPONSE TIME

We have carried out a case study on robustness over the
course of Sections III and IV, starting with a policy, the naive

0.9

8

60.6
54.6

0 ρ

0

E[T(∆)]SF∆

∆ = 0
(exact analysis)

∆ = 1/2
(upper bound)

Fig. 6. Response Time of the Shift-Flat Gittins Policy

Gittins policy, that is not robust to noise, and ending with
a new variation of it, the shift-flat Gittins policy, that we
argued is robust. Our remaining goal is to rigorously prove
robustness of the shift-flat Gittins policy.

The first step of the robustness proof is upper bounding
the mean response time of the shift-flat Gittins policy. In
this section we prove a much more general result, giving an
upper bound on the mean response time of any SOAP bubble
policy. The bound, roughly speaking, is the same formula
as the mean response time of an ordinary SOAP policy [1,
Theorem 5.5], except every appearance of the rank function r
is replaced with either r or r , whichever results in a greater
bound. It therefore behooves us to first review the analysis
of ordinary SOAP policies.

A. SOAP Analysis Review
We consider an arbitrary SOAP policy with rank function r .

Recall that jobs arrive at rate λ and have size distribution X .
There is a universal formula giving mean response time under
an arbitrary SOAP policy. The notation used in the formula
will be explained in the remainder of this section.

Theorem 2 ([1, Theorem 5.5]). Under any SOAP policy, the
expected response time of a job of size x is

E[Tx] =
λ
∑∞

i=0 E[(Xold
i [wx])

2]

2(1 − ρold
0 [wx])(1 − ρnew[wx])

+

∫ x

0

1
1 − ρnew[wx(a)]

da,

where wx = wx(0) and

ρnew[w] = λE[Xnew[w]] ρold
i [w] = λE[Xold

i [w]].

Theorem 2 is derived by considering a tagged job J of
size x arriving to a steady-state system. It uses three pieces
of notation we have yet to define:
• wx(a) is the worst future rank J will experience between

its current age a and final size x.
• E[Xnew[w]] is related to the amount of time each new job,

meaning a job that arrives after J, delays J’s completion.
• E[Xold

i [w]] is related to the amount of time each old job,
meaning a job that was in the system when J arrived,
delays J’s completion.

We now define these three terms formally. Our presentation
slightly simplifies that of Scully et al. [1], avoiding unneces-
sary generality and omitting some corner cases.

Definition 3. The worst future rank of a job of size x at
age a is

wx(a) = supa′∈[a,x) r(a
′).

The importance of worst future rank lies in the Pessimism
Principle [1, Section 4.3], which is a key step of the proof
of Theorem 2. Roughly speaking, the Pessimism Principle
states that we can replace J’s current rank r(a) with its worst
future rank wx(a) without changing J’s response time. More
precisely, the Pessimism Principle gives J’s delay due to each
other job K , meaning the amount of time K is served before
J completes, in terms of J’s worst future rank:

When J has age a, its remaining delay due to K
is the remaining service time K needs to either
complete or reach rank worse than wx(a).

To write down how much service a job needs to either
complete or reach a rank cutoff, we need two new definitions.

Definition 4. Let w be a rank. The new w-interval is the
interval of ages [0, c[w]) during which a new job has rank
better than w. Specifically, we define

c[w] = inf{a ≥ 0 | r(a) ≥ w}.

The new w-work is a random variable Xnew[w] representing
how long a new job is served while its age is in the new
w-interval. Specifically, we define

Xnew[w] = min{X, c[w]}.

Put another way, Xnew[w] is how long a new job is served
until it either completes or has rank worse than w.

Definition 5. Let w be a rank. The i-old w-interval is the
interval of ages (bi[w], ci[w]) during which an old job has
rank better than w for the ith time. Specifically,7

b0[w] = 0 c0[w] = inf{a ≥ 0 | r(a) > w}

and, for all i ≥ 1,

bi[w] = inf{a > ci[w] − bi−1[w] | r(a) ≤ w}

ci[w] = inf{a > bi[w] | r(a) > w}.

See Fig. 7 for an illustration. The i-old w-work is the random
variable Xold

i [w] representing how long an old job is served
while its age is in the i-old w-interval. Specifically,

Xold
i [w] =


0 if X ≤ bi[w]
X − bi[w] if X ∈ (bi[w], ci[w])
ci[w] − bi[w] if X ≥ ci[w].

The Pessimism Principle immediately implies that the
expected delay due to any new job is E[Xnew[wx(a)]], where
a is J’s age when the new job arrives. However, the situation
for old jobs is more subtle because there may be several old
jobs of various ages when J arrives. The details are outside
the scope of this paper.

7There is a special case for i = 0 because the “0th time” is special: we
say it occurs only if the old job starts with rank better than w.

0-old 1-old 2-old

c0[w] b1[w] c1[w] b2[w] c2[w]

w

0 a
0

r(a)

Fig. 7. Illustration of i-Old w-Intervals (Definition 5)

B. SOAP Bubble Response Time Bound

Having reviewed the analysis of ordinary SOAP policies,
we now turn to the more difficult task of analyzing SOAP
bubble policies. We consider an arbitrary SOAP bubble policy
with rank bubble function r .

Considering a tagged job J of size x arriving to a steady-
state system, we ask: what could the adversary do to maximize
J’s response time? Intuitively, the adversary should always
assign J the maximum possible rank and always assign every
other job the minimum possible rank. That is, the worst that
can happen is that J effectively has rank function r while
every other job effectively has rank function r .

It turns out this intuition gives exactly the right answer.
The bound in Theorem 6 below is nearly identical to the
formula in Theorem 2. It has just two changes:
• Because J effectively has rank function r , we replace
wx(a) with wx(a) = supa′∈[a,x) r (a′).

• Because all other jobs effectively have rank function
r , we replace Xnew[w] and Xold

i [w] with Xnew [w]

and Xold
i [w], respectively, which are defined as in

Definitions 4 and 5 but using r instead of r .

Theorem 6. Under any SOAP bubble policy, the expected
response time of a job of size x is bounded by

E[Tx] ≤
λ
∑∞

i=0 E[(Xold
i [wx])

2]

2(1 − ρold
0 [wx])(1 − ρnew [wx])

+

∫ x

0

1
1 − ρnew [wx(a)]

da,

where wx = wx(0) and

ρnew [w] = λE[Xnew [w]] ρold
i [w] = λE[Xold

i [w]].

Along the same lines as Scully et al. [1, Theorem 5.4], the
proof of Theorem 6 generalizes to give the Laplace-Stieltjes
transform of a stochastic upper bound on response time.

Proof of Theorem 6. Let J be a tagged job of size x. Con-
sider two possible strategies for the adversary:
• Arb, an arbitrary strategy; and
• Bad, the strategy that gives J rank function r and gives

every other job rank function r .
By definition, J’s rank under rank under Arb is no worse than
its rank under Bad, and vice versa for all other jobs. We will
show that the distribution of J’s response time under Arb is
stochastically dominated by that under Bad. Given this, the
result follows immediately from the fully general version of

Theorem 2 [1, Theorem 5.5], which allows different jobs to
have different rank functions.8

It is clear that once J has arrived, giving J a worse rank or
giving another job a better rank cannot possibly increase J’s
response time. It thus suffices to prove the following claim:

The distribution of J’s delay due to old jobs under
Arb is stochastically dominated by that under Bad.

Proving this is nontrivial because the steady-state system
under Arb might be different from that under Bad.

By the Pessimism Principle, the delay due to old jobs is
the total service time required for each old job present when
J arrives to either complete or exceed rank wx . Of course,
the age at which an old job might exceed rank wx depends
on the adversary’s strategy. The following definition lets us
ignore some of the strategy’s details.

Suppose the adversary is using strategy Q. At any time t,
let the potential old work, denoted WQ(t), be the hypothetical
delay due to old jobs if J were to arrive at t and the adversary
were to thereafter use the Bad.
• Under Arb, the delay due to old jobs that J would

experience if it arrived at time t is upper bounded by
WArb(t), because Arb might sometimes give old jobs
worse ranks than Bad would.

• Under Bad, the delay due to old jobs that J would
experience if it arrived at time t is exactly WBad(t).

Consider an arrival sequence that does not include the
tagged job J occurring in each of two systems, one using
Arb and the other using Bad. For a fixed arrival sequence,
both WArb(t) and WBad(t) are deterministic functions of t.
Suppose J arrives at a uniformly random time T . By the
above observations, it suffices to show WArb(T) ≤st WBad(T),
where ≤st denotes stochastic domination.

To complete the proof, we will show WArb(T) ≤st WBad(T).
We divide old jobs into three categories:
• Discarded: current rank greater than wx .
• Original: current rank less than wx , has never been

discarded.
• Recycled: current rank less than wx , has been discarded

at some point in the past.
An important fact about these categories is that a job can only
become recycled if there are no original or other recycled
jobs in the system. This is because a job that is about to be
recycled is currently discarded, so any original or recycled
job would have better rank.

Consider a potential old work busy period B in the Bad
system, meaning an interval of time during which WBad(t) > 0,
as shown on the left of Fig. 8. We call the interval of ages
in which a job is original or recycled during B the job’s
relevance interval, which is a subset of an i-old wx-interval.

For concreteness, we focus one job K , supposing that Arb
differs from Bad only in its treatment of K . Under Bad, job K
remains original for its entire relevance interval, but Arb may
discard K in the middle of its relevance interval. Suppose

8Specifically, using the terminology of Scully et al. [1], we give the tagged
job its own rank function by creating a unique descriptor for it that occurs
with probability 0.

C1 C2 C3

B

0 t

WBad(t)

K arv.

C1 C3 C2
0 t

WArb(t)

K arv.

K dsc.

K rcl.

The potential old work (green line) in the Bad (left) and Arb (right) systems.
Job K is the second job to arrive in the pictured time (K arv.). If Arb
discards K , the potential old work jumps down (magenta dashed line at K
dsc.) but later jumps back up the same amount when K is recycled (magenta
dashed line at K rcl.). This decreases potential old work during C2 (red
region on left is absent on right).

Fig. 8. Potential Old Work in Coupled Systems

that K is discarded for just a single age. The effect of this
discarding is shown on the right of Fig. 8. At the moment
K is discarded, the Arb system suddenly loses potential old
work. Once discarded, K is not served until the busy period
ends, because K cannot become recycled while the system
has potential old work. When K is finally served again, it is
a recycled job starting a new busy period.

Because the Poisson arrival process has independent
increments, we may couple the two systems’ arrival sequences
such that the overall effect of K’s discarding is to chop a
time interval out of B and move later, creating a new busy
period. This chopped interval is C2 in Fig. 8. Given a time
t in the Bad system, let t ′ be the corresponding time in
the Arb system. Notice that WArb(t ′) ≤ WBad(t) for t ∈ C2
because the same arrivals occur but the amount of potential
old work at the start of C2 is higher in the Bad system. We
have WArb(t ′) = WBad(t) at all other times, so, recalling that
T is a uniformly random time, WArb(T) ≤st WBad(T).

We have shown WArb(T) ≤st WBad(T) in the special case
where Arb and Bad differ only in their treatment of a single
job K , which Arb discards for a single age. We now address
the general case.
• If K is discarded for a non-negligible age interval within

its relevance interval, the same situation as shown in
Fig. 8 occurs, except that K’s return as a recycled job
contributes less potential old work because K is not
recycled until a later age, further decreasing WArb(T).

• Multiple jobs may be discarded during their rele-
vance intervals, each possibly multiple times. Iter-
ating the argument for each such discarding shows
WArb(T) ≤st WBad(T).

VI. PROVING ROBUSTNESS

Having given a method for upper bounding the mean
response time of any SOAP bubble policy, we now turn
to proving robustness of the shift-flat Gittins policy. Once
again, we prove a much more general result. The definition
of the shift-flat Gittins policy in (3) does not use any specific
properties of the naive Gittins policy, which means we can
use the same definition for other policies.

Definition 7. Let P be a SOAP policy with rank function rP .
The policy shift-flat P, denoted P∆, is the perturbed SOAP
policy with rank function

rP∆(b) = supa∈[b−3∆,b−∆] rP(a).

Even though we created the shift-flat construction specifi-
cally motivated by the failure of the naive Gittins policy, we
might ask if it always yields a robust policy. Remarkably, the
answer is yes with one small change: we replace = with ≤
in Definition 1. This is because if P is suboptimal, P∆ might
“accidentally” improve upon P’s mean response time.

Theorem 8. For any SOAP policy P, shift-flat P is robust
and therefore

lim
∆→0

E[T(∆)]P∆ ≤ E[T(0)]P .

Proof. Throughout, SOAP notation (Section V-A) refers to P
and SOAP bubble notation (Section V-B) refers to P∆. Let

f (∆) =
∫ x

0

1
1 − ρnew [wx(a)]

da −
∫ x

0

1
1 − ρnew[wx(a)]

da

g(∆) =
λ
∑∞

i=0 E[(Xold
i [wx])

2]

2(1 − ρold
0 [wx])(1 − ρnew [wx])

−
λ
∑∞

i=0 E[(Xold
i [wx])

2]

2(1 − ρold
0 [wx])(1 − ρnew[wx])

,

where we use the same notation as in Theorems 2 and 6.
The SOAP bubble notation on the right-hand sides implicitly
depends on ∆. It suffices to show lim∆→0(f (∆) + g(∆)) ≤ 0.

As a first step, note that r
P∆
(a) = supa∈[b−4∆,b] rP(a),

implying wx(a) = wx(a − 4∆), In particular, wx(a) = wx

for a ≤ 4∆, so

f (∆) ≤
∆

1 − ρnew [wx]

+

∫ x−4∆

0

(
1

1 − ρnew [wx(a)]
−

1
1 − ρnew[wx(a)]

)
da.

In the ∆→ 0 limit, the first term is 0, and the second term is
nonpositive if lim∆→0 E[Xnew [w]] −E[Xnew[w]] ≤ 0 for any
rank w. We show this by relating c [w] to c[w] (Definition 4).

By (1) and Definition 7, for any age a,

rP∆(a + 2∆) ≥ rP(a). (4)

Let w be a rank. We know r
P∆
(c[w] + 2∆) ≥ w by (4), so

c [w] ≤ c[w] + 2∆. This means Xnew [w] ≤st Xnew[w] + 2∆,
from which the desired bound follows in the ∆→ 0 limit.

We now bound g(∆) in the ∆→ 0 limit. Writing w = wx

for brevity, it suffices to show
• lim∆→0 E[Xold

0 [w]] − E[Xold
0 [w]] ≤ 0 and

• lim∆→0 E[(Xold
i [w])

2] − E[(Xold
σ∆(i)
[w])2] ≤ 0 for all i,

where σ∆ : N→ N is an injection varying with ∆.
Nearly the same argument as for Xnew[w] and Xnew [w] above
shows that Xold

0 [w] ≤st Xold
0 [w] + 2∆, which implies the first

item above and, setting σ∆(0) = 0, also implies the second
item for i = 0.

Let i ≥ 1. The i-old w-interval of P∆ is (bi[w], ci [w])
(Definition 5). By (1), every local minimum of r

P∆
is attained

for an interval of length greater than 2∆, which means
ci [w] − bi[w] > 2∆.9 Using (1) again with Definitions 4
and 7, we have

rP∆(a) ≤ w for all a ∈ (bi[w], ci [w])

⇔ rP∆(a) ≤ w for all a ∈ (bi[w] + ∆, ci [w] − ∆)

⇔ rP(a) ≤ w for all a ∈ (bi[w] − 2∆, ci [w] − 2∆),
so (bi[w] − 2∆, ci [w] − 2∆) is, for some j, the j-old w-
interval of P. Jobs are less likely to reach greater ages, so
Xold
i [w] ≤st Xold

j [w]. Thus, defining σ∆(i) = j suffices.10

VII. RELATED WORK

The work with the closest goals to ours is the study of
so-called ε-SMART policies by Wierman and Nuyens [5].
The SMART class [6] consists of size-based policies that
achieve small response time. The ε-SMART class consists of
SMART policies applied in a setting where job sizes are not
exactly known, with a function ε determining the uncertainty.
The ε-SMART work differs from ours in that it deals with
size uncertainty rather than age uncertainty.

There has been work on variants of the Gittins policy
which, instead of scheduling the job of maximal Gittins
index gmax, schedule a job with Gittins index g ≥ gmax − δ
for some δ > 0. See Gittins et al. [3, Section 4.10] and the
references therein for a summary of results. Unfortunately,
the bounds do not apply to mean response time because they
require discounting future costs. Moreover, age uncertainty
can lead to scheduling decisions where there is an arbitrarily
large difference between g and gmax.

REFERENCES

[1] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf,
“SOAP: One clean analysis of all age-based scheduling
policies,” Proc. ACM Meas. Anal. Comput. Syst., vol. 2,
no. 1, pp. 16:1–16:30, Apr. 2018.

[2] J. C. Gittins and D. M. Jones, “A dynamic allocation index
for the sequential design of experiments,” in Progress in
Statistics, J. Gani, Ed. Amsterdam, NL: North-Holland,
1974, pp. 241–266.

[3] J. C. Gittins, K. D. Glazebrook, and R. Weber, Multi-
armed Bandit Allocation Indices. John Wiley & Sons,
2011.

[4] S. Aalto, U. Ayesta, and R. Righter, “On the Gittins index
in the M/G/1 queue,” Queueing Systems, vol. 63, no. 1,
pp. 437–458, 2009.

[5] A. Wierman and M. Nuyens, “Scheduling despite inexact
job-size information,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 36, no. 1. ACM, 2008, pp. 25–
36.

[6] A. Wierman, M. Harchol-Balter, and T. Osogami, “Nearly
insensitive bounds on SMART scheduling,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 33,
no. 1. ACM, 2005, pp. 205–216.

9Actually, it is possible to have ci [w] − bi [w] = 2∆. It turns out in this
case that r

P∆
(a) ≤ w holds for all a ∈ [bi [w], ci [w]], so we simply use

closed intervals in the implication chain below.
10One can show by a similar chain of implications that if j = 0, then

r
P∆
(a) ≤ w for all a < ci [w] and thus i = 0.

	Introduction
	System Model
	Adversarial Age Noise
	SOAP Bubble Policies

	Why Naive Policies Can Fail to be Robust
	Creating a Robust Policy
	Shifting the Rank Function
	Flattening the Rank Function

	Bounding Response Time
	SOAP Analysis Review
	SOAP Bubble Response Time Bound

	Proving Robustness
	Related Work

