
GENERAL DYNAMIC ROUTING WITH PER-PACKET DELAY
GUARANTEES OF O(DISTANCE + 1/SESSION RATE)∗

MATTHEW ANDREWS† , ANTONIO FERNÁNDEZ‡ , MOR HARCHOL-BALTER§ ,
TOM LEIGHTON¶, AND LISA ZHANG†

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 5, pp. 1594–1623

Abstract. A central issue in the design of modern communication networks is that of providing
performance guarantees. This issue is particularly important if the networks support real-time traffic
such as voice and video. The most critical performance parameter to bound is the delay experienced
by a packet as it travels from its source to its destination.

We study dynamic routing in a connection-oriented packet-switching network. We consider a
network with arbitrary topology on which a set of sessions is defined. For each session i, packets are
injected at a rate ri to follow a predetermined path of length di. Due to limited bandwidth, only one
packet at a time may advance on an edge (link). Session paths may overlap subject to the constraint
that the total rate of sessions using any particular edge is at most 1 − ε for any constant ε ∈ (0, 1).

We address the problem of scheduling the sessions at each switch, so as to minimize worst-case
packet delay and queue buildup at the switches. We show the existence of a periodic schedule that
achieves a delay bound of O(1/ri + di) with only constant-size queues at the switches. This bound
is asymptotically optimal for periodic schedules.

A consequence of this result is an asymptotically optimal schedule for the static routing problem,
wherein all packets are present at the outset. We obtain a delay bound of O(ci + di) for packets on
path Pi, where di is the number of edges in Pi and ci is the maximum congestion along edges in Pi.
This improves upon the previous known bound of O(c+ d), where d = maxidi and c = maxici.

We also present a simple distributed algorithm that, with high probability, delivers every session-
i packet to its destination within O(1/ri + di log(m/rmin)) steps of its injection, where rmin is the
minimum session rate and m is the number of edges in the network. Our results can be generalized
to (leaky-bucket constrained) bursty traffic, where session i tolerates a burst size of bi. In this case,
our delay bounds become O(bi/ri + di) and O(bi/ri + di log(m/rmin)), respectively.

Key words. communication networks, packet routing, scheduling, delay bounds

AMS subject classifications. 68M20, 68M10, 68W40

PII. S009753979935061X

1. Introduction.

1.1. Motivation. Motivated by the need for quality-of-service guarantees, net-
work designers today offer connection-oriented service in many networks, e.g., ATM
(asynchronous transfer mode) networks. In this medium, a user requests a particular
share of the bandwidth and injects a stream of packets along one particular session
at the agreed-upon rate. An important consequence of the user’s predictability is
that the network can, in return, guarantee the user an end-to-end delay bound, i.e.,

∗Received by the editors January 29, 1999; accepted for publication (in revised form) July 17,
2000; published electronically November 28, 2000. Supported by Army grant DAAH04-95-1-0607
and ARPA contract N00014-95-1-1246.

http://www.siam.org/journals/sicomp/30-5/35061.html
†Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 (andrews@research.bell-labs.

com, ylz@research.bell-labs.com). The work of the first author was supported by NSF contract
9302476-CCR. The work of these authors was performed while they were at MIT.

‡Universidad Rey Juan Carlos, Móstoles, Spain (a.fernandez@escet.urjc.es). The work of this
author was done while he was at MIT and was supported by the Spanish Ministry of Education.

§Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
(harchol@cs.cmu.edu). The work of this author was done while she was at MIT and was supported
by an NSF Postdoctoral Fellowship in the Mathematical Sciences.

¶Department of Mathematics and Laboratories for Computer Science, MIT, Cambridge, MA
(ftl@math.mit.edu).

1594

GENERAL DYNAMIC ROUTING 1595

an upper bound on the time that any packet takes to move from its source to its
destination. In order to provide this delay guarantee, the network must determine
how to schedule the packets that contend for the same edge simultaneously. Apart
from delay bounds, it is also important to guarantee small queues at each switch due
to limited buffer size. In this paper we show how to design schedules that guarantee
asymptotically optimal per-session delay bounds as well as small queues.

1.2. Model and problem. Consider a network N of arbitrary topology and a
set of sessions defined on this network. A session i is associated with a source node,
a destination node, and a simple path from the source to the destination. (A path
is simple if it uses each edge at most once.) Packets are injected to the network N
in sessions. A packet injected in session i enters the system at the source node of
i, traverses the path associated with i, and then is absorbed at its destination. The
length di is the number of edges on the path from the source to the destination of
session i.

Each session i has an associated injection rate ri. This rate constrains the injection
of new packets from the session so that, during any interval of t consecutive steps, at
most tri + 1 packets can be injected in session i for any t.

We assume that all packets have the same size and all edges have the same
bandwidth. We also assume a synchronized store-and-forward routing, where at each
step at most one packet can traverse each edge. When two packets simultaneously
contend for the same edge, one packet has to wait in a queue. During the routing,
packets wait in two different kinds of queues. After a packet has been injected but
before it leaves its source, the packet is stored in an initial queue. Once the packet
has left its source, during any time it is waiting to traverse an edge, the packet is
stored in an edge queue. The end-to-end delay (delay for short) for a packet is the
total time from the packet injection until it reaches its destination. This includes the
total time the packet spends waiting in both types of queues, plus the time it spends
traversing edges.

Our goal is to minimize both the end-to-end delay for each packet and the length
of all edge queues. In order to achieve delay guarantees and bounded queue sizes, it
is necessary to require that, for all edges e, the sum of the rates of the sessions that
use edge e is at most 1. Throughout, we shall assume that the sum of the rates of the
sessions using any edge e is at most 1 − ε for a constant ε ∈ (0, 1). This constant ε
will appear throughout our subsequent bounds.

Our paper focuses on the problem of timing the movements of the packets along
their paths. A schedule specifies which packets move and which packets wait in queues
at each time step. Most of the schedules obtained in this paper are template-based.
The schedule defines a fixed template for each edge in advance. A template of size
M is a wheel with M slots, each of which contains at most one token. Each token is
affiliated with some session. The wheel spins at the speed of one slot per time step.
A session-i packet can traverse the edge if and only if a session-i token appears. For
each session-i token, the session-i packet that uses it will be the one that has been
waiting to cross the edge for the longest amount of time, i.e., the session-i packets
use the session-i tokens in a first-come-first-served manner. The template size and
associated tokens do not change over time.

We show that per-session delay bounds that are asymptotically optimal for template-
based schedules can be achieved. Meanwhile, constant-size edge queues can be achieved
as well.

1596 ANDREWS ET AL.

1.3. Lower bounds. We observe that di is always a lower bound on the delay
for session i, since every session-i packet has to cross di edges. It is also easy to see
that Ω(1/ri) is an existential lower bound. For instance, consider n sessions, all of
which have the same rate r = (1 − ε)/n and the same initial edge e. If a packet is
injected in each session simultaneously, one of the packets requires n = Ω(1/r) steps
to cross e.

Furthermore, for any given set of sessions, Ω(1/ri) is a lower bound for some
session i in template-based schedules. Consider the template for an edge e where∑

e ri = 1− ε. By the pigeon-hole principle, the tokens for some session i can occupy
at most an ri/(1 − ε) fraction of the slots on the template. Hence, there exist two
session-i tokens that are separated by at least (1−ε)/ri slots. As a result, an adversary
can make sure a session-i packet arrives just after the first token has passed, thereby
forcing the packet to wait Ω(1/ri) steps.

If the schedule is not restricted to being template-based, the scheduler is more
powerful. The scheduler does not have to decide on a fixed schedule in advance,
but rather can make a new decision at each step, based on seeing the adversary’s
injections. In this case it is unknown if for any given set of sessions Ω(1/ri) is a lower
bound.

1.4. Previous work. The problem of dynamic packet routing in the above set-
ting is well studied. Until recently, the best delay bound known was O(di/ri) for
packets of session i. It is tempting to believe that this is the best possible delay
bound, since a session-i packet may need to wait Ω(1/ri) steps to cross each of the di
edges on its route. However, this upper bound of O(di/ri) can be much improved.

In 1990, Demers, Keshav, and Shenker [8] proposed a widely studied routing al-
gorithm called Weighted Fair Queueing (WFQ). WFQ is a packetized approximation
of the idealized fluid model algorithm Generalized Processor Sharing (GPS). WFQ is
simple and distributed. This same algorithm was proposed independently by Parekh
and Gallager [14, 15] in 1992 under the name of Packet-by-Packet Generalized Proces-
sor Sharing (PGPS). Parekh and Gallager prove that the algorithm has an end-to-end
delay guarantee of 2di/ri [15, p. 148] in the case when all packets have the same size.

In their 1996 paper, Rabani and Tardos [16] produce an algorithm that routes
every packet to its destination with probability 1 − p in time

O(1/rmin) + (log∗ p−1)O(log∗ p−1)dmax + poly(log p−1),

where rmin = mini ri and dmax = maxi di. Ostrovsky and Rabani improve the bound
to O(1/rmin + dmax + log1+ε p−1) [13]. These bounds are not session-based, meaning
that if one session has a small rate or a long path, then the delay bounds for all
sessions will suffer. The algorithms of [13, 16] are distributed, where knowledge of the
entire network is not assumed, but each packet carries some information.

The main technique of [13, 16] is based on “delay-insertion.” The intuition here
is that if each packet receives a large random initial delay, then the packets are
sufficiently spread out to ensure that they only need to wait O(1) steps at each
successive edge rather than Ω(1/ri) steps. This delay-insertion technique is used
extensively by Leighton et al. in [10, 11] in the context of static routing. (In the
static routing problem, all packets are present in the network initially.) Since our
main result employs many techniques from [10], we give a detailed summary of [10]
in section 4.1.

A contrasting model, the connectionless adversarial queueing model, is also much
studied, e.g., [4, 1]. Here the paths on which packets are injected can change over

GENERAL DYNAMIC ROUTING 1597

time, giving the adversary more power. In the adversarial queueing model the best
delay bound known is polynomial in the maximum path length [1].

1.5. Our results. We first provide a randomized, distributed scheduler that
achieves a delay bound for session-i packets of O(1/ri + di log (m/rmin)) and a bound
on the queue size of O(log (m/rmin)), where m is the number of edges in the network
and rmin = mini ri. While this bound is not optimal, it nevertheless conveys some
intuition for our main result.

The main contribution of this paper is an asymptotically optimal template-based
schedule. We prove that a schedule exists for the dynamic routing problem such that
the end-to-end delay of each session-i packet is bounded by O(1/ri + di).

1 Our result
improves upon previous work in several aspects.

• We provide a session-based delay guarantee. That is, packets from sessions
with short paths and high injection rates reach their destinations quickly. This
is a big improvement over the previous bounds, which are stated in terms of
rmin = mini ri and dmax = maxi di. We also guarantee that every packet
always reaches its destination within the delay bound, without dropping any
packets.

• We guarantee constant-size edge queues. This is interesting because edge
queues are much more expensive than initial queues in practice.

• A consequence of our result is a packet-based bound, which improves upon
the O(c + d) bound in [10] for the static problem. (See section 4.1 for the
problem and parameter definitions.) We show that if packet pi follows a route
Pi, then pi can be routed to its destination within O(ci + di) steps, where
ci is the maximum congestion along Pi and di is the number of edges on Pi.
This result trivially follows from our result by creating a different session i
for each packet pi, and defining ri = (1− ε)/ci, where ε is a positive constant
used to ensure that the load on any edge is under 1.

For a template-based schedule, even if the computation of the schedule is time-
consuming, it needs to be done only once. Packets can then be scheduled indefinitely
as long as the sessions do not change.

Leaky-bucket injection model. Our results above can be generalized to bursty
traffic streams that are leaky-bucket regulated. Here, each session i has a maximum
burst size (or bucket size) of bi ≥ 1 and an average arrival rate of ri. During any t
consecutive time steps at most rit + bi session-i packets are injected. Leaky-bucket
regulated traffic is widely used in the literature, e.g., [6, 7, 9, 14, 15, 18].

Leaky-bucket regulated injections allow traffic shaping. When session-i packets
are injected, they first enter the session-i bucket at the source. These packets then
leave the bucket one at a time at the rate of ri. In this way, the end-to-end delay is
separated into two components: delay in the bucket and delay in the network. Since
delay in the bucket is at most bi/ri, the end-to-end delay is increased by at most bi/ri
steps, and the size of the edge queues is unchanged.

The rest of the paper is divided into sections as follows. We first give some
definitions and preliminary results in section 2. Then, in section 3, we describe a
simple distributed scheduler that has a delay bound of O(1/ri + di log(m/rmin)). In
section 4, we overview the major techniques employed to achieve the main result: a
bound of O(1/ri + di) and constant-size edge queues. In section 5 we define a set of

1In this paper, we concentrate on proving the existence of such a schedule. However, the proof
can be made constructive using ideas of Leighton, Maggs, and Richa [11] that are based on Beck’s
algorithm [3]. For details, see [19].

1598 ANDREWS ET AL.

parameters used in the proof of the main result, and in section 6 we provide a detailed
proof of the main result.

2. Preliminaries. In this section we present some preliminary results. Sec-
tion 2.1 proves a generic fact about “token sequences” for template-based schedules.
Section 2.2 presents two lemmas for probabilistic analysis that will be used extensively
throughout the paper.

2.1. Token sequences. Throughout the paper we define template-based sched-
ules in terms of token sequences. A token sequence for session i consists of di session-i
tokens, K1, . . ., Kdi , one from each template along the session-i path, where Kj+1

appears xj > 0 steps after Kj . Then xj is the token lag for these two tokens and∑di−1
j=1 xj is the end-to-end delay for this token sequence. Two token sequences can-

not have tokens in common.

In the following, we show that in any template-based schedule, bounding the delay
for token sequences is sufficient to bound the packet delays and that bounding the
token lag is sufficient to bound the edge queues. Our proof relies on Lemma 2.1. A
vector �v = [v1, v2, . . . , vn] is sorted if v1 ≤ v2 ≤ · · · ≤ vn. We define perm(�v) to be
a sorted vector whose components form a permutation of the components of �v. We
also use the notation �u < �v to indicate that the jth component of �u is smaller than
the jth component of �v for each j.

Lemma 2.1. Let �u = [u1, u2, . . . , un] and �v = [v1, v2, . . . , vn] be two vectors, each
of which consists of n distinct numbers. Suppose �u is sorted, i.e., perm(�u) = �u, and
suppose �u < �v. Then, the following hold.

1. perm(�u) < perm(�v).
2. If �v < �u+ �z, then perm(�v) < perm(�u) + �z, where �z = [z, . . . , z] is a vector of

n z’s for a scalar z.
3. Let |�v| represent the maximum component of �v; then |perm(�v) − perm(�u)| ≤

|�v − �u|.
Proof. Let perm(�v) = [vσ(1), . . . , vσ(n)], where σ represents the sorted permuta-

tion of �v.

1. Let us compare uj and vσ(j). There are two cases to consider. If j ≤ σ(j), then
uj ≤ uσ(j) < vσ(j). These inequalities hold since �u is sorted by assumption
and �u < �v. If j > σ(j), then there exists j′ ≥ j such that vj′ ≤ vσ(j).
(Otherwise, for all j′ ≥ j, vj′ > vσ(j). However, only n − j components of �v
can be greater than vσ(j).) Combining the fact that �u is sorted and �u < �v, we
have uj ≤ uj′ < vj′ ≤ vσ(j). Therefore, perm(�u) < perm(�v) in both cases.

2. Since perm(�u + �z) = perm(�u) + �z for �z = [z, . . . , z], property 1 implies
perm(�v) < perm(�u + �z) = perm(�u) + �z.

3. Suppose |perm(�v) − perm(�u)| = vσ(j) − uj . There are two cases to consider.
If vσ(j) ≤ vj , then vσ(j) − uj ≤ vj − uj , which implies |perm(�v)− perm(�u)| ≤
|�v−�u|. If vσ(j) > vj , then there exists j′ < j such that vσ(j) ≤ vj′ . (Otherwise,
for all j′ ≤ j, vσ(j) > vj′ . However, only j−1 components of �v can be smaller
than vσ(j).) Since uj′ < uj by the assumption that �u is sorted, we have
vσ(j) −uj ≤ vj′ −uj′ , which implies |perm(�v)− perm(�u)| ≤ |�v− �u|. Property
3 follows.

We are ready to transform a token-sequence-based bound into a packet-based
bound. Although it might seem straightforward, the difficulty is that a packet is
unable to identify a token sequence. This means if a session-i token appears, then the
session-i packet that has been waiting the longest has to move. The first token in a

GENERAL DYNAMIC ROUTING 1599

token sequence is called an initial token.

Theorem 2.2. Consider any template-based schedule. If the end-to-end delay for
each session-i token sequence is bounded by X, then each session-i packet reaches its
destination within X steps after it obtains an initial token. If the token lag is bounded
by x for all token sequences for all sessions, then the edge queue size is also bounded
x.

Proof. It suffices to show the following. For any y ≥ 1, consider the first y session-
i packets injected. After obtaining its initial token, each of these y packets reaches
the destination within X steps, and it waits at most x steps to advance each edge.

Let Tk1 be the time that the kth packet catches an initial token Kk and advances
its first edge. Let Tkj be the time that the kth packet would cross the jth edge if
it followed the token sequence initiated at Kk. Note that Tkj is not necessarily the
time that the kth packet crosses the jth edge in a template-based schedule. However,
Tkj does represent the time that a token would appear on the jth edge. We have
T11 < T21 < · · · < Ty1, and Tk1 < Tk2 < · · · < Tkd1 for 1 ≤ k ≤ y.

We first apply property 1 of Lemma 2.1 to show that packets 1 through y are able
to cross the jth edge by times perm(T1j , T2j , . . . , Tyj) for 1 ≤ j ≤ di. Take an example
of the second edge. Let perm(T12, T22, . . . , Ty2) = [Tσ(1),2, Tσ(2),2, . . . , Tσ(y),2], where
σ represents the sorted permutation. Property 1 of Lemma 2.1 implies

[T11, T21, . . . , Ty1] < [Tσ(1),2, Tσ(2),2, . . . , Tσ(y),2].

Since packet 1 has left its first edge by time T11 and an unused token for the second
edge appears by Tσ(1),2, packet 1 is able to advance its second edge by Tσ(1),2. Since
packet 1 has left by Tσ(1),2, packet 2 is able to obtain an unused token by Tσ(2),2 and
advance its second edge. Similar reasoning applies to packets 3 through y for the
second edge. Inductively, packets 1 through y are able to advance their last edge by
perm(T1di , T2di , . . . , Tydi). This quantity is bounded by [T11+X,T21+X, . . . , Ty1+X]
by property 2 of Lemma 2.1. Hence, all the session-i packets reach their destination
within X steps after they obtain the initial tokens.

Let us bound the queue size now. Consider the jth edge, where 1 ≤ j ≤ di.
Suppose packet k, for 1 ≤ k ≤ y, uses token Kkj to cross its jth edge at time
tkj . Let Kk,j+1 be the (j + 1)st token on the same token sequence as Kkj , and let
tk,j+1 be the time that Kk,j+1 appears. (Note that Kkj is not necessarily on the
same token sequence as the initial token that packet k used to cross its first edge,
and that Kk,j+1 is not necessarily the token that packet k would use to cross the
(j + 1)st edge.) Since tkj < tk,j+1, property 1 of Lemma 2.1 and our argument
for the delay bound above imply that packets 1 through y are able to cross the
(j + 1)st edge by perm(t1,j+1, t2,j+1, . . . , ty,j+1). Property 3 of Lemma 2.1 shows
that |perm(t1,j+1, t2,j+1, . . . , ty,j+1) − [t1j , t2j , . . . , tyj]| is bounded by x, the token
lag. Hence, a packet waits at most x steps to advance each edge once it obtains an
initial token.

2.2. Lemmas for probabilistic analysis. Throughout the construction of our
schedules, we use the Lovász local lemma [17, pp. 57–58] and a Chernoff bound [5]
for probabilistic analysis. We include them here for easy reference.

Lovász local lemma. Let E1, . . . , En be a set of “bad events,” each occurring
with probability at most p and with dependence at most d (i.e., every bad event is

1600 ANDREWS ET AL.

mutually independent of some set of n− d other bad events). If 4pd < 1, then

Pr

[
n⋂

i=1

Ēi

]
> 0.

In other words, no bad event occurs with a nonzero probability.
Chernoff bound. Let Xi be n independent Bernoulli random variables with

probability of success pi. Let X =
∑n

i=1 Xi, and let the expectation µ =
∑n

i=1 pi.
Then for 0 < δ < 1, we have

Pr [X > (1 + δ)µ] ≤ e−δ2µ/3.

We also prove a variation of the Chernoff bound.
Lemma 2.3. Let Xi be n independent Bernoulli random variables with probability

of success pi. Let X =
∑n

i Xi and the expectation E[X] =
∑n

i pi. Then for u ≥ E[X]
and 0 < δ < 1, we have

Pr [X > (1 + δ)u] ≤ e−δ2u/3.

Proof. We prove the lemma by amplifying the success probabilities. If u ≥ n,
then Pr [X ≥ (1 + δ)u] = 0 and we are done. Otherwise, let p′i be a value such that
pi ≤ p′i ≤ 1 and

∑n
i p

′
i = u. We have

Pr [X > (1 + δ)u | success probabilities p1, . . . , pn]

≤ Pr [X > (1 + δ)u | success probabilities p′1, . . . , p
′
n] .

The Chernoff bound implies that the above probability is bounded by e−δ2u/3.

3. Suboptimal schedules. We present in this section a simple randomized
distributed scheduler that, with high probability, produces a delay bound of

O

(
1

ri
+ di log

m

rmin

)

and edge queues of size O(log m
rmin

), where m is the number of edges and rmin = mini ri.
This preliminary result is substantially simpler to prove than the optimal result of
O(1/ri + di) because of the relaxed bounds. Nevertheless, it illustrates the basic
ideas necessary to prove the main result. We begin with a centralized scheme in
section 3.1 that achieves these bounds, and then we convert it to a distributed scheme
in section 3.2.

3.1. A simple centralized scheduler. As stated above, we now present a
centralized scheduler that achieves the desired delay bound of O(1

ri
+di log

m
rmin

) with
edge queues of size O(log m

rmin
).

The structure of the proof is as follows. Each session-i packet must traverse di
edges. We prove that the time the packet spends waiting for a token at each edge
along the path (after the first edge) is O(log m

rmin
). Hence the time to traverse all edges

(but the first) is O(di log
m

rmin
). It turns out that the time spent waiting to receive the

very first token (what we refer to as initial waiting time) is O(1
ri

+ di log
m

rmin
). Hence

the result follows.
The difficulty is to come up with a placement of tokens that achieves the above

bounds. To do this, we will first come up with an illegal placement of tokens, where we
place more than one token in some slots and zero tokens in other slots. We will prove
delay bounds on the illegal placement. We will then apply a smoothing procedure
which “smooths” out the bumps in the illegal placement, making it legal. We will
prove that the smoothing process does not change the bounds very much.

GENERAL DYNAMIC ROUTING 1601

Template size. We first decide the template size T . Roughly speaking, T needs
to be sufficiently large so that enough tokens can be placed to accommodate arrivals
from all sessions every T steps. We express the injection rate for session i in terms
of r̂i = si/%i, a fraction slightly larger than ri. If T is the least common multiple of
%i for all i, then we can place si session-i tokens every %i consecutive slots on each
template along the path of session i. The quantities of %i and si are defined as follows:

%i = 2
�log 2

εri
�
,(3.1)

si = �%iri(1 + ε/2)�,(3.2)

r̂i = si/%i,(3.3)

where ε is a constant to ensure that the sum of the rates of the sessions using any
edge is less than 1. In other words, %i is the smallest power of 2 that is larger than or
equal to 2/(εri), and si is the largest integer that is less than or equal to %iri(1+ε/2).
The template size T is the least common multiple of %i. Since all the %i’s are powers
of 2, T = O(1/rmin).
Lemma 3.1. We have the following properties for r̂i.
1. ri ≤ r̂i ≤ ri(1 + ε/2) for each session i.
2.

∑
i∈Se

r̂i ≤ 1− ε/2 for each edge e, where Se is the set of sessions that cross
edge e.

Proof. Property 1 is equivalent to

%iri ≤ si ≤ %iri(1 + ε/2).

The difference between the lower bound and the upper bound is %iriε/2, which is
at least 1 by the definition of %i. Therefore, there exists an integer in the range of
[%iri, %iri(1 + ε/2)], and si is such an integer by definition. Property 1 follows.

Given
∑

i∈Se
ri ≤ 1− ε, we have

∑
i∈Se

r̂i ≤ (1− ε)(1+ ε/2) < 1− ε/2. Property
2 follows.

We now define the template size T to be maxi %i, which is Θ(1
rmin

). Since all the
%i’s are powers of 2, T is also the least common multiple of the %i’s.

Token placement. We describe a procedure to place the tokens for all sessions.
We start with an illegal placement of tokens. For each session i, we first place si initial
tokens in one slot every %i slots on the template that corresponds to the first edge of
session i. We then delay each initial token of session i by an amount chosen uniformly
and independently at random from [L + 1, L + %i], where

L = 2�log(
α
2 log(mT))�(3.4)

for a constant α. In other words, L is a power of 2 that is greater than or equal
to α

2 log(mT). As we shall see, this is enough randomness to spread out the tokens.
For every session-i token a placed on the template corresponding to the jth edge, we
place a session-i token b on the template corresponding to the (j + 1)st edge such
that b appears exactly 2L steps after a. In this way, we have partitioned all the
session-i tokens into T r̂i sequences, where each token sequence has di tokens and two
neighboring tokens in each sequence are 2L apart. In the following we show that the
tokens cannot be too clustered.
Lemma 3.2. At most L tokens appear in any consecutive L slots on any template

with probability at least 1−1/(mT), where L is defined in (3.4) for a sufficiently large
constant α.

1602 ANDREWS ET AL.

Proof. Since si initial tokens for session i are placed in one slot every %i slots and
each is delayed by an amount chosen independently and uniformly at random from
[L+ 1, L+ %i], the expected number of session-i tokens in a single slot is si/%i, which
is r̂i. Hence by linearity of expectations and property 2 of Lemma 3.1, the expected
number of tokens over all sessions in L consecutive slots is

∑
i r̂iL ≤ (1 − ε/2)L. For

a particular interval of L consecutive slots on a particular template, let the random
variable X be the number of tokens in these slots. Whether or not a token lands in
these L slots is a Bernoulli event. Since the delays to the initial tokens are chosen
independently and all session paths are simple, these Bernoulli events are independent.
Since E[X] ≤ (1 − ε/2)L, we have the following by Lemma 2.3.

Pr [X > L] ≤ Pr [X > (1 + ε/2)(1 − ε/2)L] ≤ e−ε2(1−ε/2)L/12.

In m templates there are at most mT intervals of L consecutive slots. Therefore, by
a union bound the probability that more than L tokens appear in any L consecutive
slots is bounded by

mT Pr [X > L] ≤ mT e−ε2(1−ε/2)L/12 = mT e−ε2(1−ε/2)α log(mT)/24.

By choosing a sufficiently large constant α, we can bound the above probability by
1/(mT).

If the first pass of the delay insertion does not produce a token assignment that
satisfies the condition of at most L tokens every L slots, we simply try another pass
until the condition is met.

Smoothing. In order to guarantee one token per slot, we carry out a smoothing
process. Since there are at most L tokens in any consecutive L slots, we partition
each template into intervals of L consecutive slots and arbitrarily place at most one
token in each slot within each interval. (Note the template size T is a multiple of L
since T and L are both powers of 2.) Recall we have defined a token sequence for
each session in the token placement process.
Lemma 3.3. Let K1, . . ., Kdi

be any token sequence for session i; then, after the
smoothing process, we have the following.

1. Token Kj appears after Kj−1 for 1 < j ≤ di.
2. The end-to-end delay of the token sequence is bounded by 2diL+ 2L, and the

token lag is bounded by 4L.
Proof. Before the smoothing, Kj appears exactly 2L steps after Kj−1 for 1 < j ≤

di, i.e., the token lag is 2L. Since the smoothing process shifts each token by at most
L− 1 slots, Kj still appears after Kj−1 after the smoothing. The token lag therefore
increases to at most 4L. The end-to-end delay for the token sequence increases from
2diL to at most 2diL + 2L due to the shift of the first and the last tokens.
Theorem 3.4. With high probability, the above randomized centralized scheme

generates a template-based schedule that produces a delay bound of O(1
ri

+ di log
m

rmin
)

and edge queues of size O(log m
rmin

).
Proof. We first show that each session-i packet, p, is able to catch an initial token

within 2L + 2%i steps of its injection. Before the initial session-i tokens are delayed,
we have exactly si tokens every %i slots. Since at most si session-i packets can be
injected during %i steps, packet p would be able to obtain an initial token, say K, in
fewer than %i steps if the tokens were not delayed or shifted. Let p be injected at time
t, and let K appear at T before K is delayed and shifted; then t ≤ T < t + %i. Each
initial token is delayed by an amount in the range of [L + 1, L + %i] during the token

GENERAL DYNAMIC ROUTING 1603

placement process and is shifted by at most L−1 slots during the smoothing process.
Therefore, after the smoothing process, K appears after t but before t + 2L + 2%i.

By Theorem 2.2 and Lemma 3.3, any session-i packet p is able to reach its destina-
tion within 2diL+2L steps after it obtains its initial token. Therefore, the end-to-end
delay for session-i packets is (2L + 2%i) + (2diL + 2L), which is O(1

ri
+ di log

m
rmin

).
The edge queue size is bounded by the token lag 4L, which is O(log m

rmin
).

3.2. A simple distributed scheduler. The above scheme is centralized since
the session-i tokens on one template are dependent on the previous template. How-
ever, it suggests the following simple distributed scheme for scheduling packets so as
to achieve small delay. As in section 3.1, we place initial tokens on the first edge of
session i; however, this time we delay each initial token by an amount chosen indepen-
dently and uniformly at random from [1, %i], where %i is defined in (3.1). (Note that
the delay is from [L + 1, L + %i] in the centralized scheme.) Suppose that a session-i
packet p now obtains its initial token at time T . Then for the jth edge on the session-i
path, p is given a deadline of T +2L(j−1)+L, where L is defined in (3.4). Whenever
two or more packets contend for the same edge simultaneously, the packet with the
earliest deadline moves. Ties are broken arbitrarily. We call this scheme Earliest-
Deadline-First (EDF). Note that EDF is no longer template based. We show in
Lemma 3.5 that the deadlines do not cluster together with high probability, and we
show in Lemma 3.6 that every packet meets its deadlines.
Lemma 3.5. For any edge, at most L deadlines appear in any consecutive L time

steps with probability at least 1−1/(mT), where L is defined in (3.4) for a sufficiently
large constant α.

Proof. The deadlines for a packet p are T+L, T+3L, T+5L, . . ., which correspond
to the times that the tokens in a sequence appear. Hence, the proof is identical to
that of Lemma 3.2.
Lemma 3.6. If for any edge at most L deadlines appear in any consecutive L

time steps, then each packet crosses every edge by its deadline by EDF.
Proof. For the purpose of contradiction, let D be the first deadline that is missed.

This implies all deadlines earlier than D are met. Let p be the packet that misses
deadline D for edge e. Since packet p makes its previous deadlines, p must have
crossed its previous edge by time D − 2L, or else e must be p’s first edge and p must
have obtained its initial token at time D − L. Hence, at every time step from time
D − L+ 1 to D, packet p is held up by another packet with a deadline no later than
D. Furthermore, these deadlines must be later than D − L since all deadlines earlier
than D are met. Therefore, at least L+1 packets have deadlines for edge e from time
D − L + 1 to D. Our lemma follows from the contradiction.

By an argument similar to that in Theorem 3.4, a session-i packet obtains its
initial token within 2%i steps of its injection. Combined with Lemmas 3.5 and 3.6, we
have the following theorem.
Theorem 3.7. With high probability, the randomized distributed scheme EDF

generates a schedule that produces an end-to-end delay bound of O(1
ri

+ di log
m

rmin
).

In [2], simulations were carried out to compare the end-to-end delays produced
by our EDF scheme against those produced by WFQ. The former outperformed the
latter in a range of simulations.

4. Overview of the main result. Our main result for the dynamic routing
problem parallels an earlier result on static routing. In section 4.1 we review the
method used for solving the static case, and in section 4.2 we give an overview of the
additional complexities that need to be addressed in the dynamic case.

1604 ANDREWS ET AL.

Table 4.1
Frame-refinement for static routing in [10].

Schedule Frame size Relative congestion

S(q) I(q) c(q)

Refinement log5 I(q) (1 + o(1))c(q)

S(q+1) I(q+1) c(q+1)

4.1. A bound of O(c + d) for static routing. Leighton, Maggs, and Rao
consider the static routing problem for arbitrary networks in [10]. For static routing,
all packets are present in the network initially. Each packet is associated with a
source, a destination, and a route. The congestion on each edge is the total number
of routes that require that edge, and the dilation of a route is the number of edges on
the route. Leighton, Maggs, and Rao show that for any set of routes with maximum
congestion c (over all edges) and maximum dilation d (over all routes), there is a
schedule of length O(c + d) and edge queue size O(1). In this schedule, at most one
packet traverses each edge at each time step. A packet waits O(c + d) steps initially
before leaving its source, and it waits O(1) steps to cross each edge thereafter.

We summarize here the techniques in [10]. The strategy for constructing an
efficient schedule is to make a succession of refinements to an initial schedule S(0). In
S(0), each packet moves at every step until it reaches its destination. This schedule
has length d, but as many as c packets may traverse the same edge at the same step.
Each refinement brings the schedule closer and closer to the requirement that at most
one packet uses one edge per time step.

A T -frame is a time interval of length T . The frame congestion, C, in a T -
frame is the largest number of packets that use any edge during the frame. The
relative congestion in a T -frame is the ratio C/T . The frame congestion (resp., relative
congestion) on an edge e during a T -frame is defined to be the frame congestion (resp.,
relative congestion) associated with edge e.

It is obvious that the initial schedule S(0) has relative congestion at most 1 for
any c-frame. A refinement transforms a schedule S(q) with relative congestion at most
c(q) in any frame of size I(q) or larger into a schedule S(q+1) with relative congestion
at most c(q+1) in any frame of size I(q+1) or larger. The resulting frame size I(q+1) is
much smaller than I(q), whereas the relative congestion c(q+1) is only slightly bigger
than c(q). In particular, I(q+1) = log5 I(q) and c(q+1) = (1 + o(1))c(q). After a series
of O(log∗ c) refinements, a schedule S(ζ) is obtained, where the relative congestion is
O(1) for any O(1)-frame. A final schedule, in which at most one packet at a time
crosses each edge, can be constructed by replacing each step of S(ζ) by a constant
number of steps. Each refinement is achieved by inserting delays to the packets. It
is the central issue in [10] to show that a set of delays always exists satisfying the
criteria in Table 4.1.

4.2. A bound of O(1/ri + di) for dynamic routing. Our result for the
dynamic routing problem is parallel to that in [10]. For an arbitrary network where
paths (sessions) are defined, we show that there is a schedule such that every session-i
packet reaches its destination within O(1/ri + di) steps of its injection, where ri and
di are the injection rate and path length for session i, respectively. A session-i packet
waits O(1/ri + di) steps initially before leaving its source, and it waits O(1) steps to
cross each edge afterwards.

GENERAL DYNAMIC ROUTING 1605

Ti

Tj

Ti

Tj

T 2T

Service time for all sessions

Arrival time for session i

Arrival time for session j

Fig. 4.1. All the session-i packets that arrive during [kT −Ti, (k+1)T −Ti) are serviced during
[kT , (k + 1)T). In this figure, k = 1.

To achieve a session-based, end-to-end delay bound of O(1/ri+di) for our dynamic
routing problem, we adopt the general approach in [10]. However, there are three
major problems in transforming the solution for the static problem into a solution
for the dynamic problem. In the remainder of this section we present these three
problems and their solutions.

In the remainder of the paper we use the language of “scheduling packets” rather
than “placing tokens.” At the end of the presentation we show how to transform the
packet schedule into a template-based schedule. Although the actual packet arrivals
are not be periodic, the times at which the packets cross the first edge are periodic.
This is the key to the transformation.

Problem 1: Infinite time. In [10] all the packets to be scheduled are present
initially. In the dynamic model, packets are injected over an infinite time line. We
would like to partition the infinite time line into finite time intervals which can be
scheduled independently of each other. We divide time into intervals of length T ,
where T = Θ(1/rmin + dmax). We then independently schedule the time intervals
[0, T), [T , 2T), [2T , 3T), etc.

We associate each session i with a quantity Ti = Θ(1/ri + di). For any integer
k ≥ 0 consider all the session-i packets that are injected during interval [kT −Ti, (k+
1)T −Ti). We provide a schedule in which all these packets leave their sources no earlier
than time kT and reach their destinations before time (k + 1)T . (See Figure 4.1.)
From now on, we concentrate on scheduling the arrivals that would be serviced during
interval [T , 2T).

The quantity T will also serve as the size of all templates in the template-based
schedule.

Problem 2: Session-based delay guarantees. Once we restrict ourselves to
the interval [T , 2T), it seems that the dynamic routing problem is similar to the
static problem. However, we cannot simply proceed with the successive refinements
as in section 4.1, since some sessions need tighter delay bounds than others. Session-
i packets can only tolerate a delay proportional to 1/ri + di. We group sessions
according to their associated 1/ri + di value. We start by inserting delays to sessions
having large values of 1/ri + di, reducing the frame size, and bounding the relative
congestion. When the frame size becomes small enough, sessions with smaller 1/ri+di
join in.

1606 ANDREWS ET AL.

Table 4.2
Refinement and conversion for dynamic routing.

Schedule Integral sessions Frame size Relative congestion

S(q) A(q) I(q) c(q)

Refinement A(q) log5 I(q) (1 + o(1))c(q)

Conversion A(q) ∪B(q+1) log5 I(q) (1 + o(1))2c(q)

S(q+1) A(q+1) I(q+1) c(q+1)

More precisely, we introduce the concept of integral and fractional sessions. When
session i is integral, packets of size 1 are injected at rate ri. When session i is fractional,
a packet of size r̂i is injected at every time step, where r̂i is a value slightly larger
than ri. A packet from a fractional session always crosses one edge at a time, whether
or not other packets are crossing the edge at the same time. Therefore, a fractional
packet from session i always contributes exactly r̂i to the congestion. Integral sessions
are those to which we can afford to insert delays in order to bound the congestion.
Fractional sessions are those to which we cannot insert delays. However, congestion
due to a fractional session i is only r̂i, which is small.

As before, S(q) represents the schedule in the qth iteration. The set of integral
sessions for S(q) is denoted by A(q). For the initial schedule S(0), all the sessions
are fractional and we show that the relative congestion is less than 1. For schedule
S(q) we inductively assume that the relative congestion due to the current integral
and fractional sessions is at most c(q) for any frame of size I(q) or larger. To create
a schedule S(q+1) from schedule S(q) we carry out a frame-refinement step and a
conversion step.

The frame-refinement step reduces the frame size from I(q) to I(q+1) = log5 I(q),
while slightly increasing the relative congestion from c(q) to (1 + o(1))c(q). This step
is achieved by delaying the integral packets by up to Θ

(
(I(q))2

)
steps. We make

sure that if session i is in A(q), then 1/ri + di ≥ (I(q))2, and therefore the delays
inserted can be tolerated. The conversion step converts some sessions from fractional
to integral, while maintaining the frame size of I(q+1) and slightly increasing the
relative congestion to c(q+1) = (1+ o(1))2c(q). These newly-converted sessions form a
set B(q+1) and have associated values 1/ri + di ≥ (I(q+1))2. This bound is chosen so
that the sessions in A(q+1), which is A(q) ∪B(q+1), will be able to tolerate the delays
inserted during the next iteration of frame refinement. During the conversion step
we delay the packets in B(q+1) by up to Θ(1/ri + di) steps. We are able to show the
existence of “good” delays for both frame refinement and conversion steps. Table 4.2
summarizes our approach.

At the termination of our algorithm we have a schedule S(ζ) in which every session
is integral and the relative congestion is at most 1 for all frames of size larger than
a certain constant. In S(ζ) all session-i arrivals during [T − Ti, 2T − Ti) are serviced
during [T , 2T). Furthermore, all session-i packets reach their destination within O(Ti)
steps of their injections.

Problem 3: Constant-factor stretching in the final schedule. As discussed
above, we repeat the process of refinement and conversion until we have a schedule,
S(ζ), in which all sessions are integral and in which the relative congestion is 1 for all
frames of size larger than a certain constant w. In the static problem, a final schedule
can easily be obtained by stretching S(ζ) by a constant factor. However, we cannot

GENERAL DYNAMIC ROUTING 1607

Construct new network M

Schedule intervals independently

Partition time into finite intervals

Convert back to network N
Smooth schedule

Repeat:

Conversion

Refinement

Fig. 4.2. An overview of our approach for the dynamic routing problem.

afford to have a constant blowup in our final schedule for the dynamic problem. This
is because we need to independently schedule all time intervals [0, T), [T , 2T), etc.,
and a constant blowup would make these time intervals overlap.

To overcome this problem, we first devise a schedule for a new network M that
is constructed from the original network N as follows. Each edge e of N is replaced
by 2w consecutive edges e1, . . . , e2w, where w is the constant introduced above. The
rates and routes of the sessions are unaffected. In M, session i has length Di =
2wdi = O(di).

All the techniques described earlier are applied to the network M. We carry
out successive conversion and refinement steps for M and obtain a schedule S(ζ),
where the relative congestion is 1 for any frame whose size is larger than w. We then
“smooth” S(ζ) and convert it to a schedule for N where only one packet at a time
traverses any edge.

The idea behind the smoothing process is as follows. In S(ζ), more than one
packet may require some edge of M during a given time step, but at most w packets
can require any given edge f in M within w time steps. This means we can shuffle
each packet that requires edge f by at most w time steps, so that exactly one packet
traverses f at any step. Unfortunately, this shuffling in time can lead to an illegal
schedule for M, in which a packet can be scheduled to traverse the edges on its path
out of order (timewise). However, one can prove that if we consider the schedule with
respect to the packets traversing edge e2w for all e, then this schedule is legal, i.e.,
the packets cross these edges in order. Hence, we schedule edge e in N in exactly the
same way that the corresponding edge e2w is scheduled in M.

Figure 4.2 is a schematic picture of our overall approach.

1608 ANDREWS ET AL.

5. Parameter definitions.
Interval length T and Ti. As discussed in section 4.2, we independently schedule

intervals [0, T), [T , 2T), etc. Our proof will concentrate on the interval [T , 2T). All
the session-i packets that arrive during [T − Ti, 2T − Ti) are serviced during [T , 2T).
We define T and Ti for session i as follows. Recall Di = 2wdi, where w is a constant
defined at the end of this section.

Ti = 4Di + 2 + (8/ε + 2)/ri,

T =

⌈
(1 + 4/ε)maxi Ti

w

⌉
w.

In other words, T is the smallest multiple of w that is greater than or equal to
(1 + 4/ε)maxi Ti. Clearly Ti = O(1/ri + Di) = O(1/ri + di).

In the template-based schedule, all template sizes will be T .
Packet size for a fractional session. In this section we define r̂i, the packet size

for a fractional session i. For reasons that will become clear in the conversion step of
section 6.3, we need r̂i, to be slightly larger than ri, and we shall need to express r̂i
as the ratio of two integers. Let

%i = �8/(εri)�,
si = �%iri(1 + ε/2)�,
r̂i = si/%i.

The following lemma is analogous to Lemma 3.1.
Lemma 5.1. We have the following properties for r̂i.
1. ri(1 + ε/4) ≤ r̂i ≤ ri(1 + ε/2) for each session i.
2.

∑
i∈Se

r̂i ≤ 1− ε/2 for each edge e, where Se is the set of sessions that cross
edge e.

Note that the definition of %i and property 1 of Lemma 5.1 are different from
the ones in section 3.1. We need this stronger lower bound on r̂i to handle the extra
complexity in the conversion step. In particular, r̂i is also used to indicate the rate at
which the initial tokens for session i appear. During the conversion step, the initial
tokens for session i are placed in the interval [T , 2T − Ti). Since these tokens are to
accommodate all the session-i arrivals during [T , 2T), we need r̂i(T −Ti) ≥ riT . This
condition is guaranteed by the choices of T and Ti and property 1 of Lemma 5.1. (See
Lemma 6.8.)

Parameters for schedule S(q). We shall show later that, in schedule S(q), the
relative congestion, due to all integral and fractional sessions, is at most c(q) for any
frame of size I(q) or larger. For S(q), the set A(q) consists of all the integral sessions.
As we construct schedule S(q+1) from S(q), sessions in B(q+1) become integral and
join A(q). The schedule at the end of the refinement and the conversion is S(ζ). The
parameters I(q), c(q), A(q), and B(q+1) are defined by the following recurrences. Let
Xi = Di + 1/ri for session i, and let Xmax = maxiXi.

I(0) = elog
2/5 Xmax ,

I(q+1) = log5 I(q),

c(0) = 1 − ε/2,

c(q+1) = (1 + δ(q))2c(q),

δ(q) = β/
√

log I(q),

GENERAL DYNAMIC ROUTING 1609

A(0) = ∅,
A(q+1) = A(q) ∪B(q+1),

B(q+1) =

{
i /∈ A(q) :

(
I(q+1)

)2

≤ Xi ≤ e
√
I(q+1)

}
for q �= ζ − 1,

B(q+1) =
{
i /∈ A(q) : Xi ≤ e

√
I(q+1)

}
for q = ζ − 1.

The parameter β is a sufficiently large positive constant. Note that I(q) decreases
polylogarithmically and c(q) increases by a factor of 1+o(1). One can verify that B(q)

forms a partition of all the sessions and that sessions with large Xi values become

integral first. We make use of the bound Xi ≥
(
I(q+1)

)2
in the frame refinement step,

and we use the bound log2 Xi ≤ I(q+1) in the conversion step.

Definition of w. We define a constant w that has two purposes. First, the process
of refinement and conversion terminates when the frame size becomes smaller than
or equal to w. Second, the intermediate network M is constructed from the original
network N by replacing each edge in N with 2w edges. We define w to be a constant
that satisfies the following two bounds:

1. w ≥ x, where x satisfies (1 − α√
log x

)2 = 1 − ε/2, i.e., x = eα
2(1−

√
1−ε/2)−2

,

2. w ≥ 2 log15 w + 2 log10 w − log5 w.

The first bound ensures that the relative congestion c(ζ) is at most 1. (See Lemma 6.11.)
The second bound is to maintain an invariant throughout the frame refinement steps.
(See section 6.2.)

6. An asymptotically optimal schedule. In this section we show the exis-
tence of an asymptotically optimal schedule. Sections 6.1 through 6.4 concentrate on
problem 2 of section 4.2. We begin with an initial schedule S(0) and transform it
to schedule S(ζ) through a process of refinement and conversion. All these schedules
are designed for the intermediate network M. Section 6.5 concentrates on problem
3 of section 4.2. We describe how to obtain an optimal schedule SN for the original
network N from S(ζ).

We first define or recall several basic concepts. Given some schedule S, a region
R of the schedule is some interval of contiguous time steps in the schedule. A T -frame
is a region of length T . The congestion C in a T -frame is the maximum number of
packets that cross any edge in that interval, and the relative congestion is the ratio
C/T . A fractional packet from session i always contributes exactly r̂i to the relative
congestion of any frame.

6.1. An initial schedule S(0). In S(0), all sessions are fractional, i.e., A(0) = ∅.
Each packet (of a fractional size) crosses one edge per time step whether or not other
packets are using the same edge at the same time. Since the relative congestion is
entirely due to fractional sessions, the relative congestion is at most

∑
r̂i < 1− ε/2 =

c(0) on any edge e. (See Lemma 5.1.)

Note that the above relative congestion holds for any frame size. We choose

the initial frame size I(0) = elog
2/5 Xmax , so that I(1) = log2 Xmax, which implies

Xmax = e
√
I(1)

. This allows the sessions with the largest Xi value to be converted in
the first iteration of the algorithm (see definition of B(1)).

6.2. Frame refinement for schedule S(q). In this section we describe the
frame-refinement process. For each schedule, a frame refinement delays the packets

1610 ANDREWS ET AL.

from integral sessions in a way that dramatically reduces the frame size but does not
increase the relative congestion and the length of the schedule by much.

To be more precise, for schedule S(q), we inductively assume that the relative
congestion is at most c(q) for frames of size I(q) or larger and that each integral
packet waits at most once every I(q−1) steps after leaving its source. In this frame
refinement step we show that there is a way to delay (by an amount related to the

frame size) the packets from A(q) so that, in the resulting schedule S(q+ 1
2), the relative

congestion is at most (1 + δ(q))c(q) for any frame of size I(q+1) = log5 I(q) or larger,

where δ(q) = β/
√

log I(q), and each integral packet waits at most once every I(q)

steps.
The base case of the initial schedule S(0) is described in section 6.1. Since there

are no integral sessions, no delays are inserted in this step. Trivially, the resulting
relative congestion is at most (1 + δ(0))c(0) for any frame of size I(1) or larger at the
end of this step, and no packet ever waits.

Let us now consider refining schedule S(q) for q > 0. The refinement is divided
into two steps. In the first refinement step we divide the current schedule into blocks
of length 2(I(q))3 + 2(I(q))2 − I(q), and we insert delays into each block so that its
length increases to 2(I(q))3 + 2(I(q))2. We show that these delays can be introduced
in such a way that in the central 2(I(q))3 steps of each block the relative congestion
of frames of at least length I(q+1) is only a little larger than c(q). (See Figure 6.1.)
At the beginning and end of each block there are “fuzzy” regions of length (I(q))2

each. In the second step we move the block boundaries so that the fuzzy regions
at the end and beginning of adjacent blocks are at the center of the new blocks of
2(I(q))3 + 2(I(q))2 steps. Again, we insert delays into each block, increasing the size
of the block by (I(q))2 steps. We show that there is a way to insert these delays so
that the final conditions for refining S(q) are indeed satisfied. (See Figure 6.2.)

In the following we present Lemma 6.2, which will be used extensively in both
steps of the refinement. We continue by presenting both steps in detail.

A useful lemma. The following lemma is used to prove Lemma 6.2.
Lemma 6.1. Let X and Y be independent random variables. Let Y be binomially

distributed with mean µy, and let σ1, σ2, and v be values such that σ2 = σ1 − 1/v.
Then,

Pr [X + µy > (1 + σ1)v] ≤ 2Pr [X + Y > (1 + σ2)v] .

Proof. Let z = (1 + σ1)v − µy. We have

Pr [X + µy > (1 + σ1)v] = Pr [X > z] ,(6.1)

Pr [X + Y > (1 + σ2)v] = Pr [X + Y > µy + z − 1] .(6.2)

Note also that

Pr [X + Y > µy + z − 1] ≥ Pr [X > µy + z − 1 − �µy� and Y ≥ �µy�]

= Pr [X > z − 1 + µy − �µy�] Pr [Y ≥ �µy�] .

This last equality follows from the independence of X and Y . Theorem B.1 in [12]
shows that Pr [Y ≥ �µy�] ≥ 1/2. Since µy − �µy� < 1, we have

Pr [X + Y > µy + z − 1] ≥ 1

2
Pr [X > z] .

GENERAL DYNAMIC ROUTING 1611

Our lemma follows from equalities (6.1) and (6.2) and the above inequality.
We say that a packet is active during some region of a schedule if the packet

belongs to some integral session and it traverses at least one edge during the region.
Since we maintain the invariant that a packet waits at most once every I(q−1) steps
after leaving its source, an inactive packet is either at its source or its destination
during the entire region. Lemma 6.2 below is a stepping stone that allows us to
reduce the frame size from I(q) to poly log I(q). We invoke this lemma for various
values of s, t, r, and R.
Lemma 6.2. Consider some region R of a schedule where the relative congestion

is at most r = Θ(1) for frames of length s or more, where log3 I(q) ≤ s ≤ (I(q))2.
Consider any edge e and any t-frame, where log2 I(q) ≤ t ≤ 2 log2 I(q). Assume each
active packet in the region is delayed between the beginning of R and the beginning of
the t-frame by a number of steps randomly, independently, and uniformly chosen from
[1, s]. Then, for any constant k there is some value γ = Θ(1)/

√
log I(q) such that the

probability of having a relative congestion larger than r(1+γ) on e during the t-frame
is at most (I(q))−k.

Proof. Let the random variable X be the frame congestion on e during the t-
frame due to the active packets after they are delayed. If the relative congestion
due to fractional sessions is rf , the frame congestion due to fractional sessions in the
t-frame is exactly rf t. Since the active packets are the only integral-session packets
that can cross e during the region, the frame congestion on e during the t-frame is
X + rf t after the delay.

Consider now a binomial random variable Y with parameters (rfs, t/s) and mean
E[Y] = rf t. From Lemma 6.1, the probability p that the congestion in the t-frame is
larger than (1 + γ)rt after the packets have been delayed is

p = Pr [X + rf t > (1 + γ)rt] ≤ 2Pr [X + Y > (1 + σ)rt] ,

where σ = γ − 1/rt. Since t ≥ log2 I(q) and r = Θ(1), γ = Θ(1)/
√

log I(q) if and only

if σ = Θ(1)/
√

log I(q). Let σ = v/
√

log I(q), where v is a constant. We shall choose
an appropriate value v so that the lemma is satisfied.

We first concentrate on X. Since the active packets are delayed up to s steps, an
active packet that crosses e in the t-frame after the delay could cross e in an interval
of t + s steps before the delay. The relative congestion due to active packets is at
most r − rf in that interval before the delay. Hence, at most (t + s)(r − rf) active
packets can cross e in the t-frame after the delay, and each of them has a probability
of at most t/s of doing so.

Recall that Y is a binomial random variable with parameters (rfs, t/s). We define
Z to be a binomial random variable with parameters (n, t/s), where n = r(t + s) >
(r − rf)(t + s) + rfs. It is easy to see that

p ≤ 2Pr [X + Y > (1 + σ)rt] ≤ 2Pr [Z > (1 + σ)rt] .

Therefore, we bound the probability p as follows:

p ≤ 2

r(t+s)∑
i=(1+σ)rt

(
r(t + s)

i

)
(t/s)i(1 − t/s)r(t+s)−i.

We bound the sum by observing that (1+σ)rt is larger than E[Z] = (t+s)rt/s, since
t/s ≤ 2/ log I(q). Thus, the first term of the sum is the largest. Hence, from the fact

1612 ANDREWS ET AL.

that there are at most r(t + s) terms in the sum, we have

p ≤ 2r(s + t)

(
r(t + s)

(1 + σ)rt

)
(t/s)(1+σ)rt(1 − t/s)r(t+s)−(1+σ)rt.

By applying the inequality
(
a
b

) ≤ (ae/b)b for 0 < b < a, we get

p ≤ 2r(s + t)

(
(t + s)e

(1 + σ)t

)(1+σ)rt

(t/s)(1+σ)rt(1 − t/s)r(t+s)−(1+σ)rt.

Now applying the inequality ln(1 + x) ≥ x− x2/2 for 0 ≤ x ≤ 1, for the case x = σ,

p ≤ 2r(s + t)
(
(1 + t/s)e1−σ+σ2/2

)(1+σ)rt

(1 − t/s)r(t+s)−(1+σ)rt.

Finally, by applying the inequality (1 + x) ≤ ex for 1 + x = 1 + t/s in one case and
for 1 + x = 1 − t/s in the other, we obtain

p ≤ 2r(t + s)e−rtσ2(1/2−σ/2−t/σ2s−2t/σs).

The bounds on s and t and the definitions of r and σ imply that we can choose a
constant v large enough so that p < (I(q))−k for any constant k > 0.

The first refinement step for schedule S(q). We first divide the interval
[T , T + |S(q)|) into blocks of length 2(I(q))3 +2(I(q))2−I(q). We shall reschedule each
block B independently. During a block B we only delay active packets.

For each block B, each active packet in B is assigned a delay randomly, uniformly,
and independently chosen from [1, I(q)]. An active packet p, whose assigned delay is x,
is delayed in the first xI(q) steps of B once every I(q) steps. In order to independently
reschedule the next block, packet p is also delayed in the last (I(q) −x)I(q) steps of B
once every I(q) steps. Therefore, a rescheduled block has length 2(I(q))3 + 2(I(q))2.

Before the delays are inserted to reschedule block B, an active packet p is delayed
at most once within the block, provided that 2(I(q))3 +2(I(q))2− I(q) < I(q−1), which
holds as long as I(q) is larger than some constant. Prior to inserting any new delay
to a block, we check if it is within I(q) steps of the single old delay. If the new delay
would be too close to the old delay, then it is simply not inserted. The loss of one
delay in a block has a negligible effect on the probability analysis that follows.

Lemma 6.4 shows that with the insertion of delays we can dramatically reduce the
frame size in the center of the block and increase the relative congestion only slightly.
In order to prove Lemma 6.4, we need the following fact.
Lemma 6.3. If the relative congestion in every frame of size T to 2T − 1 is at

most r, then the relative congestion in any frame of size T or greater is at most r.
Proof. Consider a frame of size T ′, where T ′ > 2T − 1. The first �T ′/T �T − T

steps of the frame can be broken into T -frames, each with relative congestion r. The
remainder of the T ′-frame consists of a single frame of size between T and 2T − 1
steps in which the relative congestion is also at most r.
Lemma 6.4. There exists a way of choosing delays so that in between the first

and last (I(q))2 steps of block B, the relative congestion of any frame of size log2 I(q)

or larger is at most (1 + γ1)c
(q) for some γ1 = Θ(1)/

√
log I(q).

Proof. With each edge e, we associate a bad event. A bad event on e happens
when the frame congestion on edge e is more than (1 + γ1)c

(q)I during any I-frame

GENERAL DYNAMIC ROUTING 1613

of size log2 I(q) or larger. Due to Lemma 6.3, it is sufficient to prove the statement
for all frames of size between log2 I(q) and 2 log2 I(q). We shall use the Lovász local
lemma to show that the probability that no bad event occurs is nonzero.

We first bound the dependence, d, of bad events. Two bad events on two edges
are dependent only if a packet from a session i ∈ A(q) can use both edges. At most
c(q)(2(I(q))3 + 2(I(q))2 − I(q)) packets (from sessions in A(q)) can cross the same edge
in block B, and each packet crosses at most 2(I(q))3 + 2(I(q))2 − I(q) edges in B. As
we shall show later, c(q) ≤ 1. Therefore, a bad event can be dependent on at most
O((I(q))6) other bad events.

We now bound the probability, p, that a bad event happens on e. Consider a
particular I-frame, where log2 I(q) ≤ I ≤ 2 log2 I(q), that lies completely between
the first and last (I(q))2 steps of B. By setting R = B, r = c(q), s = I(q), and
t = I, we apply Lemma 6.2 to show that for any constant k1 there is some value
γ1 = Θ(1)/

√
log I(q) such that the probability p1 of a bad event happening on e in

the I-frame is smaller than (I(q))−k1 .
Since there are O((I(q))3 log2 I(q)) possible I-frames in B, the probability that a

bad event happens on e during any I-frame is p < p1O((I(q))3 log2 I(q)). We can set
the value k1 appropriately so that this probability is upper bounded by O((I(q))−7).

Therefore, we have 4pd < 1, and our lemma follows from the Lovász local
lemma.

2(I(q))3 + (I(q))2

log2 I(q)

1

fuzzy region

2(I(q))3 + 2(I(q))2

time step

fuzzy region

(1 + γ1)c
(q)(I(q))2

Fig. 6.1. Situation after the first refinement step.

At the end of the first refinement step, the center of each block has small relative
congestion for small frame sizes. However there are regions of (I(q))2 steps at the
beginning and end of each block that may have very large relative congestion. We
call these “fuzzy” regions, and we deal with them in the second refinement step.

The second refinement step for schedule S(q). We start the second step of
the refinement by relocating the block boundaries so that blocks still have 2(I(q))3 +
2(I(q))2 steps, but now the fuzzy regions that were at the beginning and end of
adjacent blocks are in the center of new blocks. Then, a new block has two “clean”
regions of (I(q))3 steps each at the beginning and the end, and a fuzzy region of length
2(I(q))2 steps in the center.

As in the first step of the refinement we now concentrate on individual blocks.
We first show that the relative congestion is not very large for frames of size (I(q))2

or larger (even in the fuzzy region).
Lemma 6.5. For any choice of delays in the first step of the refinement, the

relative congestion in any frame of size (I(q))2 or larger is at most (1 + 2/I(q))c(q).
Proof. Without loss of generality we shall assume that all the sessions are integral.

Consider an I-frame with I1 steps before the center of the block and I2 steps after the
center. (I = I1+I2, and either I1 or I2 could be zero.) A packet crosses some edge e in

1614 ANDREWS ET AL.

(I(q))2I(q+1)

(1 + γ1)c(q) (I(q))3 + 2(I(q))2(I(q))3 2(I(q))3 + 2(I(q))21

fuzzy region

time step

Fig. 6.2. Situation after relocating block boundaries.

the I1-frame only if it did so in some frame of length I1 + I(q) before the delays where
inserted. Therefore, at most (I1 + I(q))c(q) packets can cross edge e in the I1-frame.
Similarly, at most (I2 + I(q))c(q) packets can cross edge e in the I2-frame. Therefore,
the congestion in the I-frame can be at most (I1 + I2 + 2I(q))c(q) = (I + 2I(q))c(q),
and for I ≥ (I(q))2 the relative congestion is at most (1 + 2/I(q))c(q).

Now, in order to reduce the frame size in the fuzzy region, we consider only the
active packets in each block B, and we assign a delay randomly, independently, and
uniformly chosen from [1, (I(q))2] to each active packet. A packet p with delay x waits
once every (I(q))3/x at the beginning of the block and once every (I(q))3/((I(q))2−x)
at the end. As in the first step a delay is not inserted if it is going to be within I(q)

steps of an existing delay for a moving packet.

The block length after the delay insertion is 2(I(q))3 + 3(I(q))2, and the fuzzy
region can be (I(q))2 steps longer, spanning steps (I(q))3 to (I(q))3 + 3(I(q))2.

The next lemma shows that there is some way of inserting delays so that the
frame size in the fuzzy region is reduced, and the frame size and relative congestion
in the rest of the block are increased by only a small amount.

Lemma 6.6. In a block B, there exists a way of choosing delays so that in the
fuzzy region (i.e., interval [(I(q))3, (I(q))3 + 3(I(q))2]) the relative congestion of any

frame of size log2 I(q) or larger is at most (1 + γ2)c
(q) for some γ2 = Θ(1)/

√
log I(q),

and so that in the intervals [I(q) log3 I(q), (I(q))3] and [(I(q))3 + 3(I(q))2, 2(I(q))3 +
3(I(q))2 − I(q) log3 I(q)] the congestion of any frame of size log2 I(q) or larger is at

most (1 + γ3)c
(q) for some γ3 = Θ(1)/

√
log I(q).

Proof. As in Lemma 6.4, we will use the Lovász local lemma to prove the claim.
We associate a bad event with every edge e, so that a bad event happens on e if, for
any I ≥ log2 I(q),

• more than (1 + γ2)c
(q)I packets cross e in any I-frame in [(I(q))3, (I(q))3 +

3(I(q))2] (the fuzzy region), or
• more than (1+γ3)c

(q)I packets cross e in any I-frame in [I(q) log3 I(q), (I(q))3]
or [(I(q))3 + 3(I(q))2, 2(I(q))3 + 3(I(q))2 − I(q) log3 I(q)].

The dependency, d, of the bad events is bounded as in Lemma 6.4. Two bad
events on two edges are dependent if packets from some session i ∈ A(q) can use both
edges. At most O((I(q))3) packets cross any edge in a block, and each of them can
cross at most O((I(q))3) other edges. Therefore, d = O((I(q))6).

Now, to bound the probability p of a bad event happening on some edge e, we
consider the three intervals separately and sum their respective probabilities. From
Lemma 6.3 we only consider frames of length I such that log2 I(q) ≤ I ≤ 2 log2 I(q).

Take first some I-frame in [(I(q))3, (I(q))3 + 3(I(q))2] (the fuzzy region). From
Lemma 6.5 we know that the relative congestion for frames of size (I(q))2 or longer

GENERAL DYNAMIC ROUTING 1615

is at most (1 + 2/I(q))c(q) = Θ(1). Then, by choosing R = B, r = (1 + 2/I(q))c(q),
s = (I(q))2, and t = I, we can use Lemma 6.2 to show that, for any constant k2, there

is some σ2 = Θ(1)/
√

log I(q) such that the probability p1 of having relative congestion
on e in the I-frame larger than c(q)(1 + 2/I(q))(1 + σ2) = c(q)(1 + γ2) is smaller than

(I(q))−k2 . Note that γ2 = Θ(1)/
√

log I(q).
Take now some I-frame in [I(q) log3 I(q), (I(q))3] which starts at step j. Given

the way delays are inserted, by the jth step an active packet with delay x has been
delayed jx/(I(q))3 steps. Thus, the delay of an active packet at the jth step is
essentially a random value uniformly chosen from [1, j/I(q)]. For j ≥ I(q) log3 I(q) the
value j/I(q) ≥ log3 I(q).

Note that before inserting delays, from Lemma 6.4 the relative congestion in any
frame of length log2 I(q) or larger in the interval [1, (I(q))3] was at most (1 + γ1)c

(q).
Then, we can make R = [1, (I(q))3], r = (1 + γ1)c

(q), s = log3 I(q), and t = I,
and we use Lemma 6.2 to show, for any constant k3, the existence of some σ3 =
Θ(1)/

√
log I(q) such that the probability p2 of having relative congestion larger than

(1+σ3)(1+γ1)c
(q) = (1+γ3)c

(q) on e in the I-frame is smaller than (I(q))−k3 . Again,

γ3 = Θ(1)/
√

log I(q).
By symmetry, the same value γ3 makes the probability of a bad event happening

on e in some I-frame in [(I(q))3 + 3(I(q))2, 2(I(q))3 + 3(I(q))2 − I(q) log3 I(q)] smaller
than (I(q))−k3 .

There are O((I(q))3 log2 I(q)) possible I-frames as described in total. Hence, we
can choose values for k2 and k3 such that the probability of a bad event is bounded as
p ≤ (p1 + 2p2)O((I(q))3 log I(q)) < O((I(q))7). Therefore, we can guarantee 4pd < 1
and invoke the Lovász local lemma to prove the claim.

Finally, we bound the frame size and the relative congestion in the remaining
intervals of the block in the following lemma.
Lemma 6.7. The relative congestion in any frame of size log4 I(q) or larger in

the intervals [1, I(q) log3 I(q)] and [2(I(q))3+3(I(q))2−I(q) log3 I(q), 2(I(q))3+3(I(q))2]
is at most

(1 + γ1)(1 + 1/ log I(q))c(q) = (1 + γ4)c
(q).

Proof. Let us first consider some I-frame in [1, I(q) log3 I(q)]. Recall that, before
inserting delays, the relative congestion for frames of size log2 I(q) or more was at most
(1+ γ1)c

(q). In the interval no packet is delayed more than log3 I(q) steps. Therefore,
the packets crossing some edge e in the I-frame could have crossed e in some interval
of at most I + log3 I(q) steps, and the congestion in the I-frame can be of at most
(I + log3 I(q))(1 + γ1)c

(q). For I ≥ log4 I(q) the claim follows. The proof for interval
[2(I(q))3 + 3(I(q))2 − I(q) log3 I(q), 2(I(q))3 + 3(I(q))2] is similar.

From the above two lemmas we have that any frame of length at least log4 I(q)

in each of the different intervals has at most a relative congestion (1 + γ)c(q), where

γ = max(γ2, γ3, γ4) and γ = O(1)/
√

log I(q). We need to be careful now with the
relative congestion in frames that overlap several intervals or several blocks. We can
safely say that for any frame of size I(q+1) = log5 I(q) or larger in the schedule S(q+ 1

2)

obtained after the frame refinement, the relative congestion is at most (1 + δ(q))c(q)

for some δ(q) = β/
√

log I(q) large enough.

6.3. Conversion for schedule S(q). In the conversion process we transform
the schedule S(q+ 1

2), obtained from the frame refinement step, into a new schedule
S(q+1). In this new schedule, all the sessions in B(q+1) which were fractional in S(q)

1616 ANDREWS ET AL.

Service time

Arrival time

V

U

�i �i �i

2T − Ti 2TTT − Ti

Fig. 6.3. Session-i packets that are injected in interval U are assigned initial tokens in interval
V . The interval V is divided into consecutive intervals of length �i, each of which has si initial
tokens. The initial tokens are shown in solid dots.

have been made integral, and the relative congestion of frames of size I(q+1) or larger
is at most c(q+1) = (1 + δ(q))2c(q).

At the beginning of this step, we inductively assume that the relative congestion is
at most (1 + δ(q))c(q) for any frame of size I(q+1) or larger, where δ(q) = β/

√
log I(q).

If the set B(q+1) is empty, then we skip this conversion step; clearly, the relative
congestion is at most c(q+1) for any frame of size I(q+1), and we are done.

On the other hand, if the set B(q+1) is not empty, then for each session i ∈ B(q+1)

we apply the following two processes. (a) In the discretization process we convert the
schedule for fractional session-i packets into a schedule for integral packets in which
no packet has to wait too long before it starts moving. (b) In the delay-insertion
process we delay the time at which packets start moving (i.e., we insert initial delays)
in such a way that the relative congestion requirements are satisfied.

Discretization. We first show how to transform a fractional session in B(q+1)

into an integral session. Consider a session i in B(q+1). When session i is fractional,
a packet of size r̂i = si/%i is injected at every time step, where %i and si are integer
constants defined in section 5. A fractional packet marches to its destination one edge
at a time with no delay.

We want to replace these fractional packets by integral packets. An integral
packet waits at its source until it finds an unused initial token. Then, it crosses one
edge every time step until it reaches its destination. The number of initial tokens and
their distribution have to be carefully chosen so that no packet waits at its source for
too long.

To transform session i, we consider the two intervals shown in Figure 6.3, U =
[T − Ti, 2T − Ti) and V = [T , 2T − Ti). When session i is converted, we distribute
enough initial tokens in the interval V to accommodate all the session-i arrivals during
U . Integral packets arrive at a rate ri during U , and initial tokens will appear at a
rate roughly equal to r̂i during V . Recall from section 5 that r̂i is slightly larger than
ri. By choosing the interval U long enough (i.e., T large enough), we guarantee that
there are more initial tokens than arrivals.

Let |V | = T − Ti be the length of interval V . We divide V into consecutive
intervals of length %i (starting from the end), and we put si initial tokens in the last
slot of each %i-interval. Note that if |V | is not an integer multiple of %i, then the first
%i-interval is “incomplete.” (See Figure 6.3.) We show that there are enough initial

GENERAL DYNAMIC ROUTING 1617

tokens and that no packet waits too long for an unused one.
Lemma 6.8. For a converted session i ∈ B(q+1), every session-i packet that is

injected during U finds an unused initial token in V within Ti + %i = O(1/ri + Di)
steps of its injection.

Proof. Let x = T /(T − Ti) be the ratio of the length of interval U to the length
of interval V . It suffices to show that si, the number of initial tokens in an %i-interval
(shown in Figure 6.3), is as large as the number of session-i arrivals during an interval
of length x%i. At most n = x%iri + 1 packets can arrive during x%i steps. Since
T ≥ (1 + 4/ε)maxi Ti by definition, we have x ≤ 1 + ε/4 and n ≤ %iri(1 + ε/4) + 1.
By the left-hand side of property 1 of Lemma 5.1, we have n ≤ si. Therefore, we have
enough initial tokens. Since the initial tokens are at the end of an %i-interval, each
packet can use an initial token that appears after the packet arrival time. It is also
easy to verify that an unused initial token appears within Ti + %i = O(Ti) steps of the
packet injection.

Delay insertion. Before any delay is inserted for a packet from session i ∈
B(q+1), the packet leaves its source at the time of its initial token and marches to its
destination with no more waiting. Now we insert an initial delay for each session-i
packet, which has the effect of deferring the start time of the packet. We choose
the delays uniformly from [1, %i]. After the initial delay each packet travels to its
destination without further delay.
Lemma 6.9. Consider a particular edge e and a particular t-frame during interval

[T , 2T). Suppose session i requires edge e; then the expected number of session-i
packets that use e in the t-frame is at most tsi/%i = tr̂i.

Proof. Let us assume first that delays have not been inserted yet. Due to the
way initial tokens are distributed, session-i packets cross edge e in a very synchronous
manner: a batch of at most si packets crosses every %i steps. Since we want an upper
bound on the expectation, we assume that exactly si packets cross e every %i steps.

Let us now partition time in %i-intervals, so that each interval ends with a step in
which packets cross e (i.e., all packets cross e in the last step of the intervals). Observe
that, once delayed, all the packets that crossed e in the last step of some %i-interval
will cross it in the following interval. Then, the total number of packets crossing e
in an %i-interval after the delay insertion is exactly si. Also, after the insertion of
delays, the expected number of packets crossing e in some subinterval of length % of
an %i-interval is exactly %si/%i.

Take now the t-frame, and consider the incomplete %i-intervals it contains. There
can be at most one at the beginning and one at the end. Assume they have lengths
t1 and t2, respectively. From the above observations, the expected number of packets
crossing e in the t1 (resp., t2) subinterval is t1si/%i (resp., t2si/%i). In the remainder
of the t-frame the number of packets crossing is exactly (t− t1 − t2)si/%i. Hence, the
expected number of packets crossing e in the t-frame is (t− t1 − t2)si/%i + t1si/%i +
t2si/%i = tsi/%i.

We now use a Chernoff bound and the Lovász local lemma to show the following.
Lemma 6.10. There exists a way of choosing the initial delays for sessions in

B(q+1) such that the relative congestion in any frame of size I(q+1) or bigger is at
most c(q+1) after the delays are inserted.

Proof. Due to Lemma 6.3, it is sufficient to prove the result for all frames of size
I(q+1) to 2I(q+1). We associate a bad event with each edge e and each I-frame, where
I(q+1) ≤ I ≤ 2I(q+1). A bad event E{e,I} happens when more than Ic(q+1) packets
use e during frame I. We use the Lovász local lemma to show that with nonzero

1618 ANDREWS ET AL.

probability no bad event occurs. Let Dmax = maxi∈B(q+1) Di, rmin = mini∈B(q+1) ri,
X = maxi∈B(q+1) Di + 1/ri, and %max = maxi∈B(q+1) %i.

We first bound the dependency d of bad events. Note that the probability space
is given by the delays assigned to packets from sessions in B(q+1). Hence, a bad event
E{e,I} is dependent on another bad event E{e′,I′} only if there is a packet p from a

session i ∈ B(q+1) such that there is a nonzero probability that p uses e during the
I-frame and there is a nonzero probability that p uses e′ during the I ′-frame.

There are at most 1/rmin sessions in B(q+1), each of which is at most Dmax long.
Therefore, E{e,I} depends on E{e′,I′} for at most Dmax/rmin = O(X2) choices of
e′. Furthermore, intervals I and I ′ cannot be more than Dmax + %max steps apart.
(Otherwise any session-i packet either has probability 0 of crossing edge e during I
or probability 0 of crossing e′ during I ′.) Therefore, the starting point of I ′ is limited
to 2Dmax + 2%max + 4I(q+1) locations, and the total possible choices for I ′ is at most
(2Dmax +2%max +4I(q+1))I(q+1) = O(X(I(q+1))2). We conclude that the dependency
d is O(X3(I(q+1))2).

We now bound the probability p that a bad event E{e,I} happens. By our in-
ductive assumption, the frame congestion on edge e during the I-frame is at most
(1 + δ(q))c(q)I before the conversion. Let S be the set of sessions in B(q+1) that use
edge e. When sessions in B(q+1) are fractional, they contribute exactly I

∑
i∈S r̂i to

the frame congestion. Lemma 6.9 implies that the expected frame congestion due
to the sessions in B(q+1) is at most I

∑
i∈S r̂i after the initial delays are inserted.

The congestion due to sessions not in B(q+1) does not change during the conver-
sion. Hence, the expected frame congestion on edge e during the I-frame is at most
(1 + δ(q))c(q)I = µ. We bound the probability of E{e,I} as follows.

p = Pr
[

Frame congestion on e in I > c(q+1)I
]

= Pr
[

Frame congestion on e in I > (1 + δ(q))µ
]

≤ e−(δ(q))2µ/3

≤ e−(1−ε)β2I(q+1)/(3 log I(q))

≤ e−(1−ε) β2

3 (I(q+1))1/5(I(q+1))3/5

≤ e−(1−ε) β2

3 (I(q+1))1/5 log6/5 X .

The first inequality follows from Lemma 2.3. The second inequality holds since µ >
(1 − ε)I ≥ (1 − ε)I(q+1) and from the definition of δ(q). The third inequality follows
from the recurrence for I(q+1). The last inequality follows from the fact that log2 X ≤
I(q+1). (This explains the need for log2 Xi ≤ I(q+1) in the definition of B(q+1).)

When β is a sufficiently large constant, we have 4dp < 1. Hence, the Lovász local
lemma implies that with nonzero probability no bad events occur. That is, there
exists a way to choose the initial delays for sessions in B(q+1) such that for all frames
of size I(q+1) or larger the relative congestion is at most c(q+1).

Note that in the proof of this lemma we associate a bad event with each edge e
and each interval I. Why couldn’t we associate a bad event with each edge e only
and then use a union bound on the number of intervals, as in Lemma 6.4? This is
because we are considering all the session-i packets during an interval of length T ,
which can be much bigger than 1/ri + Di for some sessions i.

6.4. Termination at schedule S(ζ). The succession of refinement and con-
version terminates at schedule S(ζ) when the frame size I(ζ) becomes smaller than

GENERAL DYNAMIC ROUTING 1619

or equal to w, a constant defined in section 5. The following lemma shows that the
relative congestion of S(ζ) is small.

Lemma 6.11. In the schedule S(ζ) all sessions are integral and the relative con-
gestion is at most c(ζ) < 1 for any frame of size I(ζ) or larger.

Proof. One can verify that B(q+1) forms a partition of all the sessions. There-
fore, all the sessions are integral in the schedule S(ζ). By our induction, the relative
congestion is at most c(ζ) for all frames of size I(ζ) or larger. Hence, we only need to
show that c(ζ) < 1.

Due to the termination conditions, x ≤ I(ζ−1), where x is defined in section 5.
Let ∆ = β/

√
log x, and observe that δ(ζ−1) ≤ ∆ < 1. By the recursive definition of

c(ζ), we have

c(ζ) = (1 + δ(ζ−1))2(1 + δ(ζ−2))2 . . . (1 + δ(0))2c(0)

< (1 + ∆)2(1 + ∆2)2(1 + ∆4)2(1 + ∆8)2 . . . c(0)

≤ (1 − ∆)−2
{
(1 − ∆)2(1 + ∆)2(1 + ∆2)2(1 + ∆4)2(1 + ∆8)2 . . .

}
c(0)

≤ (1 − ∆)−2c(0)

=
(
1 − β/

√
log x

)−2

c(0)

=
1 − ε/2

1 − ε/2

= 1.

The first inequality holds since δ(q) < (δ(q+1))2 for all q by the recurrence defined
in section 5. The third inequality holds since ∆ < 1, and therefore the “telescope
product” in the braces is less than 1. The last equality holds by the above choice of
x and the definition of c(0) in section 5.

Now, we have to make sure that in the resulting schedule S(ζ) no packet waits
too long. The conversion step guarantees that when a session i becomes integral, no
packet waits more than O(Di+1/ri) steps before it starts moving, and it does not wait
anymore. The last frame refinement step also guarantees that a moving packet never
waits more than once every I(ζ−1) steps. However, all the frame refinement steps that
an integral packet has to go through can, in fact, delay the time it starts moving.
The following lemma shows that this delay does not add up to a large amount, and
therefore that a session-i packet reaches its destination in at most O(Di +1/ri) steps
in the schedule S(ζ).

Lemma 6.12. During frame-refinement a session-i packet is delayed by at most
2(Di + 1/ri) steps before it starts moving.

Proof. Suppose session i first becomes integral in schedule S(q′). Consider a
session-i packet p. For schedule S(q), where q ≤ q′−1, p is never delayed during frame
refinement. For schedule S(q), where q ≥ q′, p is delayed by at most I(q) + (I(q))2

steps before it starts moving. Therefore, the total delay inserted during all the frame
refinement steps is at most

∑
q≥q′ I

(q) + (I(q))2. Since session i becomes integral for

schedule S(q′), we must have i ∈ B(q′). By the definition of B(q′), Di+1/ri ≥ (I(q
′))2.

Since I(q) decreases polylogarithmically, a session-i packet is delayed during frame
refinement by at most 2(Di + 1/ri) steps before it starts moving.

We proceed to prove that S(ζ) has all the properties.

Theorem 6.13. Given network M and a set of sessions as defined in section 1.2,
there is a schedule S(ζ) such that the following hold.

1620 ANDREWS ET AL.

1. The relative congestion is at most 1 for any frame of size larger than a certain
constant.

2. After leaving its source, each packet waits at most once every O(1) steps,
which implies that all edge queues in M have size O(1).

3. For all sessions i, any session-i packet reaches its destination within O(1/ri+
Di) steps of its injection.

4. All session-i arrivals during [T −Ti, 2T −Ti) are serviced during [T , 2T), i.e.,
all packets leave their source no earlier than T and reach their destination
before 2T .

Proof.

1. By Lemma 6.11, the relative congestion is at most 1 for any frame of size I(ζ)

or larger. Due to the termination conditions I(ζ) is a constant.
2. By the invariant maintained throughout the frame refinement steps, a packet

waits at most once every I(ζ−1) steps once it leaves its source. In addition,
by property 1 above, at most I(ζ) packets cross an edge during any time step.
Therefore, the edge queues have size at most 2I(ζ).

3. We first show that a session-i packet reaches its destination within Ti steps
after it obtains an initial token. After the initial token, a session-i packet
is deferred by an initial delay during the conversion step and other delays
during the frame refinement step before it could leave its source. The initial
delay is at most %i < 1 + 8/(εri), and the delay during the refinement is at
most 2(Di +1/ri) by Lemma 6.12. Once the packet starts moving, it reaches
its destination in at most 2Di steps by property 2. Therefore, a session-i
packet reaches its destination within 4Di + 1 + (8/ε + 2)/ri < Ti steps after
obtaining its initial token.
Since any session-i packet obtains an initial token within Ti + %i steps of its
injection by Lemma 6.8, the packet reaches its destination within 2Ti + %i =
O(1/ri + Di) steps of its injection.

4. For all session-i arrivals during [T − Ti, 2T − Ti), the initial tokens are in
[T , 2T − Ti). From the discussion of property 3, a session-i packet reaches
its destination within Ti steps after it obtains an initial token. Therefore,
all packets leave their sources no earlier than T and reach their destinations
before 2T .

6.5. The final schedule for the original network N . We now describe how
to create a schedule SN for network N from S(ζ). In SN at most one packet at a time
crosses each edge in N . Recall that in the construction of M from N , each edge e in
N is replaced by 2w consecutive edges e1, . . . , e2w, where w is a constant defined in
section 5.

We first partition the time interval [T , 2T) into consecutive intervals of length w
(recall that by definition T is a multiple of w). For each w-interval and each edge
f in M, as many as w packets, p1, p2, . . . , pw, can cross f during the w-interval by
schedule S(ζ). We smooth out S(ζ) so that pj is the jth packet to cross f in the w-
interval, where p1, . . . , pw represents an arbitrary ordering. After smoothing, a packet
may not be scheduled to cross the edges on its route in order. For example, a packet
may be scheduled to cross edge f before g, whereas f follows g on the route in M. A
packet may also be scheduled to leave its source before its injection time. However,
S(ζ) after smoothing does have the property that at most one packet at a time crosses
each edge. We define SN as follows. SN schedules a packet p to cross e in N at time
t if and only if S(ζ) after smoothing schedules p to cross e2w in M at time t.

GENERAL DYNAMIC ROUTING 1621

Lemma 6.14. In SN , each packet is scheduled to leave its source after its injection
and is scheduled to cross the edges on its route in order.

Proof. We first show that each packet crosses the edges on its route in order.
Consider a packet p. Let e and ê be two edges on p’s route in N , where ê follows e.
Let t and t̂ be the times that p crosses e and ê in schedule SN . We shall show that
t < t̂.

Let e2w and ê2w be the edges in M that correspond to e and ê. Let τ and τ̂ be
the times that p crosses e2w and ê2w in the schedule S(ζ) before smoothing. Since p
crosses the edges in M in order before smoothing, we have

τ + 2w ≤ τ̂ .(6.3)

In schedule SN , packet p crosses e at time t, which is shifted by at most w − 1 steps
from τ . Similarly, t̂ is shifted by at most w − 1 steps from τ̂ . Hence we have

τ − (w − 1) ≤ t ≤ τ + (w − 1),
τ̂ − (w − 1) ≤ t̂ ≤ τ̂ + (w − 1).

From (6.3) and the above inequalities, we have t < t̂. Therefore, p crosses the edges
on its route in order.

The proof that packet p leaves its source after its injection time is similar. Suppose
that p is injected into the network at time s. Let edge e be the first edge on the route
of p in network N , and let t be the time that p crosses e in SN . Also, let e2w be
the corresponding edge in M, and let τ be the time that p crosses e2w in S(ζ) before
smoothing. Since in S(ζ) before smoothing p crosses the edges in order and leaves its
source after its injection, we have

s + 2w ≤ τ.

In schedule SN , packet p crosses e at time t, which is shifted by at most w − 1 steps
from τ . Hence we have

τ − (w − 1) ≤ t ≤ τ + (w − 1).

Therefore, s < t and packet p leaves its sources in N after the injection time.
We summarize the properties of SN .
Theorem 6.15. Schedule SN satisfies the following properties.
1. At most one packet at a time crosses each edge in N .
2. After leaving its source, each packet waits a constant number of steps to cross

an edge, which implies all the edge queues in N have a constant size.
3. For all sessions i, any session-i packet reaches its destination within O(1/ri+

di) steps of its injection.
4. All session-i arrivals during [T −Ti, 2T −Ti) are serviced during [T , 2T), i.e.,

all packets leave their source no earlier than T and reach their destination
before 2T .

Proof. The smoothing process guarantees property 1. Properties 2 and 3 come
from properties 2 and 3 of S(ζ) given in Theorem 6.13, the construction of M from
N , and the fact that each packet is scheduled to reach its destination in SN at most
w steps later than in S(ζ).

To see property 4, recall that the interval [T , 2T) is partitioned into intervals of
size w (with one interval possibly longer than w), and that schedule S(ζ) is smoothed

1622 ANDREWS ET AL.

out within each w-interval. Therefore, if a packet is scheduled to cross an edge e
during [T , 2T) according to S(ζ), the packet must also be scheduled to cross e during
[T , 2T) according to SN . Property 4 follows. Property 4 of the above theorem implies
that all intervals of [0, T), [T , 2T), etc. can be scheduled independently.

6.6. Derivation of the templates. We now describe how to transform SN
into a template-based schedule. Property 4 of Theorem 6.15 says that all packets
considered in schedule SN (those injected in interval [T −Ti, 2T −Ti) for each session
i) move from their sources to their destination during interval [T , 2T). For this
reason, we choose T as the size of each template. Recall that in the conversion step
of section 6.3, the placement of the initial tokens is independent of the actual packet
arrival times. The placement is simply a result of randomization added onto the fixed
configuration shown in Figure 6.3. As we have shown, even if each session-i initial
token is owned by a session-i packet, we can schedule these packets by schedule SN .
Then, if we place a session-i token in the template of edge e whenever a session-i
packet crosses e in SN , the movement of each packet determines a token sequence,
and these token sequences define the locations of all the tokens. We emphasize that
the placement of these tokens is fixed as the initial tokens are.

Obviously, the token lag is O(1) for all sequences and the end-to-end delay is
O(1/ri + di) for all session-i token sequences. Since each session-i packet is able to
obtain an initial token within O(1/ri + di) steps of its injection, Theorem 2.2 implies
that the template-based schedule defined by the token sequences achieves a delay
bound of O(1/ri + di) and constant-edge queues. Combined with Theorem 2.2, we
have a template-based schedule with desired delay bounds and constant-edge queues.
In summary, we have the following theorem.
Theorem 6.16. Consider an arbitrary network in which sessions are defined.

Each session i is associated with an injection rate ri and path length di. Packets are
injected into the network along these sessions subject to the injection rates. If the
total rate on each edge is at most 1 − ε for a constant ε ∈ (0, 1), then there exists a
template-based schedule such that each session-i packet reaches its destination within
O(1/ri +di) steps of its injection and at most one packet crosses an edge at each time
step. This schedule also maintains constant-edge queues.

Acknowledgments. The authors wish to thank Bruce Maggs, Greg Plaxton,
and Salil Vadhan for many helpful comments.

REFERENCES

[1] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu, Uni-
versal stability results for greedy contention-resolution protocols, in Proceedings of the 37th
Annual IEEE Symposium on Foundations of Computer Science, Burlington, VT, 1996,
pp. 380–389.

[2] M. Andrews and L. Zhang, Minimizing end-to-end delay in high-speed networks with a simple
coordinated schedule, in Proceedings of the IEEE Computer and Communication Societies,
INFOCOM, IEEE Computer Society, Los Alamitos, CA, 1999, pp. 380–388.

[3] J. Beck, An algorithmic approach to the Lovasz Local Lemma I, Random Structures Algo-
rithms, 2 (1991), pp. 343–365.

[4] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson, Adversarial queue-
ing theory, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
Philadelphia, PA, 1996, pp. 376–385.

[5] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations, Ann. Math. Stat., 23 (1952), pp. 493–509.

[6] R. L. Cruz, A calculus for network delay, Part I: Network elements in isolation, IEEE Trans.
Inform. Theory, 37 (1991), pp. 114–131.

GENERAL DYNAMIC ROUTING 1623

[7] R. L. Cruz, A calculus for network delay, Part II: Network analysis, IEEE Trans. Inform.
Theory, 37 (1991), pp. 132–141.

[8] A. Demers, S. Keshav, and S. Shenker, Analysis and simulation of a fair queueing algorithm,
J. Internetworking: Research and Experience, 1 (1990), pp. 3–26.

[9] A. Elwalid, D. Mitra, and R. H. Wentworth, A new approach for allocating buffers and
bandwidth to heterogeneous, regulated traffic in an ATM node, IEEE J. Selected Areas in
Communications, 13 (1995), pp. 1115–1127.

[10] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–186.

[11] F. T. Leighton, B. M. Maggs, and A. W. Richa, Fast Algorithms for Finding O(Congestion
+ Dilation) Packet Routing Schedules, Technical report CMU-CS-96-152, Carnegie Mellon
University, Pittsburgh, PA, 1996.

[12] F. T. Leighton and G. Plaxton, Hypercubic sorting networks, SIAM J. Comput., 27 (1998),
pp. 1–47.

[13] R. Ostrovsky and Y. Rabani, Universal O (congestion + dilation + log1+ε N) local control
packet switching algorithm, in Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, El Paso, TX, 1997, pp. 644–653.

[14] A. K. Parekh and R. G. Gallager, A generalized processor sharing approach to flow control
in integrated services networks: The single-node case, IEEE/ACM Trans. Networking, 1
(1993), pp. 344–357.

[15] A. K. Parekh and R. G. Gallager, A generalized processor sharing approach to flow control
in integrated services networks: The multiple-node case, IEEE/ACM Trans. Networking,
2 (1994), pp. 137–150.

[16] Y. Rabani and E. Tardos, Distributed packet switching in arbitrary networks, in Proceedings
of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, PA, 1996,
pp. 366–375.

[17] J. Spencer, Ten Lectures on the Probabilistic Methods, Capital City Press, Philadelphia, PA,
1994.

[18] J. S. Turner, New directions in communications, or which way to the information age, IEEE
Communications Magazine, 24 (1986), pp. 8–15.

[19] L. Zhang, An Analysis of Network Routing and Communication Latency, Ph.D. thesis, MIT,
Cambridge, MA, 1997.

