
Peer to peer systems: An overview
Gaurav Veda (Y1148)

gveda@cse.iitk.ac.in
Computer Science & Engineering

Indian Institute of Technology
Kanpur, UP, INDIA - 208016

Abstract— Peer-to-peer (p2p) systems is an exciting and emerg-
ing field. It is much beyond enabling people to illegally share
copyrighted music and video files. As we progress towards a
world with better and ubiquitous connectivity, more and more
people are switching to a p2p solution from a centralized server
solution.

In this report, I first define what is meant by a p2p system
and when should one go for a p2p solution as compared to
a centralized server solution [1]. I then describe what is a
Distributed Hash Table (DHT) and present two popular routing
protocols based on DHT’s - Chord [2] and CAN [3]. After this,
I move on to describe how the underlying geometry of the DHT
based routing algorithm affects its static resilience and proximity
properties [4]. This will suggest that for designing DHT based
routing protocols, ring geometry is the best choice.

I. INTRODUCTION

In recent years there has been a sudden rise in interest in
p2p systems. Peer to peer systems caught the world’s attention
because of the much publicized case of Napster [6] versus the
music and record companies [7]. For many people, a peer to
peer system is simply a medium that enables content sharing.
However, p2p systems have many more uses and applications
than simply enabling illegal sharing of media files. Infact, now
more and more people are gravitating towards deploying a
peer to peer solution for various problems that till now had
centralized server based solutions. p2p systems is also a hot
topic for research as can be gauged from the large number of
recent highly cited publications and major university projects
in this domain.

The purpose of this report is to familiarize the reader with
peer to peer systems and the research taking place in the
direction of routing in p2p systems. In the sections that follow,
we will first understand what is meant by a p2p system. We
will then take a look at a decision tree and various issues that
help decide the viability of a p2p solution, as compared to a
centralized server solution, for the problem at hand. After this,
we move on to the issue of efficiently routing in a peer to peer
system. Most of the recent p2p routing protocols are based on
Distributed Hash Tables (DHT’s). We will look at two popular
routing protocols that use DHT’s, namely Chord and CAN. As
will be clear after reading about these protocols, DHT’s can
use a variety of underlying geometries like ring, hypercube
etc. So, we will try to address the question of which geometry
to choose for a new DHT routing algorithm, by exploring the
relation between the underlying geometry of a DHT routing
protocol and its static resilience and proximity properties.

II. PEER TO PEER SYSTEMS

Let us first understand what is meant by a peer to peer sys-
tem. The philosophy behind p2p networks is to have a system
that enables end-point resources to be shared. The resources
might be files (in a file-sharing system), storage space, CPU
cycles etc. The defining feature of a p2p infrastructure, is the
ability of end systems (ie. peers) to communicate with each
other. In this sense, a p2p system can be viewed as an overlay
network over the internet. Beyond this, there is no clear-cut
definition of a p2p system. Here, I present the view held by a
large number of people.

According to [1], there are three defining characteristics of
a p2p system:

• Self-organizing: Nodes must organize themselves to form
an overlay network. There should be no assistance from a
central node. Also, there should not be any global index
that lists all the peers and/or the available resources.

• Symmetric communication: All nodes must be equal ie.
no node should be more important than any other node
(so according to this definition, systems like the KaZaa
file sharing application [8], that have a notion of super-
peers do not qualify as a p2p system). Also, peers should
both request and offer services ie. they should act as both
clients and servers, rather than having a role as only a
client or only a server.

• Decentralized control: There should not be a central
controlling authority that dictates behaviour to individual
nodes. Peers should be autonomous and must determine
their level of participation in the network on their own.

III. 2 P2P OR NOT 2 P2P

The title of this section has been taken from [1] and
essentially is a summary of that paper. We first look at the
parameters that govern whether we should go for a p2p
solution or not. These are:

• Budget: The single most important factor that dictates
whether we go for a p2p solution or not, is the budget
available to us. A p2p solution inherently suffers from
inefficiencies, latencies and testing problems. Hence,
if the budget is adequate for a centralized solution, a
person is likely to choose that. However, if the budget
is low, p2p systems offer the advantage that they can be
build incrementally. As and when more budget/resources
become available, they can be added on to the system.



Fig. 1. Diagram taken from [1]. This decision tree can be used to analyze the viability of a p2p solution. A few sample applications for various possible
problem classes are mentioned in the square boxes.

So, although the final total cost of a p2p solution might
come out to be higher, it is much easier to build.

• Resource Relevance: If a single “unit of service” of the
problem is of interest to many participants, then they
are likely to cooperate and this makes it much easier
to go for a p2p solution. An example might be a file
sharing system. A single file is of relevance to many
participants and hence they all cooperate. If the relevance
is less, then achieving cooperation between hosts (for a
p2p solution) would require other incentives, and it might
lead to increased costs.

• Trust: If the peers do not trust each other, we might have
to go for external trust mechanisms such as encryption
etc. which would lead to additional costs (in terms of
efficiency etc.). However, in certain cases, some amount
of mistrust might be desirable, since it would lead to
mechanisms that would ensure that the damage caused
by a misbehaving peer is limited and that there can be
fault isolation.

• Rate of system change: It the problem at hand has
high requirements of consistency and timeliness while
the participants in the system, the data or the system
parameters have a high rate of change, a p2p solution
becomes very difficult. This is because a p2p solution
has inherent inconsistencies and latencies.

• Criticality: If the problem in question has a very high
importance for the users and is critical to them, then they
might demand a centralized control and accountability
mechanism. This more or less rules out a p2p solution.
If we still want a p2p solution, it might be necessary
to do massive over-provisioning and take steps for fault
tolerance, which might make the system very costly and
very slow.

Figure 1 (courtesy [1]) is a decision tree that shows the
aforementioned parameters graphically. We now look at some
of the problems (mentioned in square boxes in the diagram)

that have proposed P2P solutions, to see how good the above
factors are, in determining the viability of a P2P solution.

A. Ad-hoc Routing in Disaster Recovery

At the site of a calamity, all the previously existing com-
munication infrastructure becomes useless and communication
is re-established using transient resources (like the wireless
devices of recovery crews). The range of such devices is
small and so they must route each other’s packets. Since this
is a highly relevant and critical application, and there is a
large amount of mutual trust between participants (which can
be strengthened using pre-configured security mechanisms), a
p2p solution is quite effective. Moreover, once the network is
established, there is little movement of the resources (ie. low
rate of change).

B. Metropolitan-area Cell Phone Forwarding

In this problem, we want to bypass the base station to save
on communication cost. This is achievable if a cell phone
forwards the packets of other cell phones. However, unlike
in the previous example of ad-hoc routing, here there is little
trust between individual peers. The task is also not very critical
and the rate of change is high. Therefore, as expected from
the decision tree, this application hasn’t been quite successful.

C. Backup

Backup procedures can be broadly classified into Internet
Backup and Corporate Backup. In internet backup, the peers
don’t know each other and hence there is little trust between
peers. There is no guarantee that a peer p1 will not tam-
per/delete the backed up data of another peer p2 , that is
supposed to be stored at p1 . Because of these factors, internet
backup hasn’t been quite popular.

In a corporation, since all machines are owned by a single
authority, there is a large amount of trust between individual
peers and because of this corporate backup is much better
suited for a p2p solution as compared to internet backup.



D. File Sharing

This was the application that brought peer-to-peer systems
in focus. Here, resource relevance is high since a user is
typically interested in downloading various files from others.
The user also trusts the other nodes to deliver the advertised
content. Moreover, this is not a critical application and is very
low cost (all it needs is an internet connection). Because of
these reasons, inspite of the high rate of system change (nodes
continuously enter and exit the system) file sharing is one of
the most successful p2p applications.

IV. CONSISTENT HASHING

The technique of hashing provides a nice way to efficiently
store and retrieve information based on a key. A hash function
is an important requirement is most applications. As we will
see later, it is required by all the routing protocols that we will
look at later in this report. In this section, we will be looking
at a special kind of hash function, namely, a consistent hash
function, that forms the basis of the Chord protocol that we
will look at in section 6. This section can be viewed as a
summary of [9] and [10].

A typical hash function, such as ax + b modulo p (where
a and b are integers and p is a prime), changes dramatically
when the range of the hash function is changed (here, this is
equivalent to changing the prime p). Even a very small change
causes an almost complete re-mapping of the domain elements
to the range set. On the internet, machines frequently come
and go as they are brought into the network or taken out (or
they crash). Information about which machines are currently
present on the network and which are not, travels slowly in
the network. As a result, different machines may have differing
views of the machines that are currently online. In other words,
one machine might think that a machine x is on the network
currently, while another machine might think that x is not
present on the network.

If we consider a client-server scenario where different
clients have different views of the servers that are currently
available, this leads to various problems. As an example, let us
suppose that the servers are web-page caching servers. When
a client wants a particular web-page, it looks at the available
servers (ie. the servers it thinks are online), and using a hash
function, decides which server should it contact for the web-
page. If the server does not have the page, it contacts the main
internet server, and gets a copy of the web-page. Now if we
use a typical hash function, then since the range ie. the servers
that appear online to a client, keeps on changing, the server
that a client contacts for a particular web-page, will keep on
changing. So, as soon as the client sees that one more server
is online or some server goes offline, it will recompute which
server to contact for each and every web-page and suddenly,
all the cached data might become useless ! Moreover, since the
servers that one client thinks are available might be different
for each client (although different views might differ in only
one or two servers), every web-page must reside on as many
servers as the number of clients or if the number of clients is
more than the number of servers, each page must reside on

each server. This is a colossal waste of resources, since the
views for most clients will differ only in a very small number
of servers and we would like that many clients should contact
the same server for a particular web-page (so that the total
information that is to be stored in all the web servers, comes
down). To overcome these and other problems, we define a
consistent hash function.

Before we look at a particular consistent hash function, let
us define some of the desirable properties of such a function.
In what follows, we will assume that each client knows about
atleast 1/t of the total number of caches (or servers) that are
currently online/active.

Let I be the total set of keys (or items) that any client
is interested in. So, for each client, we have to map every
element in the set I to some machine or bucket. Let B be
the set of buckets (ie. the total number of servers - whether
online or not). A view is any subset of machines out of the set
B . Every client has an associated view, which is essentially
the client’s view of the world viz. the currently active servers
(according to the client). A function f is called a ranged hash
function if it is of the form f : V × I 7→ V , where V is a
view. In other words, given a view V , the function f maps
every item i onto a bucket in the view. Let us denote the term
f(V , i) as fV(i) . A ranged hash family F , is a family of
ranged hash functions. The properties that are desired from a
consistent hash function are:

• Balance: A ranged hash family F is said to be balanced,
if, for a particular view Vi and a randomly chosen
function f (f ∈ F ), the fraction of items mapped to
each bucket is O(1/ | Vi |), with high probability.

• Monotonicity: Suppose we have a set of buckets V1

and we map every item to this bucket. Now we add a
few more buckets to form V2 . Now the mapping of item
changes. A ranged hash function f is monotonic, if, an
item may move from an old bucket to a new bucket, but
not from one old bucket to another.

• Spread: If we have a set of views, an item might map
to different buckets in different views. The spread of an
item is the number of buckets that it maps into. The
spread of a hash function is the maximum spread of an
item. A good hash function should have low spread so
that the total storage needed is small.

• Load: The load of a bucket is the number of distinct
items that map to it across all the views. Basically,
this denotes the items for which this machine will be
considered responsible (by at-least one client) and hence
must store information about. The load of a hash function
is the maximum load of a bucket. Since we desire load-
balancing among the nodes, a good hash function should
distribute load almost equally among all the nodes.

Construction: Now we look at a particular consistent
hash function that satisfies the above properties. Consider a
unit circle. Let us map items and buckets independently and
randomly onto points on the circle. The hash function maps
an item (key) to the bucket (machine) that is next to the item



in the clockwise direction (on the circle). In order to ensure
a uniform allocation of items to buckets, a bucket is mapped
onto ‘m’ random points on the circle. If we the number of
buckets in N , then the value of m will be k.log(N) , where
k is a small constant. Lets call this family UCrandom .

Analysis: Following are some of the theorems presented in
the paper [9] and the thesis [10]. The proof of all these theo-
rems is based on Chernoff bounds. The proofs are explained in
detail in [10]. Here, I just state the important theorems without
their proofs.

Theorem IV.1. Let V = {V1, V2, . . . , Vk} be a set of views
of the set of buckets B such that: |

⋃k
j=1 Vj |= T ie. T is the

set of all the servers that appear active in atleast one view. Let
∀ 1 ≤ j ≤ k, | Vj | ≥ T/t . Let N be a confidence parameter.
If each bucket is replicated and mapped m times then:

• Monotonicity: The family UCrandom is monotone.
• Spread: For any item i ∈ I , spreadf (V , i) =

O(t log(Nk)) with probability greater than 1 - 1/N over
the choice of f ∈ UCrandom .

• Load: For any bucket b ∈ B , loadf (V , b) =

O
((

|I|
T + 1

)

t log(Nmk)
)

with probability greater
than 1 - 1/N over the choice of f ∈ UCrandom .

• Balance: For any fixed view V and item i , the prob-
ability tha i is mapped to bucket b in view V is
O

(

1
|V |

(

log(N |V |)
m + 1

))

+ 1
N .

Note that in the above theorem, we have assumed that
bucket copies and items are mapped to the unit circle using
fully independent hash functions. However, in reality, having
fully independent hash functions is impractical. We always talk
of a k -way independent hash function. In the next theorem,
we show that we can work even with limited independence.

Theorem IV.2. If bucket copies and items are mapped to
the unit circle using a Ω(t log(NTk))-way independent
hash function, and item points and bucket points are mapped
independently, Theorem 1 holds.

Another big problem with the hash function in its present
form is that we assume that we have infinite precision. This
would require infinite bits to represent a point on the circle.
In reality, we have to restrict the precision of a point on the
circle to reduce the number of bits needed to represent it. The
following theorem shows that we require only a small number
of bits to represent a point on the circle for the hash function
to work as desired.

Theorem IV.3. With probability at least 1 - 1/N ′ , the clock-
wise ordering of n random points in the unit circle is
determined by the 2 log(N ′n) most significant bits of the
points.

Theorem 2 and 3 above attest the claim that this hash
function is practical and can be deployed in the real world.
Combining Theorem 2 and 3, we get Theorem 4.

Theorem IV.4. If the mappings of items and bucket points
are Ω(t log(NTk))-way independent (N is the confidence

parameter of Theorem 1), items are mapped independent of
bucket points, and c = O(log(N ′(m | B | + | I |))) bits of
precision are used, then Theorem 1 holds with probability at
least 1 - 1/N ′

V. DISTRIBUTED HASH TABLES (DHT’S)

Let us consider a p2p file sharing system. Here, every client
shares some files and is interested in downloading some files
from other peers. The central problem here is to be able to
retrieve a file that the client wants. There are various ways to
do this.

One way is to have a centralized index, like the one
maintained by Napster [6]. Here, we have a central Napster
server that maintains a list of all the currently shared files.
Whenever a node joins the network, it informs the central
server about the files shared by it, and the server incorporates
this information in its index. Now when a node wants to search
for a file, it sends a search request to the central server. The
server performs a lookup on its index and returns the results
(in the form of IP addresses of machines having that file) to the
requesting node. The node now contacts the node containing
this file and downloads the file from it. This solution has
several problems. Because of a central server, there is a single
point of failure. The central server is highly loaded since it not
only has to store a large amount of information, it also has to
perform numerous queries on it. There is also a legal problem
here. Since there is a single node that maintains the index of
files, and performs searches on it (and hence knows about the
available content), it can be easily sued for promoting illegal
sharing (as happened in the case of Napster [7]).

Another solution is to use limited flooding, as in Gnutella
[11]. In this approach, when a node joins the system, it comes
to know about a few other nodes through a simple mechanism.
Now whenever it wants to retrieve a file, it sends a request
to its neighbours. If a neighbour has the file, it informs the
requesting node and file transfer can take place. Also, at the
same time, the host node can either cancel the request that
it sent to other nodes, or it can refuse the other nodes when
they return positive responses. If the neighbour does not have
the file, it broadcasts the request to all its neighbours (other
than the one from whom it got the request - to avoid cycles).
Each request can have a counter that contains a small number
(7 in the case of Gnutella) that is decremented each time a
request in forwarded, thus ensuring that every request does
not reach every other node and clogs the network. Although
this approach is completely decentralized and does not have
a single point of failure, there are still many problems. Even
though we are doing limited flooding, the number of messages
exchanged for a single query is huge and there is huge waste of
network resources. Also, even though a file might be available
on the network, a node might not be able to retrieve it.

In order to avoid the problems of the previous approaches,
we need a system that given a key (such as a file name),
can quickly tell which node stores that key. A hash table that
distributes keys to nodes can do the trick. Such a hash table
is known as a Distributed Hash table (DHT). DHT’s can be



used to store data as well as to do routing. Thus, a DHT
offers a decentralized, scalable and fault tolerant solution to
the problem of locating the node that stores a key in a dynamic,
distributed environment. A DHT based approach can also be
used to provide anonymity in the system.

VI. CHORD

The most important problem faced by a node in a p2p
system based on DHT’s, is to locate the node that stores
a particular key, in an efficient way. This is the problem
addressed by Chord - a distributed lookup protocol [2]. All
that Chord does is, given a key, it maps the key onto a node. It
must be noted that Chord does not provide any authentication,
replication, caching etc. and hence the application that runs
over Chord must itself provide the features that it needs (eg.
data replication to ensure availability even when some nodes
abruptly leave the system).

Chord does this lookup in an efficient and scalable manner
(as is indicated by results from theoretical analysis, simulation
and experiments). It uses a consistent hash function (a variant
of the function described in Section 5) to assign keys to nodes.
This ensures that all nodes are responsible for roughly the
same number of keys and whenever a node joins or leaves
the system, only a very small number of keys are transferred
between nodes. Chord is a completely decentralized system.
No node in Chord is more important than any other node. The
protocol is designed in a way that ensures that unless there
is a major failure in the underlying network, the node that is
responsible for a key can be found out by any other node in
the system (although efficient querying might not be possible).

We now describe how the protocol works. The protocol
uses the SHA-1 hash function to assign an m-bit identifier
to every key and node. m is chosen to be large enough so
that there is a very low probability of two nodes or two keys
hashing to the same m-bit identifier. A node’s identifier is
obtained by hashing the its IP address, and a key identifier
is obtained by simply hashing it. It must be noted that in
consistent hashing, we speak about a k -way independent hash
function that maps keys and nodes onto the identifier space,
while here we use SHA-1. This makes the Chord protocol
deterministic. However, the use of SHA-1 can be justified
because producing a set of keys that collide under SHA-1 is
equivalent to breaking or decrypting SHA-1. However, since it
is believed that SHA-1 is difficult to break, the hash function
can be considered to be equal to (or better than) a k -way
independent hash function and hence all the bounds derived
in Section 5 still old. Moreover, the type of hash function that
we choose to use does not affect the Chord protocol (as long
as it is equivalent to a k -way independent hash function).

A. Allocation of keys to nodes

Key k (with identifier ik ) is assigned to the first node (n)
whose identifier (in ) is equal to or follows the identifier of
k ie. in is the smallest node identifier such that ik ≤ in
(module 2m . This node is called the successor node of key
k , denoted by successor(k) . If identifiers are represented on a

circle by having 2m ordered points on the circle corresponding
to the numbers from 0 to 2m − 1 , then successor(k) is
the first node clockwise from k . When a new node n joins
the network, in order to maintain this structure, certain keys
previously assigned to n’s successor now become assigned to
n . When node n leaves the network, all the keys that were
previously assigned to it are reassigned to its successor. Since
we use a consistent hash function, whenever a node joins or
leaves the system, only O(K/N) keys need to be transferred
from a node to its successor or vice versa (where K is the
total number of keys and N is the number of nodes currently
active). Also, since in Chord we map each node to a single
point on the identifier circle, we can no longer ensure that
perfect load balancing takes place with a high probability.
Instead, we can just say that on an average, a node will be
responsible for at most O(logN) · K/N keys.

B. Key Lookup

Naive Key Lookup: Every node maintains its successor
information correctly and keeps on passing the query to its
successor until the destination node is reached. This takes
O(N) time. However, this lookup protocol only needs that
there is just one entry in a node’s routing table that is
correct. Hence this technique can be used when the network
is changing rapidly (ie. many nodes are joining and leaving
the system within a short time span) and the routing tables are
quite inconsistent.

Normal (fast) Lookup: Each node n maintains a routing
table with m (length of key/node identifiers) entries, called
the finger table. The jth entry in the table at node n contains
the identity of the first node s , that succeeds n by atleast
2j−1 on the identifier circle ie. s = successor(n + 2j−1)
or is is the smallest node identifier such that is ≥ in + 2j−1

where 1 ≤ j ≤ m and all arithmetic is modulo 2m . Node s
is called the jth finger of node n .

Due to the way in which the finger table is maintained, a
node knows more about nodes that closely follow it on the
identifier circle. This guides the way in which lookup for a
key k is done. If a node n can find a node whose identifier
is closer than its own (in ) to ik , that node will know more
about the identifier circle in the region of k than n does.
So n searches its finger table for the node j whose identifier
most immediately precedes that of k , and asks j for the node
it knows whose identifier is closest to ik . By repeating this
process, n learns about nodes with identifiers closer and closer
to k . Eventually, the node that is the immediate predecessor
of k will be reached and its successor will contain the key
k . With high probability, the number of nodes that must
be contacted to find a successor in an N -node network is
O(log N) - less than the expected O(m) .

Theorem VI.1. With high probability, the number of nodes
that must be contacted to find a successor in a N-node network
is O(logN) .

Proof: Suppose a node n wants to find the location of a
key k . Let p be the immediately preceding node of k . Now, if



n 6= p , n will forward the query to the node in its finger table
that is just preceding k . Let us suppose that p is at a distance
in the range (2i−1 , 2i ] ie. it is in the ith finger interval of
the node n . This implies that this interval is not empty and
so there exists a node f in the ith finger table entry of n .
Therefore, the distance between n and f is atleast 2i−1 and
the distance between f and p is less than 2i−1 (since both
are in the same interval). So if we go to f from n , then we
have reduced the distance by atleast half. So we will require
at most m steps to reach p .

After k hops, the distance to p reduces by a factor of
atleast 2k . Therefore, after logN hops, the distance between
the current query node and p will be at most 2m/N . Now
since there are only N active nodes currently, the expected
number of nodes in this interval is 1 and O(logN) with high
probability. So, now even if we proceed by simply going to the
immediate successor node, we will still reach the destination
in O(logN) hops. Therefore, on an average, we require only
O(logN) hops for a lookup.

C. Node Joins

Chord preserves two invariants to achieve correct (though
slow) routing in case of node joins and exits:

• Each node’s successor is correctly maintained.
• For every key k , the node successor(k) is responsible

for it.

In addition to the above, for lookups to be fast, the finger
tables need to be correct as well.

It is assumed that a new node n , due to some external
means, knows a node n′ that is already part of the Chord
network. Also, to simplify the process of node join and exit,
we also maintain a predecessor pointer per node (pointing to
the immediately preceding node on the identifier circle). Upon
joining, the following tasks must be performed:

• Initialize the predecessor and finger table of the new
node: The node n asks n′ to compute the successor of
each of its finger table entries (ie. of n + 2i−1 ). This
would require O(m logN) steps. As an optimization,
before asking the successor for the ith entry, n checks
whether the i− 1th finger is also the correct ith finger.
This step reduces the number of finger entries to be
looked up to O(logN) and hence the total number of
steps to O(log2N) .
As an alternate way of reducing the complexity, the
new node can ask its immediate neighbour to share its
entire finger table. Most of the finger table entries of its
neighbour will also work for the new node and only a
few will have to be looked up. This reduces the time
needed by n to build its own finger table to O(logN) .

• Update fingers of existing nodes: Node n can become
the ith finger of a node p if and only if:

– p precedes n by atleast 2i−1 on the identifier circle
– the current ith finger of p succeeds n

A counter-clockwise walk on the identifier circle can be
used to update the finger table entries of all nodes. With

high probability, the number of nodes whose finger tables
need to be updated when a new node joins the network is
O(logN) . Therefore, the total time needed for this step
is O(log2 N) .

• Transfer keys: n only needs to contact its successor,
since it can become responsible only for those keys for
which its successor was responsible before n had joined
the network.

The paper [2] also presents a way to handle concurrent joins.
Inspite of concurrent joins, lookups are still very efficient. This
is stated in the following theorem:

Theorem VI.2. If a stable network of N nodes is joined by
N more nodes with no finger entries (except the correct suc-
cessor), then with high probability, lookups take OO(log N)
time.

Node exits can be handled by maintaining a list of
O(log N) immediate successors. If the node is unable to
contact its immediate successor, it tries the next successor in
the list and continues till it finds an active node. In particular,
the following theorem holds:

Theorem VI.3. If for every node, we maintain a list of
O(logN) immediate successors, the network is initially stable,
and every node now fails with 50% probability, then we can
still find the successor for any key in O(logN) steps (upon
expectation).

Simulation and experimental results given in the paper
[2] verify that the load balance and lookup path length are
as obtained by theoretical analysis. In particular, simulations
show that the average path length in a N node network is
about 1

2 log N . This is because, if we consider the binary
representation of the distance between the source and the
destination nodes, we expect half the bits to be 1 and half
the bits to be 0. In order to reach the destination, we only
need to follow the finger table entries corresponding to 1’s in
the distance. Since the representation uses logN bits, we need
only 1

2 log N steps to reach the destination.

VII. CAN

In this section, we discuss another p2p routing protocol.
This section can be considered to be a summary of [3]
and [12]. A Content-Addressable Network (CAN) is another
example of a DHT based routing protocol. It has several
desirable properties, such as scalability, fault tolerance and
building a completely self-organizing network.

A. Basic Design

The basic CAN design revolves around a virtual d-
dimensional Cartesian coordinate space on a d-dimensional
torus. A d-dimensional torus can be visualized as a d-
dimensional solid hypercube with every face joined to / being
identical to the opposite face. In other words, we have a d-
dimensional coordinate system that wraps around every dimen-
sion. The entire coordinate space is dynamically partitioned
among all the nodes that are currently present in the system.



In a stable system, every node owns a single zone and there is
no overlap between zones. In the transient stage, there might
be zones that are not owned by any node or a node might be
responsible for more than one zones. Whenever a node joins
the system, an existing zone is split. When a node leaves the
system, its zone is alloted to another node.

B. Storage (Retrieval)

To store (retrieve) a (key,value) pair, the key is hashed using
a uniform hash function (ie. a hash function that distributes
keys uniformly in the entire coordinate space), to obtain a point
P in the coordinate space. The pair is stored at (retrieved from)
the node that currently owns the zone to which P belongs.

C. Routing

A CAN node maintains a small routing table that holds the
IP address and the dimensions of the coordinate zone of each
of its immediate neighbors in the coordinate space. Two nodes
are neighbours if their coordinate spans overlap along d − 1
dimensions and the spans are adjacent to each other along one
dimension. Intuitively, routing in a CAN works by following
the straight line path from the source to the destination node
in the Cartesian coordinate system. One naive way to route
messages is by simple greedy forwarding to the neighbour
with coordinates closest to the destination coordinates. In
other words, we look at the coordinates of the destination
and our own coordinate zone and compute the distance to
the destination. We will get a distance in each dimension. In
greedy forwarding, we will route the message to that neighbour
which will lead to the largest reduction in the total distance to
the destination. However, note that other routing policies can
also be used. We can proceed to reduce the distance along any
of the d-dimensions to reach the destination. We can also first
try to reduce the maximum of these distances, then the next
largest distance and so on.

For a d-dimensional space that is partitioned into n equal
zones, each node maintains 2d neighbours (ie. two neighbours
per dimension, one in the forward direction and one in
the backward direction). The average routing path length is
(d/4)(n1/d ) since each dimension has n1/d nodes and the
average distance between two points on a torus along one
dimension is 1/4 th of the number of zones. Put another way,
on an average, two nodes will be (1/4)(n1/d ) zones away
along every dimension and hence the total distance between
them is (d/4)(n1/d ).

Because of its geometry, a CAN is quite robust to node
failures. Since many different paths exist between two points
in the space, even if one or more of a node’s neighbors crash
and the recovery mechanism has not assigned this zone to
some other node, a node can automatically route along the
next best available path or forward the packet to any node that
is closer to the destination than itself, and from there greedy
forwarding can resume.

D. Node joins

When a new node joins, three steps need to be followed:

• Finding an existing node: By looking up the CAN
domain name in the DNS, the node retrieves the IP of
a bootstrap node that supplies to it the IP of several
randomly chosen nodes that are currently present in the
system. In this way, it is ensured that a new node comes
to knows about atleast one existing CAN node.

• Finding a zone: The new node randomly selects a point
P in the coordinate space and sends a JOIN request for
P using an existing CAN node. The current occupant of
the zone then splits its zone into half and assigns one half
to the new node. The splitting is done following a certain
ordering of the dimensions so that it is easy to re-merge
the zone once a node leaves ie. we decide an order, say
d1 , d2 , . . . in which the dimensions are going to be
split. The first split is done in the d1 dimension and it
is remembered. The next split will be done in the d2

dimension and so on. Once the split has been done, the
(key, value) pairs in the new node’s zone are transferred
to it by the previous owner of this zone.

• Joining the routing: The previous occupant of the zone
informs the new node about its neighbours. After this,
both the new node and the previous occupant update their
neighbour tables and inform their neighbors about the
splitting of the zone so that they can update their routing
tables. In this way, a new node affects only O(d) other
nodes, making the CAN system extremely scalable.

E. Node departure, recovery and CAN maintenance

Normally, before leaving, a node should hand over its zone
and associated (key, value) pairs to one of its neighbours. If
this zone can be merged with the zone of one of its neighbours,
this is done. Else, it is handed over to the neighbour which
currently has the smallest zone. There is a background zone
reassignment algorithm that ensures that there is only one zone
per node. So after a certain time, we will again have a single
zone (ie. a rectangular box) per node.

Every node sends periodic update messages to its neigh-
bours. Failure of a node is detected by the absence of these
messages. If this happens, a takeover mechanism is initiated
that ensures that a neighbouring node with a small zone is
efficiently chosen.

F. Design Improvements

The bound obtained for the number of hops O(dn1/d )
represents the application level hops in a network and not the
IP-level hops. Since there is no locality based zone assignment
in a CAN, adjacent nodes might be many IP hops away and
hence the total latency of routing in a CAN might be many
times the actual IP routing latency. To avoid this, various
mechanisms are proposed to reduce the total path latency
by either reducing the number of hops (path length) or by
reducing the per hop latency. Some of these mechanisms are
as discussed below.

1) Increasing the dimension: Increasing the dimension of
the coordinate space leads to lower path length for a small
increase in the size of the routing table. Since each node now



has more neighbours, it also increases the number of paths
available between two points and hence the fault tolerance. In
particular, making d equal to logN results in a routing table
of size logN and a path length of logN as well. This matches
the best bounds of various other routing mechanisms such as
Chord.

2) Multiple coordinate spaces or Realities: There can be
multiple, independent coordinate spaces (or “realities”) with
each node in the system being assigned a different zone in
each reality. This means that a single node will own many
zones with each zone belonging to a particular coordinate
space. The contents of the hash table can be replicated on
each reality, improving data availability and fault tolerance.
As before, a node will have 2d neighbours for every reality.
Since the number of realities is more than one, a node now has
a large number of neighbours, and this leads to a substantial
reduction in routing path length.

Through simulations, it turns out that for the same num-
ber of neighbours, the reduction in path length achieved by
increasing the dimension is much more than that obtained
from increasing the number of realities. However, increasing
realities offers the advantage of data replication and better fault
tolerance.

3) Better routing metric: To improve latency, every CAN
node can be required to measure the network level round
trip time (RTT) to each of its neighbours. A message can
now be forwarded to that neighbour with the maximum ratio
of progress to RTT. Although this might lead to increase in
the number of hops, it leads to a reduction in the total path
latency. As we increase the dimension, we get more routing
choices and hence the improvement obtained by using this
optimization increases.

4) Overloading coordinate zones: Multiple nodes can be
allowed to share the same zone subject to a maximum of
MAXPEERS nodes per zone. The nodes that share a zone can
keep a copy of the same information or split the information.
A node needs to know all peers in its zone only and not all
peers in its neighbours zone. Out of all the peers (belonging
to a single zone) that can act as a neighbour node to a
particular node A , it chooses that one which has the smallest
RTT. Overloading leads to reduced path length (since the
number of zones goes down), reduced per-hop latency (since
the minimum RTT node is chosen as the neighbour), improved
data availability (if information is copied) and better fault
tolerance (since even if one node crashes, the zone does not
become vacant).

5) Multiple hash functions: k different hash functions can
be used to map a single key to k different points and the (key,
value) pair can be stored at each of these points. This improves
data availability. Moreover, a query can be sent to each of these
points in parallel to reduce the total latency. However, multiple
hash functions result in increasing the amount of storage and
query traffic (if parallel queries are made) by a factor of k .

6) Locality based zone assignment: If instead of assigning
a new node a random zone, we assign it a zone in such a
way that its neighbours are close to it ie. they have a low

latency, we can gain significant improvements in performance.
A reduction in the per hop latency would lead to a lower total
path latency. This optimization can be achieved by dividing
the coordinate space into some segments and assigning a zone
to a node depending on its location (measured using the RTT
to a fixed set of routers).

7) Uniform Partitioning: If a node, upon receiving a JOIN
request, instead of directly splitting its own node, compares its
volume to that of its neighbours and that zone is split which
has the highest volume, a much more uniform partitioning
of the space is obtained (this is verified using simulation).
This leads to better load balancing and reduced variance in
the total path length, amount of data stored and the number
of neighbours for a node.

G. Problems with CAN

Currently, there are some open problems that need to be
addressed before commercial applications using a CAN can
be realized. One of the major problems is to make a CAN
system resistant to denial of service attacks. This is difficult,
since a malicious node can act as either a client, a server or
a router.

Another problem is to modify the algorithm for being able
to support keyword based search.

VIII. THE IMPACT OF DHT ROUTING GEOMETRY ON

STATIC RESILIENCE AND PROXIMITY

Till now, we have seen two DHT based routing protocols -
Chord and CAN. The Chord protocol has an underlying ring
geometry, while the CAN protocol is based on a hypercube
geometry. There are DHT based routing protocols that use still
other geometries like butterfly networks, tree structures etc.
Here, we take a look at how the basic routing geometry of a
protocol affects its static resilience and proximity properties.
The title of this section has been taken from [4] and this section
is essentially a summary of that paper.

As we will soon quantify, these basic routing geometries
differ in the amount of freedom (or flexibility) that they
provide in the choice of neighbours (ie. the various ways in
which the routing table of a node can be chosen) and in the
choice of a routing path (ie. given a routing table, in how
many ways can we make a next-hop in order to route the
packet to the destination). It must be noted that inspite of
differences in the flexibility that these geometries provide for
neighbour and route selection, they all support a key lookup in
O(logN) steps, provided we have a routing table of O(logN)
entries (except in the case of a butterfly network, which only
needs a small constant size routing table). Therefore, we
must distinguish between these geometries based on other
performance metrics such as static resilience and proximity
(described below).

Stated more precisely, flexibility is the algorithmic freedom
left once the basic routing geometry has been chosen. Also,
while looking at a particular routing geometry, we must not
look at the amount of freedom that we have in neighbour and
route selection for a particular routing protocol based on that



geometry (eg. CAN in the case of a hypercube geometry).
Instead, we must look at how the geometry itself puts bounds
on the number of choices that we have. This is because, there
can be many routing protocols that are based on the same
underlying DHT geometry, but differ in the way they do things.
In the analysis that follows, we will come across what are
know as sequential neighbours. These are neighbour nodes
to which one can route a packet and be sure that progress
has been made for all possible destinations eg. the immediate
successor node in the chord protocol (described in section
6) is a sequential neighbour. We now quantify the flexibility
afforded by the various routing geometries mentioned above.

A. Flexibility in neighbour and route selection

In each of the following geometries, we will assume that
all nodes are in a logN -bit identifier space ie. every node
has a unique logN -bit identifier. Also, while considering the
flexibility in route selection for a given routing table, we are
mainly interested in finding the number of paths that allow us
to do efficient routing ie. in O(logN) steps.

1) Tree: In a tree geometry, we have a binary tree of height
O(logN) and all the nodes in the network can be viewed as
leaves in this tree. The distance between any two nodes in a
tree network is defined as the height of their smallest common
subtree. Since the height of the tree is O(logN) , the maximum
distance between two nodes is O(logN) . The routing table for
a node consists of O(logN) entries, where the ith entry is
for a node that is at a distance of i from the current node.
Therefore, a node at a distance of i from the current node
will have its first logN − i bits same as that of the current
node, and will differ in the ith bit from the end. Routing
in a tree network is achieved by successively correcting the
highest order bits. So, we look the highest order bit at which
the current node differs from the destination node. If this is the
jth but from the end, we send the packet of our jth neighbour
ie. to the node that differs from the current node at the jth

bit (from the end). In this way, one bit is corrected and we
continue like this until we reach the destination node.

Now we look at the flexibility in the above design. A subtree
of height i has 2i−1 leaf nodes. Therefore, a node has 2i−1

choices for selecting its ith neighbour (all these nodes have
their first logN−i bits the same as the current node and differ
on the logN − i+1th bit. Therefore the total number of ways
in which a node can select its neighbours (ie. the number of
different routing tables that it can have) is given by:

logN−1
∏

i=0

2i = 2(logN)(logN−1)/2 = n(logN−1)/2

However, once we have chosen a particular routing table out
of all the above options, there is a only a single node that will
increase the longest prefix match to the destination. Therefore,
there is no flexibility in the choice of routes.

2) Hypercube: In a hypercube geometry, once we have
been given an identifier, we have no choice in the selection
of neighbours. Therefore the hypercube geometry offers no
flexibility in the choice of neighbours.

For a given choice of neighbours (ie. for a particular routing
table), we have a number of paths that lead to the destination.
We can choose to correct the bits along any dimension first. In
other words, we have a choice in the order in which we correct
the bits ie. the order in which we choose the dimensions. We
consider the case when the hypercube is of dimension logN ,
since then we can route in O(logN) hops and each node has
a routing table of size O(logN) (and hence we can compare
this to other geometries which have similar parameters). In this
case, the first node has logN choices for the next hop, since
it can choose to correct the distance along any dimension first.
The second node has logN − 1 choices and so on. Therefore,
the total flexibility in route selection is (logN)!

3) Butterfly: We look at the butterfly geometry in the light
of a particular routing protocol that is based on it - Viceroy
[13]. From this we get the flexibility properties of such a
routing geometry. For realizing a butterfly network, Viceroy
imposes a global ordering on nodes and designates nodes
to different levels (to correspond to levels in the butterfly
network). We only need to have a small constant size routing
table consisting of the immediate successor and predecessor
nodes from the immediately preceding and following levels.
In addition, we store successor and predecessor pointers to
nodes in the same level. Using this routing table, we can
achieve routing in O(logN) hops. This is done in three steps.
In the first step, we reach a node at level 0 (this will take
O(logN) hops). In the second step, we reach a node in the
same level as the destination node in another O(logN) hops.
We now use the successor and predecessor pointers to reach
the destination node in another O(logN) hops. Since each
step requires O(logN) hops, the complete lookup algorithm
also needs O(logN) hops.

Because of the geometry that Viceroy is based on, there
is no flexibility in either the choice of neighbours, or in the
choice of routes to a destination.

4) Ring: In a DHT routing algorithm based on ring ge-
ometry (such as Chord), a node maintains information about
at least one other node that is at a distance between 2i−1

and 2i from it (provided such a node exists). By using this
table, routing can be achieved in O(logN) hops. Chord stores
the first node that is at a distance greater than 2i−1 from it.
However, routing in O(logN) hops can be achieved by using
any node in this range. The argument of Theorem VI.1 still
goes through without any modification. Therefore, the number
of ways in which we can select the ith neighbour in a ring
geometry is 2i−1 (same as in the tree geometry). And so the
flexibility in neighbour selection is n(logN−1)/2 .

In a ring geometry, to reach a destination from a source
node, we need O(logN) hops. These can be considered as
jumps. In Chord, we do greedy routing and try to take the
largest possible jump at every step that will not make us
overshoot the destination. However, for routing in these many
hops, it must be noted that the order in which we make the
jumps does not matter, as long as we take all the jumps. Since
we have O(logN) jumps, the number of different ways in
which these can be taken is O(logN)! . Therefore, the choice



in route selection offered by a ring geometry is logN ! .
In addition to the logN ! possible choices that do not lead

to an increase in the path length, there are also other paths
much longer than O(logN) , that can be taken to reach the
destination. This can be understood in terms of Chord as
follows. For two nodes that are at a distance of O(n) from
each other, there are approximately O(logN) entries in the
routing table of the source node that lead to progress in the
direction of the destination node. We can choose any of these
neighbours to make progress towards the destination. Some of
these paths will be optimal, while some will not be optimal.

5) XOR: Kademlia [14] is yet another DHT based routing
algorithm. It defines a new distance metric - the distance
between two nodes is the numeric value of the XOR of their
identifiers. A node has a routing table of size O(logN) , where
the ith entry is a node that is at a distance in the range
[2i−1, 2i] . Therefore, like the tree and ring geometries, the
XOR geometry offers a total of approximately n(logN−1)/2

choices of routing tables.
In the normal case, routing takes place exactly as in the

tree geometry. We calculate the distance between the source
and the destination nodes and try to fix the MSB. At the next
hop we recompute the distance and again fix the MSB and
so on. To fix the ith bit (that is the MSB), we choose the
ith neighbour. Since the ith neighbour is at a distance in the
range [2i−1, 2i] , in the tree geometry, it is at a distance of
i from the current node. In tree geometry, routing works by
reducing the distance to the destination in every step and if the
distance to the destination is i at the particular step, we choose
the ith neighbour. Therefore, if the ith neighbours in the tree
and XOR geometries are the same, the path followed will be
exactly the same. Therefore, there is no flexibility in route
selection in the XOR geometry, just like in tree geometry.
However, in case of failures, the two geometries differ. In
the tree geometry, if the distance to the destination from the
current node to the destination is i , and the ith neighbour
fails, there is no way in which we can route the packet to
some other node and make progress towards the destination.
However, in XOR geometry, we can route the packet to a node
that results in the correction of some lower order bit(s). In
this way, we will still make progress towards the destination.
However, the number of hops that are needed now might
be much more than O(logN) , since now when we correct
a higher order bit, a corrected lower order bit might again
become incorrect.

B. Static Resilience

One of the reasons behind DHT’s (and p2p architectures in
general) being seen as an excellent way to build large scale
distributed systems, is that they are resilient to changes in the
system ie. they can handle node failures gracefully. Resilience
has three main concerns:

• Data Replication: In this paper, it will be assumed that
there are enough copies of a data item in the system, so
that a node exit does not result in data loss. The question

that will be addressed is whether routing can be done in
the presence of failures.

• Routing Recovery: To take care of failures, we need
recovery algorithms that will periodically fix the routing
tables of the active nodes. All the DHT based routing
algorithms have (or should have) a background recovery
algorithm that, depending on the protocol, fixes the
routing tables. Therefore, in this paper, we will not distin-
guish between the various approaches used by recovery
algorithms.

• Static Resilience: There is a time gap between the
system experiencing node failures and the recovery al-
gorithm being able to fix the routing tables of all active
nodes. Static resilience is a measure of how well can
the system route in this time gap. It is important for the
robustness and usability of a system. Moreover, it gives
an idea of how fast the recovery algorithms need to fix
the routing tables.

In this report, we will concentrate on static resilience. From
simulation results, we conclude that the Tree and Butterfly
networks, that offer no flexibility in route selection, perform
very badly in the event of node failures. When 30% of the
nodes in the system fail, then almost 90% of the paths fail
(ie. routing can’t take place in 90% of the cases). Ring and
Hypercube, that offer the greatest flexibility in route selection,
perform quite well and even when 30% of the nodes in the
system fail, only 7% of the paths fail. The XOR geometry,
which has some routing flexibility, perform in between the
previous extremes and here around 20% of the paths fail when
30% of the nodes in the system fail.

On carrying out the simulation with the addition of se-
quential neighbours, the results greatly improve. A simulation
carried out by adding 16 sequential neighbours resulted in
no path failures in any geometry, when 30% of the nodes
in the system failed. However, this resilience comes at the
cost of increased path length. Also, there is still a marked
difference between the resilience properties of ring and hy-
percube geometries, as compared to other geometries. There is
also a difference between the ring and hypercube geometries.
This is expected, since a ring is the only geometry that can
support sequential neighbours naturally. For other geometries,
artificial mechanisms have to be deployed, for being able to
use sequential neighbours.

Simulations also show that when there are a large number of
node failures, then adding sequential neighbours leads to better
resilience properties as compared to simply increasing the
number of regular neighbours of a node. However, this comes
at the cost of much larger path lengths. Therefore, sequential
neighbours must be used when we are only interested in
routing success and not concerned about total path latency.

Therefore, it can be concluded that the static resilience of
a routing geometry is largely determined by the amount of
routing flexibility that it offers.



C. Path Latency

DHT routing algorithms are designed to do efficient routing
by reducing the number of hops that are needed for a lookup.
However, we must note that these hops take place in the
identifier space. Two nodes that are neighbours in the identifier
space, might be very far off in the underlying internet topology
in terms of the path latency. Therefore, for efficient routing,
we now want to reduce the total end-to-end path latency. This
can be done in three ways:

• Proximity Neighbour Selection (PNS): We choose the
neighbours (ie. our routing table) depending on their
proximity. We define proximity between two nodes as
a measure of the IP latency between them.

• Proximity Route Selection (PRS): For a particular routing
table, to send a packet to a particular destination, we want
to choose that neighbour for the next-hop that leads to a
lower total path latency.

• Proximity Identifier Selection (PIS): We choose node
identifiers based on the location of the nodes. However,
this leads to problems of load balancing and correlated
failures and is hence not considered here.

We now look at PNS and PRS as ways to reduce the
total path latency. In DHT geometries that offer flexibility
in neighbour selection, for PNS we would like to choose
that neighbour that is the closest in terms of IP latency.
This is the ideal PNS algorithm. However, this is not always
possible/practical, since the number of choices might be too
mant. Therefore, as an approximation, we look at the first K
choices in the candidate set for selecting the neighbour. Out
of these K nodes, we pick that node as the neighbour which
is the closest in terms of proximity. This algorithm is known
as the PNS(K) algorithm.

Having a good PRS algorithm for selecting the next hop is
much more difficult. There is a tradeoff in the latency and the
number of hops. If we seek to reduce the total number of hops
(as was being done earlier), then it might lead to a huge path
latency. On the other hand, if we try to reduce the latency by
routing the packet to the neighbour with the smallest latency
(that leads to progress towards the destination), it might result
in a large number of hops with small per hop latency, but a
large total path latency. We follow some simple heuristics for
PRS depending on the geometry.

In a hypercube geometry, all paths are of equal length.
Therefore, from among the possible next hops, we simply
choose the one with the smallest latency. In the ring geometry
also, we use the fact that there exist multiple paths with the
same number of hops. We do this by first computing the
distance (in binary) between the source and the destination. We
now look at all the bits that are 1’s. We now make a candidate
set consisting of all the neighbours that corresponding to these
bits ie. if there is a 1 in the ith position, we add the ith

neighbour to the candidate set. We now route the packet to
the neighbour with the least latency among these candidate
nodes. However, we cannot apply these kind of heuristics to
the XOR geometry, since there we do not have multiple paths

with the same number of hops. So the heuristic used in XOR
geometry is to take a non-greedy next hop only when the
difference between the latency in the hop choices (ie. between
the higher latency next hop that does greedy routing and the
lower latency next hop that leads to potentially more number
of hops) is greater than the average hop latency in the network.

1) Results: In this section, we compare the improvement
achieved due to PNS and PRS. Only the XOR and the Ring
geometry can use both PNS and PRS. For these geometries,
simulations show that a tremendous improvement in the la-
tency is achieved by using any of these algorithms. However,
the improvement achieved by using the ideal PNS algorithm
is much more than that obtained by using the PRS algorithm.
Moreover, the improvement achieved by using both PNS and
PRS is only slightly more than that achieved by using just
PNS.

This is in fact expected, and can be understood as follows.
Suppose we have a ring geometry, and we want to reach a
node that is at a distance in the range [2i, 2i+1] . The ideal
PNS algorithm picks a neighbour from amongst 2i choices.
The PRS algorithm works on a fixed routing table and hence
has only i choices for the next hop (essentially, it can route
to any of the first i neighbours). Since we have many more
choices in the case of the ideal PNS algorithm, its performance
is expected to be much better.

Addition of sequential neighbours to the above geometries,
leads only to a moderate improvement in the latency perfor-
mance (that too only in case of the normal algorithm and the
PRS algorithm), as compared to the case without sequential
neighbours. Therefore, sequential neighbours do not affect the
difference in performance between the normal algorithm, the
PRS algorithm and the ideal PNS algorithm.

From the above results, it is clear that in order to reduce
path latency, the geometry must have the ability to support
PNS. Support for PRS is not that essential. We also observe
that the improvement in performance obtained by using either
PRS or PNS or both is irrespective of the underlying geometry.
For example, the performance improvement obtained in both
the hypercube geometry and the ring geometry by using PRS
is approximately the same.

Simulations show that the proximity methods described
above can reduce the end to end path latency to a very small
multiple (∼2) of the underlying internet latency.

IX. CONCLUSION

Recently, there has been a lot of academic and commercial
activity in the domain of peer to peer systems. p2p systems
offer desirable properties like extreme scalability, robustness
and fault tolerance. However, they also have certain problems
such as latencies, inconsistency etc. Earlier, research took
place on unstructured p2p systems such as Napster, Gnutella
etc. However, now the focus of research has shifted onto
structured overlay networks. Also, people have started looking
at the security issues in p2p systems.

The p2p paradigm has enabled a new class of distributed
applications, and reshaped the way traditional applications



work. As we move towards a better connected world, more
and more applications will make the shift to a p2p system. In
short, peer to peer systems are the way of the future and are
here to stay.

ACKNOWLEDGMENT

I would like to thank Prof. Dheeraj Sanghi for allowing
me to undertake this reading project as my CS625 (Advanced
Computer Networks) course project.

REFERENCES

[1] M. Roussopoulos, M. Baker, D. S. H. Rosenthal, T. Giuli, P. Maniatis,
and J. Mogul, “2 P2P or Not 2P2P,” in IPTPS, 2004.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet Appli-
cations,” in SIGCOMM, 2001.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” in SIGCOMM, 2001.

[4] K. Gummadi, R. Gummadi, S.Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica, “The Impact of DHT Routing Geometry on Resilience and
Proximity,” in SIGCOMM, 2003.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval System,” in
Workshop on Design Issues in Anonymity and Unobservability, 2000.

[6] Napster. [Online]. Available: http://www.napster.com
[7] A&M Records v. Napster. [Online]. Available:

http://www.gseis.ucla.edu/iclp/napster.htm
[8] KaZaa. [Online]. Available: http://www.kazaa.com
[9] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-

igrahy, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in STOC,
May 1997.

[10] D. Lewin, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” Master’s
Thesis, Department of EECS, MIT. 1998.

[11] Gnutella. [Online]. Available: http://www.gnutella.com
[12] S. Ratnasamy, “A Scalable Content-Addressable Network,” PhD Thesis,

University of California, Berkeley. October 2002.
[13] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and

dynamic emulation of the butterfly,” in PODC, 2002.
[14] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the XOR metric,” in IPTPS 2002, 2002.
[15] K. Aberer and M. Hauswirth, “P2P Information Systems,” in ICDE,

2002.
[16] J. M. Hellerstein, “Architectures and Algorithms for Internet-Scale (P2P)

Data Management,” in VLDB, 2004.


