
Parallelism without Concurrency

Charles E. Leiserson
MIT

Parallelism versus Concurrency

Parallel computing
A form of computing in
which computations are
broken into many pieces
that are executed
simultaneously.

Concurrent computing
A form of computing in
which computations are
designed as collections
of interacting processes.

Eschew Concurrency
} Concurrent computing is hard because interacting

processes are inherently nondeterministic and risk
concurrency anomalies such as deadlock and races.

} Nondeterministic programs are difficult to
understand and even more difficult to get right
[Lee 2006, Bocchino et al. 2009] .

} To exploit multicore computers, average
application programmers desperately need the
field of parallel programming to move away from
concurrency* and toward determinism (simplicity).

*Concurrent computing is still essential for programming parallel and
distributed workloads, as well as for implementing concurrency
platforms for parallel programming. This work is best done by experts
in concurrency, however, not by average programmers.

Theory Success: Cilk Technology
} Cilk encapsulates the nondeterminism of scheduling, allowing

average programmers to write deterministic parallel codes
using only 3 keywords to indicate logical parallelism.

} Cilk has a provably good scheduler that allows programmers
to analyze scalability theoretically and in practice using
work/span analysis.

} Cilk’s serial semantics factors parallelism from the other
issues of performance engineering, e.g., Cilk is cache friendly.

} The Cilkscreen race detector offers provable guarantees of
determinism by certifying the absence of determinacy races.

} Cilk’s reducer hyperobjects encapsulate the nondeterminism
of updates to nonlocal variables, providing deterministic
behavior for parallel updates.

} Cilk is embedded in Intel’s C++ compiler, and Intel has
released an open-source GCC implementation:
http://software.intel.com/en-­‐us/articles/intel-­‐cilk-­‐plus/	

Proposed “Dangerous” Research Agenda

Applications still exist that cannot be
easily programmed with Cilk’s fork-join
programming model except by resorting
to concurrency, e.g., software pipelining,
task-graph execution, etc.

Find a parallel-
programming

pattern where
experts use

locks.

Encapsulate the
pattern with a

linguistic construct
that provides serial

semantics.

Provide
algorithmically
sound runtime
support and

productivity tools.

——————— Iterate until Done ———————

Potential Recipe for Disaster?
} Can a parallel-programming model provide a small set of

linguistic mechanisms that completely eliminates the
need for concurrency in parallel programming?

} Can the programming model be designed to support
effective theoretical performance models, especially
considering the vagaries of modern hardware models.

} Will the various linguistic mechanisms synergize or
conflict with each other?

} What kind of memory model should the programming
model export (e.g., support for priority writes and
priority reserve)?

} Can theoretically sound productivity tools be created to
aid the development of parallel programs?

} How large a codebase can the parallel-programming
model support?

Scalability
} Algorithmic theory teaches us to study how

software scales with problem size.
} Parallel computing demands that we study how

software scales with number of processors.
} The real challenge will be how parallel-computing

mechanisms scale with legacy codebase size.
} Concurrency is a major obstacle.

Source lines of code Software artifact
< 1,000 Classroom examples

1,000–10,000 Benchmarks
10,000–100,000 Libraries

100,000–1,000,000 Applications
> 1,000,000 Software platforms

