Today…

- Thus far, focused on formulating convex problems
 - Today: How do we solve them!
 - Plan: 200 pages of book (Part III) in one lecture

- Focus:
 - Convex functions
 - Twice differentiable

- Overview
 - Unconstrained
 - Equality constraints
 - General convex constraints
Solving unconstrained problems

- Unconstrained problem
- Sequence of points:
 - Exactly: Stop when
 - Approximately: Stop when

Descent methods

- $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$
- Want:
 - From convexity:
 - Thus $\nabla f(x^{(k)})^T (y - x^{(k)}) \geq 0$
 - Therefore, pick Δx such that:
Generic descent algorithm

- Start from some x in $\text{dom } f$
- Repeat
 - Determine descent direction Δx
 - Line search to choose step size t
 - Update: $x \leftarrow x + t \Delta x$
- Until stopping criterion

Good stopping criterion:

- In gradient descent, $\Delta x =$

Exact line search

- Find best step size t:

Problem is

- Sometimes easy to solve in closed form
- Other times can take a long time…
Backtracking line search

- From convexity, lower bound on $f(x + \Delta x)$:
 - Can’t really hope to achieve ideal decrease of
 - Instead pick some α
 - And achieve:

- Choosing t:

Backtracking line search alg.

- Given
 - Point x
 - Descent direction Δx
 - α
 - β
 - $t=1$
 - While $f(x + \Delta x) >$
 - $t := \beta t$

- Boyd & Vandenberghe: pick
 - α in $[0.01, 0.3]$
 - β in $[0.1, 0.8]$
Analysis of gradient descent

- (details in book...)
- Linear convergence rate:
 - $f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)$
 - Geometrically decreasing
 - $c < 1$
 - In log plot, error decreases below a line...

- Rate c related to "condition number" of Hessian
 - $c = 1 - 1/\text{condition number}$

- For quadratic problem:
 - Condition number is $\lambda_{\text{max}}/\lambda_{\text{min}}$

- Gradient descent bad when condition number is large

Observations about descent algorithms

- Observe linear convergence in practice
- Boyd & Vandenberghe: difference often not significant in large dimensional problems
 - May not be worth implementing exact LS when complex

- Condition number can greatly affect convergence
Solving quadratic problems is easy

- Quadratic problem:
 - Solving equivalent to solving linear system:
 - If system has at least one solution: done!
 - If system has no solutions: problem is unbounded
 - Usually don’t have simple quadratic problems, but…

Newton’s method

- Second order Taylor expansion:
 - Descent direction, solution to linear system
 - Nice property:
 - We wanted:
 - We get:
Newton’s method – alg.

- Start from some x in $\text{dom } f$
- Repeat
 - Determine descent direction Δx_{nt}
 - **Line search** to choose step size t
 - Update: $x \leftarrow x + t \Delta x_{nt}$
- Until stopping criterion

Good stopping criterion:

$$\frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon$$

Convergence analysis for Newton’s

(Really see book for details.)

- **Two phases:**
 - Gradient is large
 - Damped Newton Phase
 - Step size $t \leq 1$
 - Linear convergence
 - Gradient is small
 - Pure Newton Phase
 - Step size $t = 1$
 - Quadratic convergence
 - $c^{(2^k)}$
 - Only lasts 6 steps
Summary on Newton’s

- Converges in very few iterations, especially in quadratic phase
- Invariant to choice of coordinates or affine scaling
 - Very useful property!
- Performs well with problem size, not very sensitive to parameter choices
- Can prove even cooler things when function is smooth
 - E.g., “self-concordance,” see book
- Many implementation tricks (see book)

But...
- Forming and storing Hessian is quadratic
 - Can be prohibitive
- Solving linear system can be really expensive
- Use quasi-Newton methods

Solving problems with equality constraints

- Equality constraints:
 - Seems very hard
Null space

- Equality constraints:
- Given one solution:
- Find other solutions:
- Since Null Space is a linear subspace:

Eliminating linear equalities

- Equivalent optimization problems:
- Find basis for null space of A (linear algebra)
 - Solve unconstrained problem
- A concern…
Solving quadratic problems with equality constraints

- Quadratic problem with equality constraints:
 - KKT condition x^* solution iff
 - Rewriting:
 - Solve linear system:
 - Any solution is OPT
 - If no solution, unbounded

Newton’s method with equality constraints

- Quadratic approximation:
 - Start feasible, stay feasible:
 - KKT:
 - Solve linear system:
 - Move accordingly:
General convex problem

- General (differentiable) convex problem:

- Equivalent problem with only equality constraints:

Approximating the indicator

- Approximate indicator:
 - Correct as \(t \)
 - Differentiable

- Approximate optimization problem:

- Convex, if \(f_i \) are convex, because
Log-barrier function

- Solve log-barrier problem with parameter t:

 - Nice property:
 - Gradient:
 - Hessian:

Force field interpretation

- Log-barrier function:
 - Descending gradient of log barrier

- Each term:
 - Want $f_i(x) \leq 0$
 - As we approach 0, :
Central path

- For each \(t \), solve:
 - As \(t \) goes to infinity, approach solution of original problem
 - Problem becomes badly conditioned for very large \(t \), so want to stay close to path and make small steps on \(t \)

Barrier method

- Given:
 - Feasible \(x \)
 - Initial \(t > 0 \)
 - \(\mu > 1 \)
- Repeat
 - Centering:
 - Starting from \(x \), compute:
 - Update: \(x := \)
 - Stopping criterion: When \(t \) is "large enough"
 - Increase barrier param: \(t := \)
When is \(t \) large enough???

- Solve centering step:
 - There exists values for dual vars (See book), such that duality gap \(\leq \frac{k}{t} \)
 - Thus:
 - Stopping criterion \(\frac{k}{t} \leq \varepsilon \)

Centering step not (necessarily) exact

- Finding exact point on central path can take a while…

- Usually:
 - Run a few steps of Newton to recenter
 - Then increase \(t \)
 - (problem: duality gap result no longer holds!!)

- Most often use primal-dual method
 - Equivalent to Newton’s method on Lagrangian
 - See book for details
What about feasible starting point???

- Phase I: Solve feasibility problem, e.g.,
 - Starting from feasible point:
 - (don’t solve to optimality!!! Stop when s<0)
 - When feasible region “not too small”, find point very quickly
 - Phase II: use feasible point from Phase I as starting point for Newton’s or other method
- Also possible:
 - Change Phase I to guarantee starting point (near) central path
 - Combine Phase I and Phase II