Convex Functions (cont. 2)

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
March 5th, 2008
Convex Functions

- Function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if
 - Domain is convex
 - \(\forall x, y \in \text{dom} f, \ \theta \in (0, 1) \)
 \[f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y) \]

- Generalization: Jensen’s inequality:
 \[f[E(x)] \leq E[f(x)] \]
 Useful in ML, e.g., EM

- Strictly convex function:
 \(\forall x, y \in \text{dom} f, \ \theta \in (0, 1) \)
 \[f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y) \]
Operations that preserve convexity

- Many operations preserve convexity
 - Knowing them will make your life much easier when you want to show that something is convex
 - Examples in next few slides

- Simplest: Non-negative weighted sum:
 - \(f = \sum w_i f_i \quad w_i \geq 0 \)
 - If all \(f_i \)'s are convex, then \(f \) is convex
 - If all \(f_i \)'s are concave, then \(f \) is concave
 - Example: integral of \(f(x,y) \)

- Affine mapping: \(f: \mathbb{R}^n \rightarrow \mathbb{R}, \quad A \in \mathbb{R}^{nxm}, \quad b \in \mathbb{R}^m \)
 - \(g(x) = f(Ax+b) \)
 - \(\text{dom } g = \{ x \mid Ax+b \in \text{dom } f \} \)
 - If \(f \) is convex, then \(g \) is convex
 - If \(f \) is concave, then \(g \) is concave

\(\text{e.g., } A, b \text{ come from PCA} \)
Pointwise maximum and supremum

- If f_i's are convex, then $f(x) = \max_i f_i(x)$

- Piecewise linear convex functions:
 - Fundamental for POMDPs

- For x in a convex set C, sum of the r largest elements:
 - Sort x, pick r largest components, sum them:
 $$f(x) = \left\{ \sum_{i=1}^{r} x_{e_i} \mid x_{e_1} > x_{e_2} > \ldots > x_{e_r} \right\}$$

- Maximum eigenvalue of symmetric matrix $X \in \mathbb{R}^{n \times n}$, $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$
 - $f(X) = \max_{\mathbf{A} \subseteq \{1, \ldots, n\}, |\mathbf{A}| = r} \mathbf{A}^T X \mathbf{A}$
 - $f(X) = \max_{\mathbf{V}, \|\mathbf{V}\|_2 = 1} \mathbf{V}^T X \mathbf{V}$
 - $f(X) = \max$ of linear functions of X
Pointwise maximum of affine functions: general representation

- We saw: convex set can be written as intersection of (infinitely many) hyperplanes:
 - C convex, then

- Convex functions can be written as supremum of (infinitely many) lower bounding hyperplanes:
 - f convex function, then
Composition: scalar differentiable, real domain case

- How do I prove convexity of log-sum-exp-positive-weighted-sum-monomials? :)
 - If $h: \mathbb{R}^k \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$, when is $f(x) = h(g(x))$ convex (concave)?
 - $\text{dom } f = \{ x \in \text{dom } g | g(x) \in \text{dom } h \}$

- Simple case: $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$, $\text{dom } g = \text{dom } h = \mathbb{R}$, g and h differentiable
 - E.g., $g(x) = x^T \sum x$, $\sum \text{ psd}$, $h(y) = e^y$

- Second derivative:
 - $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$
 - When is $f'(x) \geq 0$ (or $f''(x) \leq 0$) for all x?

- Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and nondecreasing and g is convex
 - f convex if h is convex and nonincreasing and g is concave
 - f concave if h is concave and nondecreasing and g is concave
 - f concave if h is concave and nonincreasing and g is convex
Composition: scalar, general case

- If \(h: \mathbb{R}^k \rightarrow \mathbb{R} \) and \(g: \mathbb{R}^n \rightarrow \mathbb{R}^k \), when is \(f(x) = h(g(x)) \) convex (concave)?
 - \(\text{dom } f = \{ x \in \text{dom } g | g(x) \in \text{dom } h \} \)

- Simple case: \(h: \mathbb{R} \rightarrow \mathbb{R} \) and \(g: \mathbb{R}^n \rightarrow \mathbb{R} \), general domain and non-differentiable
 - Example of sufficient (but not necessary) conditions:
 - \(f \) convex if \(h \) is convex and \(\tilde{h} \) nondecreasing and \(g \) is convex
 - \(f \) convex if \(h \) is convex and \(\tilde{h} \) nonincreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and \(\tilde{h} \) nondecreasing and \(g \) is concave
 - \(f \) concave if \(h \) is concave and \(\tilde{h} \) nonincreasing and \(g \) is convex

- Nondecreasing or nonincreasing condition on extend value extension of \(h \) is fundamental
 - Counter example in the book if nondecreasing property holds for \(h \) but not for \(\tilde{h} \), the composition no longer convex

- If \(h(x) = x^{3/2} \) with \(\text{dom } h = \mathbb{R}_+ \), convex but extension is not nondecreasing

- If \(h(x) = x^{3/2} \) for \(x \geq 0 \), and \(h(x) = 0 \) for \(x < 0 \), \(\text{dom } h = \mathbb{R} \), convex and extension is nondecreasing
Vector composition: differentiable

- If $h: \mathbb{R}^k \rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}^k$, when is $f(x) = h(g(x))$ convex (concave)?
 - $\text{dom } f = \{x \in \text{dom } g | g(x) \in \text{dom } h\}$
 - Focus on $f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$

- Second derivative:
 - $f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x)) g''(x)$
 - When is $f''(x) \geq 0$ (or $f''(x) \leq 0$) for all x?

- Example of sufficient (but not necessary) conditions:
 - f convex if h is convex and nondecreasing in each argument, and g_i are convex
 - f convex if h is convex and nonincreasing in each argument, and g_i are concave
 - f concave if h is concave and nondecreasing in each argument, and g_i are concave
 - f concave if h is concave and nonincreasing in each argument, and g_i are convex

- Back to log-sum-exp-positive-weighted-sum-monomials
 - $\text{dom } f = \mathbb{R}^n_{++}$, $c_i > 0$, $a_i \geq 1$
 - log sum exp convex
Minimization

- If $f(x,y)$ is convex in (x,y) and C is a convex set, then:

- Norm is convex: $||x-y||$
 - minimum distance to a set C is convex:
Perspective function

- If f is convex (concave), then the perspective of f is convex (concave):
 - $t > 0$, $g(x,t) = t f(x/t)$

- KL divergence:
 - $f(x) = -\log x$ is convex
 - Take the perspective:
 - Sum over many pairs (x_i, t_i)
Quasiconvex functions

- Unimodal functions are not always convex

- But they are (usually) still easy to optimize: Quasiconvex function:
 - All sublevel sets are convex, for all \(\alpha \in \mathbb{R} \):

- Equivalent definition: max of extremes is higher than function

- Applications include computer vision (geometric reconstruction) [Ke & Kanade ’05]
Log-convex functions

- Function $f: \mathbb{R}^n \rightarrow \mathbb{R}$, with $f(x) > 0$ in all (convex) $\text{dom } f$
 - f log-convex if and only if:

- Or equivalently:

- Examples
 - Gaussian
 $$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)}$$
What should you know: Convex fns

- definition
- showing that a function is convex/concave
 - first principle
 - first and second order condition
 - epigraph
 - operations that preserve convexity
- quasiconvexity
- log-convexity