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K&F: 8.1, 8.2, 8.3, 8.7.1
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Complexity of variable elimination –
Graphs with loops

Connect nodes that appear together in an initial factor

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Moralize graph:
Connect parents 

into a clique and 
remove edge directions
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Induced graph

Elimination order:

{C,D,S,I,L,H,J,G}

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

The induced graph IF≺≺≺≺ for elimination order ≺

has an edge Xi – Xj if Xi and Xj appear together
in a factor generated by VE for elimination order ≺

on factors F 
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Induced graph and complexity of VE

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

� Structure of induced graph 
encodes complexity of VE!!!

� Theorem:
� Every factor generated by VE 

subset of a maximal clique in IF≺
� For every maximal clique in IF≺

corresponds to a factor 
generated by VE 

� Induced width (or treewidth)
� Size of largest clique in IF≺

minus 1

� Minimal induced width –
induced width of best order ≺

Read complexity from cliques in induced graph

Elimination order:
{C,D,I,S,L,H,J,G}
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Example: Large induced-width with 
small number of parents

Compact representation ⇒⇒⇒⇒ Easy inference ����
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Finding optimal elimination order

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

� Theorem: Finding best elimination 

order is NP-complete:

� Decision problem: Given a graph, 

determine if there exists an elimination 
order that achieves induced width � K

� Interpretation:

� Hardness of finding elimination order in 

addition to hardness of inference

� Actually, can find elimination order in time 

exponential in size of largest clique – same 

complexity as inference

Elimination order:
{C,D,I,S,L,H,J,G}
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Induced graphs and chordal graphs

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

� Chordal graph:

� Every cycle X1 – X2 – … – Xk – X1 with 
k ≥ 3 has a chord

� Edge Xi – Xj for non-consecutive i & j

� Theorem:

� Every induced graph is chordal

� “Optimal” elimination order easily 
obtained for chordal graph
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Chordal graphs and triangulation

� Triangulation: turning graph into chordal
graph

� Max Cardinality Search:

� Simple heuristic

� Initialize unobserved nodes X as 
unmarked

� For k = |X| to 1
� X ← unmarked var with most marked

neighbors

� ≺(X) ← k

� Mark X

� Theorem: Obtains optimal order for 
chordal graphs

� Often, not so good in other graphs!

B

ED

H
G

A

F

C
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Minimum fill/size/weight heuristics

� Many more effective heuristics
� see reading

� Min (weighted) fill heuristic
� Often very effective

� Initialize unobserved nodes X as 
unmarked

� For k = 1 to |X|
� X ← unmarked var whose elimination 

adds fewest edges
� ≺(X) ← k

� Mark X

� Add fill edges introduced by eliminating X

� Weighted version:
� Consider size of factor rather than number 

of edges

B

ED

H
G

A

F

C
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Choosing an elimination order

� Choosing best order is NP-complete
� Reduction from MAX-Clique

� Many good heuristics (some with guarantees)

� Ultimately, can’t beat NP-hardness of inference
� Even optimal order can lead to exponential variable 

elimination computation

� In practice
� Variable elimination often very effective

� Many (many many) approximate inference approaches 
available when variable elimination too expensive

� Most approximate inference approaches build on ideas 
from variable elimination
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Announcements

� Recitation on advanced topic:

� Carlos on Context-Specific Independence 

� On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A 
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Most likely explanation (MLE)

� Query:

� Using defn of conditional probs:

� Normalization irrelevant:

Flu Allergy

Sinus

Headache Nose
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Max-marginalization

Flu Sinus Nose=t
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Example of variable elimination for 
MLE – Forward pass

Flu Allergy

Sinus

Headache Nose=t
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Example of variable elimination for 
MLE – Backward pass

Flu Allergy

Sinus

Headache Nose=t
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MLE Variable elimination algorithm 
– Forward pass

� Given a BN and a MLE query maxx1,…,xn
P(x1,…,xn,e)

� Instantiate evidence E=e

� Choose an ordering on variables, e.g., X1, …, Xn

� For i = 1 to n, If Xi∉E

� Collect factors f1,…,fk that include Xi

� Generate a new factor by eliminating Xi from these factors

� Variable Xi has been eliminated!
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MLE Variable elimination algorithm 
– Backward pass

� {x1
*,…, xn

*} will store maximizing assignment

� For i = n to 1, If Xi ∉ E

� Take factors f1,…,fk used when Xi was eliminated

� Instantiate f1,…,fk, with {xi+1
*,…, xn

*}

� Now each fj depends only on Xi

� Generate maximizing assignment for Xi:
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What you need to know about VE

� Variable elimination algorithm
� Eliminate a variable:

� Combine factors that include this var into single factor

� Marginalize var from new factor

� Cliques in induced graph correspond to factors generated by algorithm 

� Efficient algorithm (“only” exponential in induced-width, not number of 
variables)

� If you hear: “Exact inference only efficient in tree graphical models”

� You say: “No!!! Any graph with low induced width”

� And then you say: “And even some with very large induced-width” (special 
recitation)

� Elimination order is important!
� NP-complete problem

� Many good heuristics

� Variable elimination for MLE
� Only difference between probabilistic inference and MLE is “sum” versus 

“max”
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What if I want to compute 
P(Xi|x0,xn+1) for each i?

Variable elimination for each i?

Compute:

Variable elimination for every i, what’s the complexity?

X0 X5X3 X4X2X1
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Reusing computation

Compute:

X0 X5X3 X4X2X1
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Cluster graph

� Cluster graph: For set of factors F

� Undirected graph

� Each node i associated with a cluster Ci

� Family preserving: for each factor fj ∈ F,   

∃ node i such that scope[fi]⊆ Ci

� Each edge i – j is associated with a 
separator Sij = Ci ∩ Cj

DIG

JSLGJSL

HGJ

CD

GSI

D

SG

H
J

C

L

I
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Factors generated by VE

Elimination order:
{C,D,I,S,L,H,J,G}

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence
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Cluster graph for VE

� VE generates cluster tree!

� One clique for each factor used/generated

� Edge i – j, if fi used to generate fj
� “Message” from i  to j generated when 

marginalizing a variable from fi
� Tree because factors only used once

� Proposition:

� “Message” δ
ij

from i  to j

� Scope[δ
ij
] ⊆ Sij

DIG

JSLGJSL

HGJ

CD

GSI
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Running intersection property

� Running intersection property (RIP)

� Cluster tree satisfies RIP if whenever X∈ Ci

and X∈ Cj then X is in every cluster in the 

(unique) path from Ci to Cj

� Theorem:

� Cluster tree generated by VE satisfies RIP

DIG

JSLGJSL

HGJ

CD

GSI
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Constructing a clique tree from VE

� Select elimination order 
≺

� Connect factors that 
would be generated if 
you run VE with order ≺

� Simplify!

� Eliminate factor that is 

subset of neighbor
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Find clique tree from chordal graph

� Triangulate moralized graph 

to obtain chordal graph

� Find maximal cliques

� NP-complete in general

� Easy for chordal graphs 

� Max-cardinality search 

� Maximum spanning tree finds 
clique tree satisfying RIP!!!

� Generate weighted graph over 

cliques

� Edge weights (i,j) is separator 
size – |Ci∩Cj|

Difficulty

Grade

Happy

Job

Coherence

Letter

Intelligence

SAT
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Clique tree & Independencies

� Clique tree (or Junction tree)

� A cluster tree that satisfies the RIP

� Theorem:

� Given some BN with structure G and factors F

� For a clique tree T for F consider Ci – Cj with 
separator Sij:

� X – any set of vars in Ci side of the tree

� Y – any set of vars in Ci side of the tree

� Then, (X ⊥ Y | Sij) in BN

� Furthermore, I(T) ⊆ I(G)

DIG

JSLGJSL

HGJ

CD

GSI
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Variable elimination in a clique tree 1

� Clique tree for a BN

� Each CPT assigned to a clique

� Initial potential π0(Ci) is product of CPTs

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI

D

SG

H
J

C

L

I
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Variable elimination in a clique tree 2

� VE in clique tree to compute P(Xi)

� Pick a root (any node containing Xi)

� Send messages recursively from leaves to root

� Multiply incoming messages with initial potential

� Marginalize vars that are not in separator

� Clique ready if received messages from all neighbors

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Belief from message

� Theorem: When clique Ci is ready

� Received messages from all neighbors

� Belief π
i
(Ci) is product of initial factor with messages:
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Choice of root

Root: node 5

Root: node 3

� Message does not 
depend on root!!!

“Cache” computation: Obtain belief for all roots in linear time!!

10-708 – Carlos Guestrin 2006 32

Shafer-Shenoy Algorithm 
(a.k.a. VE in clique tree for all roots)

� Clique Ci ready to transmit to 
neighbor Cj if received messages 
from all neighbors but j

� Leaves are always ready to transmit

� While ∃ Ci ready to transmit to Cj

� Send message δi→ j

� Complexity: Linear in # cliques

� One message sent each direction in 

each edge

� Corollary: At convergence

� Every clique has correct belief

C2

C4

C5

C1

C3

C7

C6
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Calibrated Clique tree

� Initially, neighboring nodes don’t agree on 
“distribution” over separators

� Calibrated clique tree:

� At convergence, tree is calibrated

� Neighboring nodes agree on distribution over separator
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Answering queries with clique trees

� Query within clique

� Incremental updates – Observing evidence Z=z

� Multiply some clique by indicator 1(Z=z)

� Query outside clique

� Use variable elimination!
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Message passing with division

� Computing messages by multiplication:

� Computing messages by division:

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Lauritzen-Spiegelhalter Algorithm 
(a.k.a. belief propagation)

� Initialize all separator potentials to 1

� µij ← 1

� All messages ready to transmit

� While ∃ δi→ j ready to transmit

� µij’ ←

� If µij’ ≠ µij

� δi→j←

� πj ← πj × δi→j

� µij ← µij’

� ∀ neighbors k of j, k≠ i, δj→k ready to transmit

� Complexity: Linear in # cliques

� for the “right” schedule over edges (leaves to root, then root to leaves)

� Corollary: At convergence, every clique has correct belief

C2

C4

C5

C1

C3

C7

C6

Simplified description

see reading for details
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VE versus BP in clique trees

� VE messages (the one that multiplies)

� BP messages (the one that divides)
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Clique tree invariant

� Clique tree potential:

� Product of clique potentials divided by separators potentials

� Clique tree invariant:

� P(X) = πΤ (X)
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Belief propagation and clique tree 
invariant

� Theorem: Invariant is maintained by BP algorithm!

� BP reparameterizes clique potentials and 
separator potentials

� At convergence, potentials and messages are marginal 

distributions
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Subtree correctness

� Informed message from i to j, if all messages into i 
(other than from j) are informed
� Recursive definition (leaves always send informed 

messages)

� Informed subtree:
� All incoming messages informed

� Theorem:
� Potential of connected informed subtree T’ is marginal over 

scope[T’]

� Corollary:
� At convergence, clique tree is calibrated

� πi = P(scope[πi])

� µij = P(scope[µij])
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Clique trees versus VE

� Clique tree advantages

� Multi-query settings

� Incremental updates

� Pre-computation makes complexity explicit

� Clique tree disadvantages

� Space requirements – no factors are “deleted”

� Slower for single query

� Local structure in factors may be lost when they are 

multiplied together into initial clique potential
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Clique tree summary

� Solve marginal queries for all variables in only twice the 
cost of query for one variable

� Cliques correspond to maximal cliques in induced graph
� Two message passing approaches

� VE (the one that multiplies messages)

� BP (the one that divides by old message)

� Clique tree invariant
� Clique tree potential is always the same

� We are only reparameterizing clique potentials

� Constructing clique tree for a BN
� from elimination order

� from triangulated (chordal) graph

� Running time (only) exponential in size of largest clique
� Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less) 


