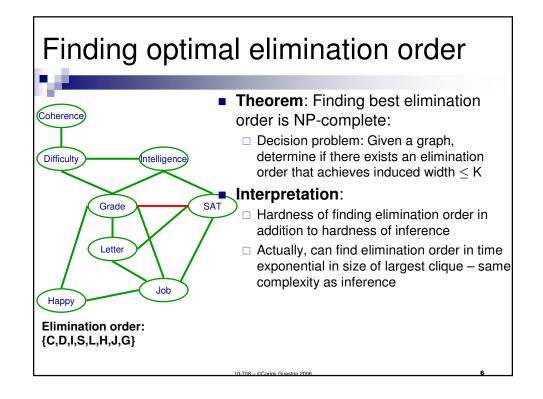


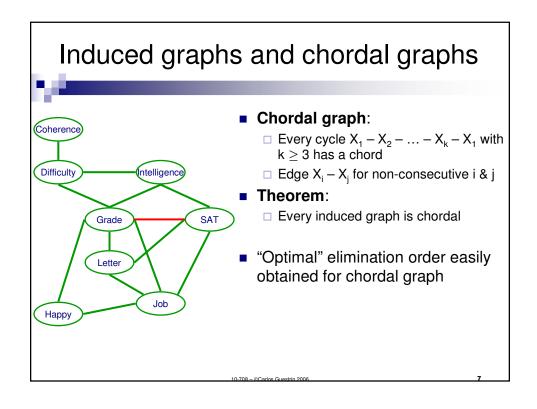
Example: Large induced-width with small number of parents

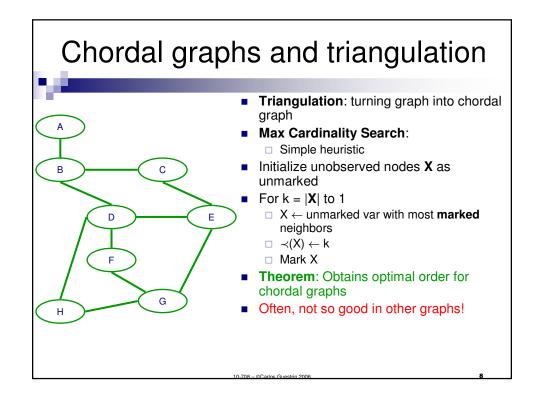
Compact representation

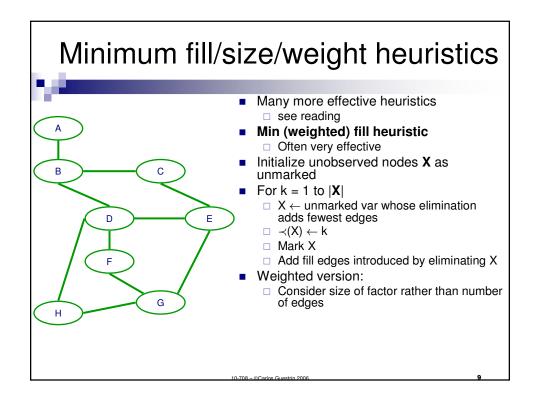
⇒ Easy inference

⊗









Choosing an elimination order

- Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
- In practice
 - $\hfill\Box$ Variable elimination often very effective
 - □ Many (many many) approximate inference approaches available when variable elimination too expensive
 - ☐ Most approximate inference approaches build on ideas from variable elimination

10-708 - ©Carlos Guestrin 2006

Announcements

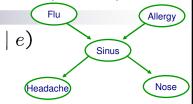
- Recitation on advanced topic:
 - □ Carlos on Context-Specific Independence
 - □ On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A

10-708 - ©Carlos Guestrin 2006

11

Most likely explanation (MLE)

• Query: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e)$



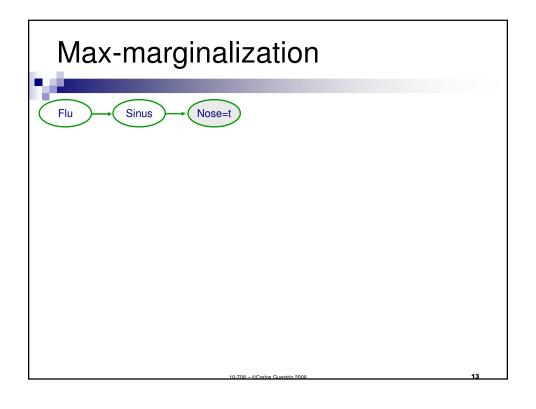
Using defn of conditional probs:

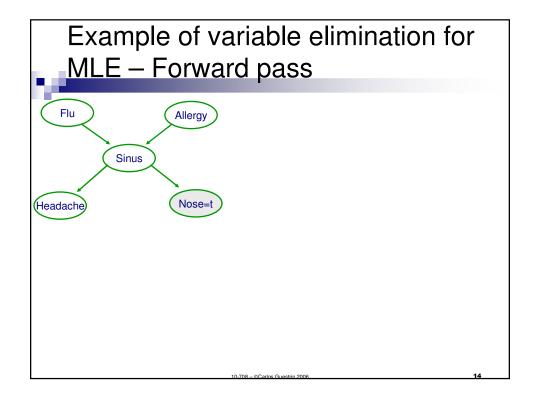
$$\underset{x_1,\ldots,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,\ldots,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$$

Normalization irrelevant:

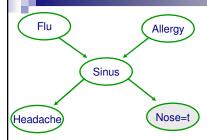
$$\operatorname*{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid e) = \operatorname*{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n,e)$$

I0-708 = ©Carlos Guestrin 2006





Example of variable elimination for MLE – Backward pass



MLE Variable elimination algorithm Forward pass

Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,\mathbf{e})$

$$_{x_n}P(x_1,\ldots,x_n,\mathbf{e})$$

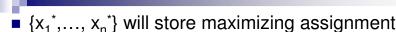
- Instantiate evidence **E**=**e**
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \mathbf{E}$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - $\hfill\Box$ Generate a new factor by eliminating \boldsymbol{X}_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithm

Backward pass



- For i = n to 1, If $X_i \notin E$
 - \square Take factors $f_1,...,f_k$ used when X_i was eliminated
 - \square Instantiate $f_1,...,f_k$, with $\{x_{i+1}^*,...,x_n^*\}$
 - Now each f_i depends only on X_i
 - □ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^k f_j$$

10-708 - ©Carlos Guestrin 2006

17

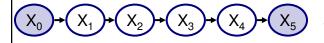
What you need to know about VE

- Variable elimination algorithm
 - □ Eliminate a variable:
 - Combine factors that include this var into single factor
 - Marginalize var from new factor
 - □ Cliques in induced graph correspond to factors generated by algorithm
 - Efficient algorithm ("only" exponential in induced-width, not number of variables)
 - If you hear: "Exact inference only efficient in tree graphical models"
 - You say: "No!!! Any graph with low induced width"
 - And then you say: "And even some with very large induced-width" (special recitation)
- Elimination order is important!
 - □ NP-complete problem
 - Many good heuristics
- Variable elimination for MLE
 - Only difference between probabilistic inference and MLE is "sum" versus "max"

10-708 - @Carlos Guestrin 2006

What if I want to compute $P(X_i|x_0,x_{n+1})$ for each i?

Compute:



 $P(X_i \mid x_0, x_{n+1})$

Variable elimination for each i?

Variable elimination for every i, what's the complexity?

10-708 - @Carlos Guestrin 2006

19

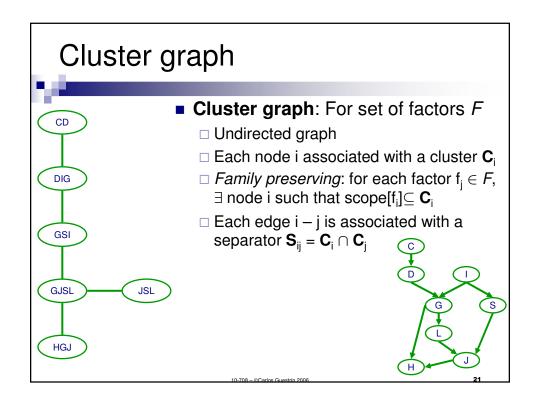
Reusing computation

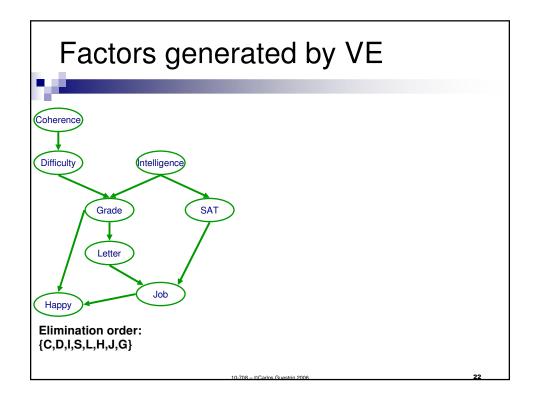
(X_0) + (X_1) + (X_2) + (X_3) + (X_4) + (X_5)

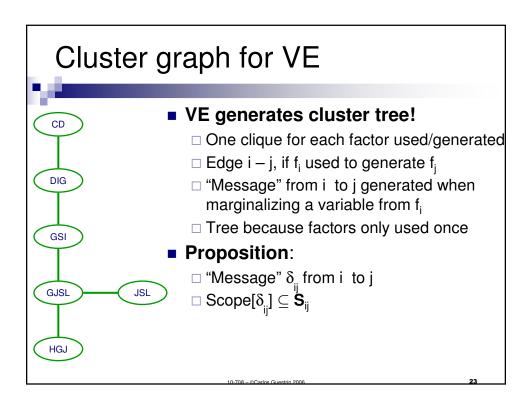
Compute:

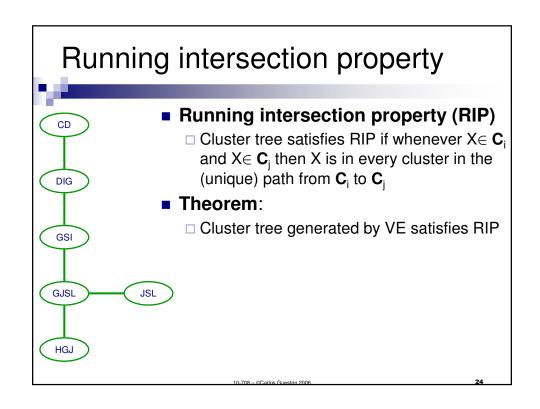
 $P(X_i \mid x_0, x_{n+1})$

10-708 – ©Carlos Guestrin 2006









Constructing a clique tree from VE

- Select elimination order
- Connect factors that would be generated if you run VE with order <</p>
- G1 S G5I S GS GS

- Simplify!
 - ☐ Eliminate factor that is subset of neighbor

10-708 - ©Carlos Guestrin 2006

25

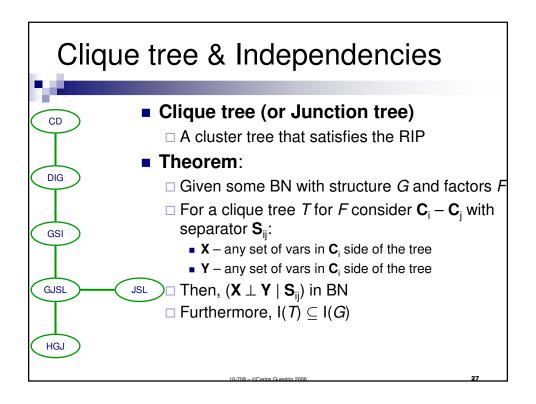
Find clique tree from chordal graph

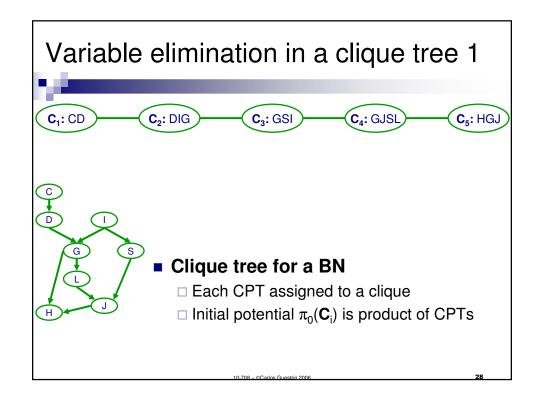
- Triangulate moralized graph to obtain chordal graph
- Find maximal cliques
 - □ NP-complete in general
 - $\ \square$ Easy for chordal graphs
 - □ Max-cardinality search
- Maximum spanning tree finds clique tree satisfying RIP!!!
 - ☐ Generate weighted graph over cliques
 - □ Edge weights (i,j) is separator size |C_i∩C_i|

Coherence
Difficulty
Intelligence
Grade
SAT

Happy
Job
26

In-708 = @Carlos Guestrin 2006





Variable elimination in a clique tree 2

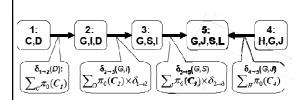
■ VE in clique tree to compute P(X_i)

- □ Pick a root (any node containing X_i)
- □ Send messages recursively from leaves to root
 - Multiply incoming messages with initial potential
 - Marginalize vars that are not in separator
- □ Clique *ready* if received messages from all neighbors

10-708 - ©Carlos Guestrin 2006

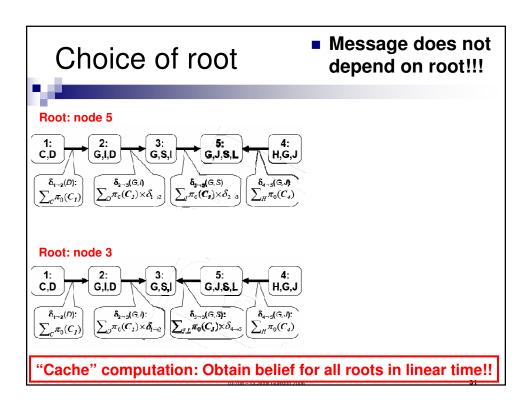
29

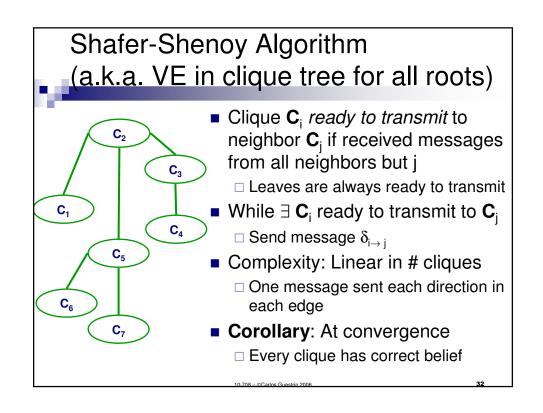
Belief from message



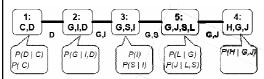
- Theorem: When clique C_i is ready
 - □ Received messages from all neighbors
 - \square Belief $\pi_i(\boldsymbol{C}_i)$ is product of initial factor with messages:

10-708 = @Carlos Guestrin 2006





Calibrated Clique tree



- Initially, neighboring nodes don't agree on "distribution" over separators
- Calibrated clique tree:
 - ☐ At convergence, tree is *calibrated*
 - □ Neighboring nodes agree on distribution over separator

10-708 - ©Carlos Guestrin 2006

33

Answering queries with clique trees

- Query within clique
- Incremental updates Observing evidence Z=z
 - $\hfill \square$ Multiply some clique by indicator $\mathbf{1}(Z=z)$
- Query outside clique
 - □ Use variable elimination!

10-708 - ©Carlos Guestrin 2006

Message passing with division

- Computing messages by multiplication:
- Computing messages by division:

Lauritzen-Spiegelhalter Algorithm (a.k.a. belief propagation)

see reading for details

- Initialize all separator potentials to 1
 - \square $\mu_{ii} \leftarrow 1$
- All messages ready to transmit
- While $\exists \, \delta_{i \rightarrow i}$ ready to transmit
 - $\square \mu_{ii}$ \leftarrow
 - \square If $\mu_{ii}' \neq \mu_{ii}$

 - $\blacksquare \quad \pi_i \leftarrow \pi_i \times \delta_{i \to i}$

 - \forall neighbors k of j, $k \neq i$, $\delta_{i \rightarrow k}$ ready to transmit
- Complexity: Linear in # cliques
 - ☐ for the "right" schedule over edges (leaves to root, then root to leaves)
- Corollary: At convergence, every clique has correct belief

VE versus BP in clique trees

- VE messages (the one that multiplies)
- BP messages (the one that divides)

10-708 - ©Carlos Guestrin 2006

37

Clique tree invariant

- Clique tree potential:
 - □ Product of clique potentials divided by separators potentials
- Clique tree invariant:
 - $\square P(\mathbf{X}) = \pi_T(\mathbf{X})$

10-708 – ©Carlos Guestrin 2006

Belief propagation and clique tree invariant

- Theorem: Invariant is maintained by BP algorithm!
- BP reparameterizes clique potentials and separator potentials
 - ☐ At convergence, potentials and messages are marginal distributions

0-708 - ©Carlos Guestrin 2006

39

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
 - □ Recursive definition (leaves always send informed messages)
- Informed subtree:
 - □ All incoming messages informed
- Theorem:
 - □ Potential of connected informed subtree T' is marginal over scope[T]
- Corollary:
 - ☐ At convergence, clique tree is *calibrated*
 - $\pi_i = P(scope[\pi_i])$
 - $\mu_{ij} = P(scope[\mu_{ij}])$

Clique trees versus VE

- Clique tree advantages
 - □ Multi-query settings
 - □ Incremental updates
 - □ Pre-computation makes complexity explicit
- Clique tree disadvantages
 - □ Space requirements no factors are "deleted"
 - ☐ Slower for single query
 - □ Local structure in factors may be lost when they are multiplied together into initial clique potential

10-708 - ©Carlos Guestrin 2006

41

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
 - □ VE (the one that multiplies messages)
 - □ BP (the one that divides by old message)
- Clique tree invariant
 - □ Clique tree potential is always the same
 - ☐ We are only reparameterizing clique potentials
- Constructing clique tree for a BN
 - ☐ from elimination order
 - ☐ from triangulated (chordal) graph
- Running time (only) exponential in size of largest clique
 - □ Solve **exactly** problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

10-708 - ©Carlos Guestrin 2006