Readings:
K&F:8.1,8.2,8.3,8.7.1
K&F:9.1,9.2,9.3,9.4

Variable Elimination 2

Clique Trees

Graphical Models — 10708
Carlos Guestrin
Carnegie Mellon University

October 13th, 2006 \

Complexity of variable elimination —

Graghs with loops
? @ onlesgron: | AN

into a clique and
remove edge directions 'D J

Connect nodes that appear together in an initial factor )\




The induced graph I_ for elimination order <
I nd u Ced ra h has an edge X, - X; if X; and X; appear together
g p in a factor generated by VE for elimination order <
on factors F
" JE
o 4
@ Elimination order:
{C,D,S,I,L,H,J,G}
gvery

£ (',n\}h;_-‘-L

Induced graph and complexity of VE
[ Resibpemistesitypei fglieSTn L%esﬂg raph Ll cligeod
| ‘Z E

corn [NeXi o

s (only) NPDM,L% i~ m Structure of induced graph
(2 Q\’f;vgﬁ? encodes complexity of VE!!!
— - ' Theorem: .y
Every factor generated by VE
subset of a maximal clique in 'l
For every maximal clique in T-~
corresponds to a factor

generated by VE wifA ow(uz«ﬁ
w-Induced width (or treewidth)
Size of largest clique in I

minus 1

Elimination order: Minimal induced width —
{C,D,,S,L,H,J,G} induced width of best order <

4




Example: Large induced-width with
small nhumber of parents

Compact representation 3> Easy inference ®
L T 8 L3 1 e

Finding optimal elimination order
" JE

m Theorem: Finding best elimination
order is NP-complete:

Decision problem: Given a graph,
determine if there exists an elimination
order that achieves induced width < K

Interpretation:

Hardness of finding elimination order in
addition to hardness of inference
Actually, can find elimination order in time
exponential in size of largest clique — same
complexity as inference

Elimination order:
{CJD!I!SJL!HiJ!G}




Induced graphs and chordal graphs
"

- m Chordal graph:
.
Every cycle X, =X, — ... = X — X, with
k > 3 has a chord
Edge X; — X; for non-consecutive i & j
m Theorem:
Every induced graph is chordal

m “Optimal” elimination order easily
obtained for chordal graph

Chordal graphs and triangulation
" JEE

m Triangulation: turning graph into chordal
graph
m Max Cardinality Search:
Simple heuristic

o o m Initialize unobserved nodes X as

unmarked
Fork =|X|to 1

| |
o o X < unmarked var with most marked

neighbors
<(X) « k

o Mark X

m Theorem: Obtains optimal order for

o chordal graphs
o m Often, not so good in other graphs!




Minimum fill/size/weight heuristics

m  Many more effective heuristics
see reading

= Min (weighted) fill heuristic
Often very effective

m |nitialize unobserved nodes X as
o unmarked

m Fork=1to|X|
X < unmarked var whose elimination

adds fewest edges

o <(X) + k
Mark X
o Add fill edges introduced by eliminating X
m Weighted version:
Consider size of factor rather than number

Choosing an elimination order
" J
m Choosing best order is NP-complete
Reduction from MAX-Clique
m Many good heuristics (some with guarantees)

m Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable
elimination computation

m In practice
Variable elimination often very effective

Many (many many) approximate inference approaches
available when variable elimination too expensive

Most approximate inference approaches build on ideas
from variable elimination




Announcements
" 000

m Recitation on advanced topic:
Carlos on Context-Specific Independence
On Monday Oct 16, 5:30-7:00pm in Wean Hall 4615A

11

Most likely explanation (MLE)
" @

= Query: argmax P(x1,...,2n | e)
yeey

m Using defn of conditional probs:

P(x1,...,2n,€
argmaxp(il}l’,:l}n | e) :argmax ( 1 3 L7y )
XYyeensy Tn T 5eees Tn P(e)

m Normalization irrelevant:

argmax P(x1,...,xn | €) = argmax P(x1,...,zn,€)
X1, Tn T1,...,Tn

12




Max-marginalization
" JEE

D COLCD

Example of variable elimination for
MLE — Forward pass
S

Syy=
(Csims )




Example of variable elimination for
. MLE — Backward pass

=

MLE Variable elimination algorithm
— Forward pass

m Given a BN and a MLE query max,,
m Instantiate evidence E=e
m Choose an ordering on variables, e.g., X, ..., X,

m Fori=1ton, If XgE
Collect factors fy,....f, that include X;
Generate a new factor by eliminating X; from these factors

k
g = max _Hl fj
J:

Variable X; has been eliminated!




MLE Variable elimination algorithm
— Backward pass
S

m {X,’,..., X, } will store maximizing assignment
mFori=nto1,IfX ¢ E
Take factors fy,....f, used when X; was eliminated
Instantiate f,,....f,, with {x,,{’,..., X}
= Now each f, depends only on X;

Generate maximizing assignment for X;:
k

B S
xr:; € argmax 3
i 9%_ jl;ll fJ

What you need to know about VE
" S

m Variable elimination algorithm
Eliminate a variable:
= Combine factors that include this var into single factor
= Marginalize var from new factor
Cliques in induced graph correspond to factors generated by algorithm
Efficient algorithm (“only” exponential in induced-width, not number of
variables)
= |f you hear: “Exact inference only efficient in tree graphical models”
= You say: “No!ll Any graph with low induced width”
= And then you say: “And even some with very large induced-width” (special
recitation)
m Elimination order is important!
NP-complete problem
Many good heuristics

m Variable elimination for MLE

Only difference between probabilistic inference and MLE is “sum” versus
HmaX”




What if I want to compute
P(X|Xq,X,,, 1) for each i?

Compute:

‘ Cx PO ) (% P (%) P(Xi | 20, Ty 1)

Variable elimination for each i?

Variable elimination for every i, what’s the complexity?

Reusing computation

Compute:

‘ Cx PO ) (o P (%) P(Xi | 205 g 1)

10



Cluster graph
"
m Cluster graph: For set of factors F
Undirected graph
Each node i associated with a cluster C;

Family preserving: for each factor f; € F,
3 node i such that scopel[f]C C;

C

Each edge i —j is associated with a
separator §; = C; N C; ©
CORNED.
(& D
D
HGJ
D >,

Factors generated by VE

Elimination order:
{CJD!I!SJL!HiJ!G}

11



Cluster graph for VE
" J
m VE generates cluster tree!
One clique for each factor used/generated
Edge i —|, if f; used to generate f,

“Message” from i to j generated when
marginalizing a variable from f,

Tree because factors only used once
m Proposition:

“Message” 6"_ fromi toj
ass —— o) Scope[3 ] < S;

HGJ

C

(o)

23

Running intersection property
" J
@ m Running intersection property (RIP)

Cluster tree satisfies RIP if whenever Xe C;
and Xe C, then Xis in every cluster in the

G{e) (unique) path from C; to C,
m Theorem:
GSD Cluster tree generated by VE satisfies RIP

HGJ

12



Constructing a clique tree from VE
" I

m Select elimination order <
< DC—D—D¢6I
m Connect factors that (;[1 T
would be generated if GéT{ 51
you run VE with order < [
G3ls — &S
a Simplify! SO TR s
Eliminate factor that is G~ o
subset of neighbor HGT — C—SI

Find clique tree from chordal graph
" JE
m Triangulate moralized graph

to obtain chordal graph

m Find maximal cliques
NP-complete in general
Easy for chordal graphs
Max-cardinality search

m Maximum spanning tree finds
clique tree satisfying RIP!!!
Generate weighted graph over
cliques
Edge weights (i,j) is separator
size — |C,NC;|

13



Cligue tree & Independencies
" J

@ m Clique tree (or Junction tree)
A cluster tree that satisfies the RIP
m Theorem:
QID Given some BN with structure G and factors A
For a clique tree T for F consider C; — C; with
GSD separator Sy:

= X —any set of vars in C, side of the tree
= Y —any set of vars in C,; side of the tree

s >—— st D Then, (X LY ['S) in BN

Furthermore, I(T) C I(G)

(2)

HGJ

Variable elimination in a clique tree 1

(e p>——Cex asD——g cusD——(& vad

ZI

<>,
CO D
& & .
D m Clique tree for a BN
Each CPT assigned to a clique
G Initial potential 7,(C,) is product of CPTs

14



Variable elimination in a clique tree 2
" I

O e CL e CED ey LT e G

m VE in clique tree to compute P(X))
Pick a root (any node containing X))

Send messages recursively from leaves to root
= Multiply incoming messages with initial potential
= Marginalize vars that are not in separator

Clique ready if received messages from all neighbors

Belief from message
" JEE

(22 3 1 5 )
cn mclanmW’GJSLmHGJ

_/ L B
812l DF:
@)

,J \_
8,45, 9
ZNHO(CIJ)/

J \_
8,:G.1) 8;.5(G.S)
ZD”c (C,)%6_, Z;’To (C)xdy 5

m Theorem: When clique C; is ready
Received messages from all neighbors
Belief ni(Ci) is product of initial factor with messages:

15



. m Message does not
Ch0|Ce Of root depeng on root!!!

Root: node 5

—y Ty Ty Ty Ty

CD ; GID F GSI : GJSL HGJ|

i i AN kY
I 8, D H ( \—k /J ’J

5, AG.A 8, S jl }‘. ich)

|LC:}U(C,J |LD”cU~JJX01J L&ﬂo(tuxc sJ | L,Hnotw

Root: node 3

= = Y = Y

_J

LLCEO(C,)j LLUHC(( )X”HzJ {L (0G5 ) %04 LL,HHOU 4)

“Cache” computation: Obtain belief for all roots in linear time!!

Shafer-Shenoy Algorithm

. Laka VE in clique tree for all roots)

m Clique C, ready to transmit to
C. neighbor C; if received messages

o from all neighbors but |

Leaves are always ready to transmit

c, m While 3 C; ready to transmit to C,
o Send message 9§,
CD m Complexity: Linear in # cliques

One message sent each direction in

o each edge

@ m Corollary: At convergence

Every clique has correct belief

16



Calibrated Clique tree

P]C)
P(C)

G,
FGID)

m Initially, neighboring nodes don’t agree on
“distribution” over separators
m Calibrated clique tree:
At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

33

Answering queries with clique trees
" S
m Query within clique

m Incremental updates — Observing evidence Z=z
Multiply some clique by indicator 1(Z=z)

m Query outside clique
Use variable elimination!

34

17



Message passing with division
" J

(00— D) ——( a5 )——@y cusD——CGe )

m Computing messages by multiplication:

m Computing messages by division:

Lauritzen-Spiegelhalter Algorithm

. Jak.a belief propagation) ceo roading or detais

m Initialize all separator potentials to 1 <D
Hy <>
m All messages ready to transmit T
= While 3§, ; ready to transmit e
i ey <>
Wy
: e
If " # W <>
mJ

i—j
" nj<—nj><8

LI “ij,
= V neighbors k of j, k# i, §;_, ready to transmit
m Complexity: Linear in # cliques
for the “right” schedule over edges (leaves to root, then root to leaves)
m Corollary: At convergence, every clique has correct belief

i—j

36

18



VE versus BP in clique trees
" JE
m VE messages (the one that multiplies)

m BP messages (the one that divides)

Clique tree invariant
" JEE
m Clique tree potential:
Product of clique potentials divided by separators potentials

m Cligue tree invariant:
P(X) = n1(X)

19



Belief propagation and clique tree
invariant

m Theorem: Invariant is maintained by BP algorithm!

m BP reparameterizes clique potentials and
separator potentials

At convergence, potentials and messages are marginal
distributions

Subtree correctness

" JE
m Informed message from i to j, if all messages into i
(other than from j) are informed

Recursive definition (leaves always send informed
messages)

m Informed subtree:
All incoming messages informed

m Theorem:
Potential of connected informed subtree T’is marginal over
scope[T]

m Corollary:

At convergence, clique tree is calibrated
s 7, = P(scope[n])
= W; = P(scope[w;])

20



Clique trees versus VE
" JE
m Clique tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

m Clique tree disadvantages
Space requirements — no factors are “deleted”
Slower for single query

Local structure in factors may be lost when they are
multiplied together into initial clique potential

Clique tree summary
" JE

m Solve marginal queries for all variables in only twice the
cost of query for one variable
m Cliques correspond to maximal cliques in induced graph
m Two message passing approaches
VE (the one that multiplies messages)
BP (the one that divides by old message)
m Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials
m Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph
m Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of
variables, and cliques with tens of nodes (or less)

0.208 - ©Caos Guiestio 2008 42

21



