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Approximate inference overview
" JE
m So far: VE & junction trees
exact inference
exponential in tree-width
m There are many many many many approximate
inference algorithms for PGMs
m We will focus on three representative ones:
sampling
variational inference
loopy belief propagation and generalized belief propagation

m There will be a special recitation by Pradeep
Ravikumar on more advanced methods




Approximating the posterior v.

aggroximating the prior

m Prior model represents entire world
world is complicated
thus prior model can be very complicated

m Posterior: after making observations

sometimes can become much more sure about the
way things are

sometimes can be approximated by a simple model
m First approach to approximate inference: find
simple model that is “close” to posterior
m Fundamental problems:
what is close?

posterior is intractable result of inference, how
can we approximate what we don’t have?

KL divergence:
Distance between distributions
JE—

Given two distributions p and g KL divergence:

D(plla) = 0 iff p=q
Not symmetric — p determines where difference is important
p(x)=0 and q(x)#0

p(x)#0 and q(x)=0




Find simple approximate distribution
" S

Suppose p is intractable posterior
Want to find simple g that approximates p
KL divergence not symmetric
D(plla)
true distribution p defines support of diff.
the “correct” direction
will be intractable to compute
D(allp)
approximate distribution defines support
tends to give overconfident results
will be tractable

Back to graphical models
" JEE
m Inference in a graphical model:
P(x) =
want to compute P(X;e)
our p:
m What is the simplest g?
every variable is independent:
mean field approximation
can compute any prob. very efficiently




D(p||q) for mean field —
. gL ibe right way

m p:
mq:
= D(pllg)=

D(q||p) for mean field —
KL the reverse direction
JE—
mp:
mqQ:
= D(pl|q)=




What you need to know so far
" JE
m Goal:
Find an efficient distribution that is close to posterior
m Distance:
measure distance in terms of KL divergence
m Asymmetry of KL:
D(plla) # D(allp)

m Computing right KL is intractable, so we use the
reverse KL

Reverse KL & The Partition Functlon

i} Back to the %eneral case

m Consider again the defn. of D(q||p):
p is Markov net P

m Theorem: InZ = F[Pr, Q]+ D(Q||Pr)

m where energy functional:

F[Pr,Ql = > Eglin¢] + Hp(X)
bEF




Understanding Reverse KL, Energy

Function & The Partition Function
JEE
InZ = F[Pr,Q] + D(QI||PFr) F[PF,Ql = ZfEQ[lnqﬂ + Ho(X)

m  Maximizing Energy Functional & Minimizing Reverse KL

m Theorem: Energy Function is lower bound on partition function

Maximizing energy functional corresponds to search for tight lower bound on
partition function

Structured Variational Approximate

InZ = F[Pr, Q] + D(Q||PF)
. goference FPrQl= 3 Talinol + gl
pcF
m Pick a family of distributions Q that allow for exact
inference

e.g., fully factorized (mean field)
m Find QeQ that maximizes F[Pr, Q]

m For mean field




Optimization for mean field

= JEE
m§XF[Pf»Q] = > EBglingl+)_ Hq,(X;), Vi, ZQ]'(%') =1

oeF J
m Constrained optimization, solved via Lagrangian multiplier
3 A, such that optimization equivalent to:

Take derivative, set to zero

m Theorem: Q is a stationary point of mean field approximation iff for each i:

Understanding fixed point equation
" S
Qilw:) = %exp{ > Bgling| T]}

i $EF




Simplifying fixed point equation

Niw

Q, only needs to consider factors
that intersect X
"

m Theorem: The fixed point:
Qi(x;) = %GXD{ > Egline| mi]}

i GEF

is equivalent to:

Qi(z;) = Zi exp { > Eg[in¢;(Uj;, fﬂi)]}

¢ X;€S5C0pe[4;]

where the Scope[¢;] = U, U {Xj}




There are many stationary points!
" S
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Figure11.18 _Anexample of a multi-modal mean field energy functional landscape. In
this network, F(a, b) = 0.2% —eife # band £if o = b The axes correspond to the mean
field marginal for A and B and the contours show equi-values of the energy func tional.

one statlonar¥ point

m Initialize Q (e.g., randomly or smartly)
m Set all vars to unprocessed
m Pick unprocessed var X;

update Q;:

1
Qi(x;) = 7, &xp { > Eg[in¢;(U;;, fﬂi)]}
v ¢ X;€S5C0pe[4;]

set var i as processed
if Q; changed
= set neighbors of X; to unprocessed
m Guaranteed to converge




More general structured approations
" S

Mean field very naive approximation
Consider more general form for Q

assumption: exact inference doable over Q

Theorem: stationary point of energy functional:

wj(cj)ocexp!Z Egline | ¢] — > Egliny | cj]l
l(]’)E]: peQ\{¢;} J

Computing update rule for general case
.@

( ]
i(c;) o exp i > Eglinglcl— > Egliny]| cj]i
peF peQ\{¢;}

m Consider one ¢:
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Structured Variational update
_ requires inferece
Yici) xexpq > Egling|el— > EQ[Inw|cj]l
=a YeQ\{v5} )

m  Compute marginals wrt Q of cliques in original graph and cliques in
new graph, for all cliques

m What is a good way of computing all these marginals?

m Potential updates:
sequential: compute marginals, update y;, recompute marginals

parallel: compute marginals, update all y’s, recompute marginals

What you need to know about
variational methods
S

m Structured Variational method:
select a form for approximate distribution
minimize reverse KL

m Equivalent to maximizing energy functional
searching for a tight lower bound on the partition function

m Many possible models for Q:
independent (mean field)
structured as a Markov net
cluster variational

m Several subtleties outlined in the book
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