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m A distribution_P factorizes over Hif 3
subsets of variables D,CX,..., D,,CX, such that the D;
are fully connected in H -
non-negative potentials (or factors) m,(D,)

= also known as clique potentials
such that
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m Also called M,arkmw-:‘ld H, or Cﬂbs
distribution over H




Global Markov assumption in
Markov networks
S

m Apath X, —... — X is active when set of
variables Z are observed if none of X; €
{X,,...,X,} are observed (are part of Z)

m Variables X are separated from_Y given Z in
graph H, sep,(X;Y|2), if there is no active path
between any XeX and any YeY given Z

|

m The global Markov assumption for a Markov 1 Aontt Shstnn

network H'is 1({_}) - % le/?,[ S’LPH(X,’W%ﬁ 28,1,¢...

Representation Theorem for
Markov Networks
S

If joint probability
distribution P:
1 m
P(Xq,...,Xp) = 7 11 = (D)
i=1

m His an I-map for P

If His an I-map for P joint probability
and distribution P:
P is a positive distribution m

1
IR P(X]_,...,Xn):EHﬂ—i(Di)
i=1




Local independence assumptions
for a Markov network
" S

m Separation defines global independencies I[H)

m Pairwise Markov Independence: IP” (H)
Pairs of non-adjacent variables dare independent given all others
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e Markov Blanket: 1'% (4]
Variable'tl}ndependent of rest given its neighbors }\)[4\
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Equivalence of independencies in
Markov networks
" SN

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions
PE LW
P entails the pairwise Markov assumptions

eF Toulp)

P entails the local Markov assumptions (Markov blanket)

PE Thg ()




Minimal I-maps and Markov
Networks

m A fully connected graph is an I-map

m  Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an I-map

m In a BN, there is no unique minimal I-map

m Theorem: In a Markov network, minimal I-map is unique!!
m  Many ways to find minimal I-map, e.g.,

Take pairwise Markov assumption:

If P doesn’t entail it, add edge:

How about a perfect map?
" JEE

m Remember perfect maps?

independencies in the graph are exactly the same as those in P
m For BNs, doesn’t always exist

counter example: Swinging Couples
m How about for Markov networks?




Unifying properties of BNs and MNs

= JEE
m BNs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNs:

give you: cycles, and perfect maps for swinging couples

but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS???
skeleton + immoralities
provides a (somewhat) unified representation
see book for details

What you need to know so far
about Markov networks
SR

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist
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Some common Markov networks

_ ,and generalizations

m Pairwise Markov networks

m A very simple application in computer vision
m Logarithmic representation

m Log-linear models

m Factor graphs

Pairwise Markov Networks
= JEE

m All factors are over single variables or pairs of
variables: G G
Node potentials Q
Edge potentials Q

\/

m Factorization:

m Note that there may be bigger cliques in the
graph, but only consider pairwise potentials
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A very simple vision application
" JE

m Image segmentation: separate foreground from
background
m Graph structure:
pairwise Markov net
grid with one node per pixel

m Node potential:
“background color” v. “foreground color”

m Edge potential:
neighbors like to be of the same class

Logarithmic representation
" JE

. _ 1
m Standard model: P(X1, 0 Xn) = I = (D2
i=1

m Log representation of potential (assuming positive potential):
also called the energy function

m Log representation of Markov net:




Log-linear Markov network

_ Smost common representation)

m Feature is some function ¢[D] for some subset of variables D
e.g., indicator function
m Log-linear model over a Markov network H-

a set of features ¢,[D,],..., ¢,[D,]

= each D, is a subset of a clique in H

= two ¢’'s can be over the same variables
a set of weights wy,...,w,

» usually learned from data

Structure in cliques
" J
m Possible potentials for this graph:




Factor graphs 0'9

- S ()
m Very useful for approximate

inference

Make factor dependency explicit

m Bipartite graph:
variable nodes (ovals) for X,,...,X
factor nodes (squares) for 0, ...,0,,
edge X, — ¢, if X;e Scope[9]
m More explicit representation, but
exactly equivalent

Exact inference in MNs and Factor

. p2raphs

m Variable elimination algorithm presented in terms
of factors — exactly the same VE algorithm can be
applied to MNs & Factor Graphs

m Junction tree algorithms also applied directly here:
triangulate MN graph as we did with moralized graph
each factor belongs to a clique
same message passing algorithms




Summary of types of Markov nets
" JEE
m Pairwise Markov networks
very common
potentials over nodes and edges
m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs
m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference

What you learned about so far
" JEE

m Bayes nets

m Junction trees

m (General) Markov networks

m Pairwise Markov networks

m Factor graphs

m How do we transform between them?

m More formally:

| give you an graph in one representation, find an I-map
in the other
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From Bayes nets to Markov nets
S

o=
G GO
<>
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BNs — MNs: Moralization

* JE

m Theorem: Given a BN G the Markov net
H formed by moralizing G is the minimal
I-map for I(G)

m Intuition:

in a Markov net, each factor must correspond

to a subset of a clique

the factors in BNs are the CPTs

CPTs are factors over a node and its parents

thus node and its parents must form a clique
m Effect:

some independencies that could be read from
the BN graph become hidden
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From Markov nets to Bayes nets

HI\
l
HY

MNs — BNs: Triangulation

" A
m Theorem: Given a MN H, let G be the
Bayes net that is a minimal I-map for I(H)
then G must be chordal
= Intuition:
v-structures in BN introduce immoralities

these immoralities were not present in a
Markov net

the triangulation eliminates immoralities
m Effect:

many independencies that could be read from
the MN graph become hidden
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Markov nets v. Pairwise MNs
" J
m Every Markov network can be o'e
©

transformed into a Pairwise Markov net

introduce extra “variable” for each factor
over three or more variables

domain size of extra variable is exponential
in number of vars in factor

m Effect:
any local structure in factor is lost
a chordal MN doesn’t look chordal anymore

Overview of types of graphical models
and transformations between them
JEE
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Approximate inference overview
" A
m So far: VE & junction trees
exact inference
exponential in tree-width
m There are many many many many approximate
inference algorithms for PGMs
m We will focus on three representative ones:
sampling
variational inference
loopy belief propagation and generalized belief propagation

m There will be a special recitation by Pradeep
Ravikumar on more advanced methods
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Approximating the posterior v.

aggroximating the prior

m Prior model represents entire world
world is complicated
thus prior model can be very complicated

m Posterior: after making observations

sometimes can become much more sure about the
way things are

sometimes can be approximated by a simple model
m First approach to approximate inference: find
simple model that is “close” to posterior
m Fundamental problems:
what is close?

posterior is intractable result of inference, how
can we approximate what we don’t have?
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KL divergence:
Distance between distributions
JE—

m Given two distributions p and g KL divergence:

= D(plla) = 0 iff p=q
m Not symmetric — p determines where difference is important
p(x)=0 and q(x)=0

p(x)=0 and q(x)=0

Find simple approximate distribution
" S

Suppose p is intractable posterior
Want to find simple g that approximates p
KL divergence not symmetric

D(plla)
true distribution p defines support of diff.

the “correct” direction
will be intractable to compute

= D(qllp)
approximate distribution defines support

tends to give overconfident results
will be tractable
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Back to graphical models

[
o

m Inference in a graphical model:
P(x) =
want to compute P(X;|e)
our p:

m What is the simplest g?
every variable is independent:
mean-fields approximation
can compute any prob. very efficiently

31

D(p||g) for mean-fields —

. KL the right way

mp:
mqQ:
= D(pllg)=
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D(q||p) for mean-fields —
. KL the reverse direction

m p:
mq:
= D(plla)=

What you need to know so far
" JJEE
m Goal:

Find an efficient distribution that is close to posterior
m Distance:

measure distance in terms of KL divergence
m Asymmetry of KL:

D(pl|a) = D(qllp)

m The right KL is intractable, so we use the
reverse KL
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