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Factorization in Markov networks

� Given an undirected graph H over variables 

X={X1,...,Xn}

� A distribution P factorizes over H if ∃

� subsets of variables D1⊆X,…, Dm⊆X, such that the Di

are fully connected in H

� non-negative potentials (or factors) π1(D1),…, π
m
(Dm)

� also known as clique potentials

� such that

� Also called Markov random field H, or Gibbs 

distribution over H
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Global Markov assumption in 
Markov networks

� A path X1 – … – Xk is active when set of 
variables Z are observed if none of Xi ∈

{X1,…,Xk} are observed (are part of Z) 

� Variables X are separated from Y given Z in 

graph H, sepH(X;Y|Z), if there is no active path 
between any X∈X and any Y∈Y given Z

� The global Markov assumption for a Markov 

network H is
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Representation Theorem for 
Markov Networks

If H is an I-map for P

and 

P is a positive distribution
Then

joint probability

distribution P:

Then H is an I-map for P

If joint probability

distribution P:
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Local independence assumptions 
for a Markov network

� Separation defines global independencies

� Pairwise Markov Independence:

� Pairs of non-adjacent variables are independent given all others

� Markov Blanket: 

� Variable independent of rest given its neighbors

T1

T3 T4

T5 T6

T2

T7 T8 T9
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Equivalence of independencies in 
Markov networks

� Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent:

� P entails the global Markov assumptions

� P entails the pairwise Markov assumptions

� P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov 
Networks

� A fully connected graph is an I-map

� Remember minimal I-maps?

� A “simplest” I-map → Deleting an edge makes it no longer an I-map 

� In a BN, there is no unique minimal I-map

� Theorem: In a Markov network, minimal I-map is unique!!

� Many ways to find minimal I-map, e.g.,

� Take pairwise Markov assumption:

� If P doesn’t entail it, add edge:
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How about a perfect map?

� Remember perfect maps?

� independencies in the graph are exactly the same as those in P

� For BNs, doesn’t always exist

� counter example: Swinging Couples

� How about for Markov networks?
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Unifying properties of BNs and MNs

� BNs:

� give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation

� but: require acyclicity, and thus no perfect map for swinging 

couples

� MNs:

� give you: cycles, and perfect maps for swinging couples

� but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function

� Remember PDAGS???

� skeleton + immoralities

� provides a (somewhat) unified representation

� see book for details
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What you need to know so far 
about Markov networks

� Markov network representation:
� undirected graph

� potentials over cliques (or sub-cliques)

� normalize to obtain probabilities

� need partition function

� Representation Theorem for Markov networks
� if P factorizes, then it’s an I-map

� if P is an I-map, only factorizes for positive distributions 

� Independence in Markov nets:
� active paths and separation

� pairwise Markov and Markov blanket assumptions

� equivalence for positive distributions

� Minimal I-maps in MNs are unique

� Perfect maps don’t always exist
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Some common Markov networks 
and generalizations

� Pairwise Markov networks

� A very simple application in computer vision

� Logarithmic representation

� Log-linear models

� Factor graphs
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Pairwise Markov Networks

� All factors are over single variables or pairs of 

variables:

� Node potentials

� Edge potentials

� Factorization:

� Note that there may be bigger cliques in the 

graph, but only consider pairwise potentials

T1

T3 T4

T5 T6

T2

T7 T8 T9
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A very simple vision application

� Image segmentation: separate foreground from 

background

� Graph structure: 

� pairwise Markov net

� grid with one node per pixel

� Node potential:

� “background color” v. “foreground color”

� Edge potential:

� neighbors like to be of the same class
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Logarithmic representation

� Standard model:

� Log representation of potential (assuming positive potential):

� also called the energy function

� Log representation of Markov net:
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Log-linear Markov network
(most common representation)

� Feature is some function φ[D] for some subset of variables D

� e.g., indicator function

� Log-linear model over a Markov network H:

� a set of features φ1[D1],…, φk[Dk]

� each Di is a subset of a clique in H

� two φ’s can be over the same variables

� a set of weights w1,…,wk

� usually learned from data

�
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Structure in cliques

� Possible potentials for this graph: A
B

C
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Factor graphs

� Very useful for approximate 

inference

� Make factor dependency explicit

� Bipartite graph:

� variable nodes (ovals) for X1,…,Xn

� factor nodes (squares) for φ1,…,φm

� edge Xi – φj if Xi∈ Scope[φj]

� More explicit representation, but 

exactly equivalent

A
B

C
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Exact inference in MNs and Factor 
Graphs

� Variable elimination algorithm presented in terms 
of factors → exactly the same VE algorithm can be 

applied to MNs & Factor Graphs

� Junction tree algorithms also applied directly here:

� triangulate MN graph as we did with moralized graph

� each factor belongs to a clique

� same message passing algorithms



10

10-708 – Carlos Guestrin 2006 19

Summary of types of Markov nets

� Pairwise Markov networks

� very common

� potentials over nodes and edges

� Log-linear models

� log representation of potentials

� linear coefficients learned from data

� most common for learning MNs

� Factor graphs

� explicit representation of factors

� you know exactly what factors you have

� very useful for approximate inference
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What you learned about so far

� Bayes nets

� Junction trees

� (General) Markov networks

� Pairwise Markov networks

� Factor graphs

� How do we transform between them?

� More formally:

� I give you an graph in one representation, find an I-map
in the other
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From Bayes nets to Markov nets

SATGrade

Job

Letter

Intelligence
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BNs → MNs: Moralization

� Theorem: Given a BN G the Markov net 

H formed by moralizing G is the minimal     
I-map for I(G)

� Intuition:

� in a Markov net, each factor must correspond 

to a subset of a clique

� the factors in BNs are the CPTs

� CPTs are factors over a node and its parents

� thus node and its parents must form a clique

� Effect:

� some independencies that could be read from 

the BN graph become hidden

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence
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From Markov nets to Bayes nets

ExamGrade

Job

Letter

Intelligence

SAT
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MNs → BNs: Triangulation

� Theorem: Given a MN H, let G be the 

Bayes net that is a minimal I-map for I(H) 
then G must be chordal

� Intuition:

� v-structures in BN introduce immoralities

� these immoralities were not present in a 

Markov net

� the triangulation eliminates immoralities

� Effect:

� many independencies that could be read from 

the MN graph become hidden

ExamGrade

Job

Letter

Intelligence

SAT

ExamGrade

Job

Letter

Intelligence

SAT
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Markov nets v. Pairwise MNs

� Every Markov network can be 

transformed into a Pairwise Markov net

� introduce extra “variable” for each factor 

over three or more variables

� domain size of extra variable is exponential 

in number of vars in factor

� Effect:

� any local structure in factor is lost

� a chordal MN doesn’t look chordal anymore

A
B

C
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Overview of types of graphical models 

and transformations between them
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Approximate inference overview

� So far: VE & junction trees

� exact inference

� exponential in tree-width

� There are many many many many approximate 
inference algorithms for PGMs

� We will focus on three representative ones:

� sampling

� variational inference

� loopy belief propagation and generalized belief propagation

� There will be a special recitation by Pradeep
Ravikumar on more advanced methods
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Approximating the posterior v. 
approximating the prior

� Prior model represents entire world 

� world is complicated

� thus prior model can be very complicated

� Posterior: after making observations

� sometimes can become much more sure about the 

way things are

� sometimes can be approximated by a simple model

� First approach to approximate inference: find 

simple model that is “close” to posterior

� Fundamental problems:

� what is close?

� posterior is intractable result of inference, how 
can we approximate what we don’t have?

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence
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KL divergence: 
Distance between distributions

� Given two distributions p and q KL divergence:

� D(p||q) = 0 iff p=q

� Not symmetric – p determines where difference is important

� p(x)=0 and q(x)≠0

� p(x)≠0 and q(x)=0
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Find simple approximate distribution

� Suppose p is intractable posterior

� Want to find simple q that approximates p

� KL divergence not symmetric

� D(p||q)

� true distribution p defines support of diff. 

� the “correct” direction

� will be intractable to compute

� D(q||p)

� approximate distribution defines support

� tends to give overconfident results

� will be tractable
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Back to graphical models

� Inference in a graphical model:

� P(x) = 

� want to compute P(Xi|e)

� our p:

� What is the simplest q?

� every variable is independent:

� mean-fields approximation

� can compute any prob. very efficiently
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D(p||q) for mean-fields –
KL the right way

� p:

� q:

� D(p||q)=



17

10-708 – Carlos Guestrin 2006 33

D(q||p) for mean-fields –
KL the reverse direction

� p:

� q:

� D(p||q)=
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What you need to know so far

� Goal:

� Find an efficient distribution that is close to posterior

� Distance:

� measure distance in terms of KL divergence

� Asymmetry of KL:

� D(p||q) ≠ D(q||p)

� The right KL is intractable, so we use the 
reverse KL


