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m A distribution P factorizes over H if 3
— S ot - &
subsets of variables D;CX,..., D,,CX, such that the D;
are fully connected in H
non-negative potentials (or factors) x,(D,),..., Tn(Dm)
= also known as clique potentials - -
such that
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m  Also called Markov random field H, or Gibbs
distribution over H




Global Markov assumption in
Markov networks
S

m Apath X; —... — X, is active when set of
variables Z are observed if none of X, €

{X4,..., X/} are observed (are part of Z)

m Variables X are separated from_Y given Zin g de= =7 ef
graph H, sep,(X;Y|Z), if there is no active path
between any’XeX and any YeY given Z
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m The global Markov assumption for a Markov

network H is 1@(_}) z % K7,z | SQPH(X;Vl@i
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Representation Theorem for
Markov Networks
S

If joint probability
distribution P:
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Local independence assumptions
for a Markov network
" SN

m Separation defines global independencies L [H)

m Pairwise Markov Independence: IP“ (H)
Pairs of non-adjacent variables are independent given all others

ALB | Y - (4,5}

—
m Markov Blanket: -1% &)
VariableAlfndependent of rest given its neighbors }\)(4)
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Equivalence of independencies in
Markov networks 0
" JEE 1,70
m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions
PE L(H)

P entails the pairwise Markov assumptions

eF Toulp)

P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov
Networks

m A fully connected graph is an I-map

= Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an I-map

m In a BN, there is no unique minimal I-map
RSN Po\'lkdl Ase
m Theorem: In a Markov network, minimal I-map is unique!!
m  Many ways to find minimal I-map, e.g.,
Take pairwise Markov assumption: X‘, 2 S(b ny

If P doesn't entail it, add edge: )
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How about a perfect map?
" JE

m Remember perfect maps?
independencies in the graph are exactly the same as those in P

m For BNs, doesn’t always exist M ne BO

.. ( Ma T
counter example: Swinging Couples Nw, e
= How about for Markov networks? (| Hoxe indp
V- Phanchert \
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Unifying properties of BNs and MNs

= JEE
m BNSs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNs:
give you: cycles, and perfect maps for swinging couples

but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

= Remember PDAGS??? ((hain Geghy) ¢ 7 prerfe of

skeleton + immoralities TP B Y
provides a (somewhat) unified representation XLy , Y12
see book for details ZLlx®
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What you need to know so far
about Markov networks
SN

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist
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Some common Markov networks

_ .and generalizations

m Pairwise Markov networks

m A very simple application in computer vision
m Logarithmic representation

m Log-linear models

m Factor graphs

Pairwise Markov Networks
" J
m All factors are over single variables or pairs of

variables: X ~ [ .
Node potentials |/ (T‘> i i (TI/W;\1 zswm‘(

Ed tential .
ge potentls T4 (T, T5)
m Factorization:

PX) :_f/frm «;) TE T 0y
1€
mwﬁﬂ*‘ﬁ" )

m Note that there may be bigger cliques in the
graph, but only consider pairwise potentials
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A very simple vision application
" — [

m Image segmentation: separate foreground from
background .
g . X 1 é (.‘Fﬁ ? gai
m Graph structure:
pairwise Markov net
grid with one node per pixel

= Node pOte‘?ti@'éL& besion
“background color” v.)“foreground color”
T R [ bq
6,1 = it ! Lo
_baJ20 | §
m Edge potential: -7 [ -
9ep ”15()(0['0 =X

neighbors like to be of the same class
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Logarithmic representation -%i
" JE

: 1
m Standard model: P(Xy, ..., Xp) = > II = (D)
i=1

m Log representation of potential (assuming positive potential):
also called the energy function (.[){(’D'l) = - In 1T, (Di}
LS -

m ™ m
P L M (D) = Lexpflog T 100 Lo, o
2 =l vl " 2 e
m Log representation of Markov net: ?/f !)(f' {”2‘:, L\) 7 (D;\i
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Log-linear Markov network

Smost common representation)
u

m Feature is some function ¢[D] for some subset of variables D

_— . — 1 i al D s
e.g., indicator function &: (DY = ¥ iy e

m Log-linear model ovér a Markov network H:
a set of features ¢,[D,],..., ¢,[D,] (inaar  models:
= each D, is a subset of a clique in H ZL i (pl. (D;)
= two ¢'s can be over the same variables =
a set of weights w,,...,w,
= usually learned from data

k
P(Xq,...,Xp) = %exp {Z w;ip; (Di)]

i=1

K
cimefimes  Oefn as CKF’&;E,“"'@'(PIH
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Structure in cligues

" JEE K oy Vere
m Possible potentials for this graph:
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RXach |
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“ (A)

Factor graphs | # v ] LT

“ JEE G

m Very useful for approximate 1 (480) A —m@) ¢ T, /46)
inference [ 1)

U(
Make factor dependency explicit @ E\C:)\

m Bipartite graph:
variable nodes (ovals) for X,..., Xn q(mg, ’4
factor nodes (squares) for ¢,,...,0p, 1Ty, (8C)

edge X; — ¢; if Xie Scope[¢] Ty C 4¢)
m More explicit represen{tbat!lon but O
exactly equivalent ' fotst
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Exact inference in MNs and Factor

_ Graghs

m Variable elimination algorithm presented in terms
of factors — exactly the same VE algorithm can be
applied to MNs & Factor Graphs

m Junction tree algorithms also applied directly here:

triangulate MN graph as we did with moralized graph Arjz;um
each factor belongs to a clique

same message passing algorithms
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Summary of types of Markov nets
“ JEE
m Pairwise Markov networks
very common
potentials over nodes and edges
m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs
m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference
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What you learned about so far
" JE

m Bayes nets

m Junction trees

m (General) Markov networks

m Pairwise Markov networks

m Factor graphs

m How do we transform between them?

m More formally:

| give you an graph in one representation, find an I-map
in the other
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From Bayes nets to Markov nets
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BNs — MNSs: Moralization

" JE

m Theorem: Given a BN G the Markov net
H formed by moralizing G is the minimal
I-map for I(G)

m Intuition:

in a Markov net, each factor must correspond
to a subset of a clique

the factors in BNs are the CPTs P(S | ()
CPTs are factors over a node and its parents

thus node and its parents must form a clique
m Effect:

some independencies that could be read from
the BN graph become hidden
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From Markov nets to Bayes nets
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MNs — BNSs: Triangulation
" S
m Theorem: Given a MN H, let G be the

Bayes net that is a minimal I-map for I(H)
then G must be chordal

m Intuition:
v-structures in BN introduce immoralities
these immoralities were not present in a Gl
Markov net G G
the triangulation eliminates immoralities
. Ceted <D,
m Effect: )
many independencies that could be read from <>
the MN graph become hidden Coprt st \F
O\,LS MoLrg \ _l
a

24

12



Markov nets v. Pairwise MNs
= JEE

m Every Markov network can be e'e

transformed into a Pairwise Markov net
introduce extra “variable” for each factor

over three or more variables T (*hﬁc) - £f
domain size of extra variable is exponential bram
in number of vars in factor £ |
m Effect: £
. : S vee D fhothey g
any local structure in factor is lost 5 eech velol S3signmant of 4 g
a chordal MN doesn’t look chordal anymorgds peteahal T0) = mﬁ}; 8o
R
<(p)
A\D B 2dgt pohtia :
T(ADY K<€ |
R i
{:-e-e_e I
/]
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Overview of types of graphical models

and transfo between them
| : ... b, Pick exvoof and (709{"»“

BN

26

13



