Markov networks, Factor graphs, and an unified view

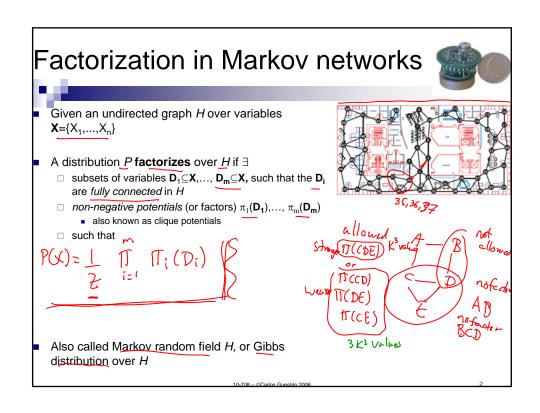
Start approximate inference If we are lucky...

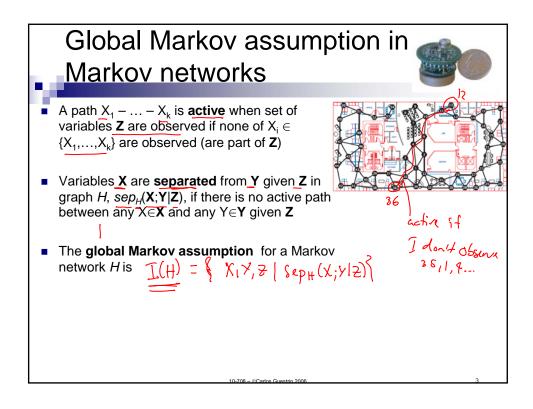
Graphical Models – 10708

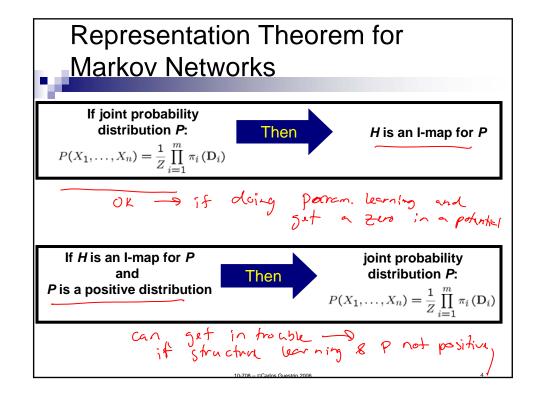
Carlos Guestrin

Carnegie Mellon University

October 27th, 2006







Local independence assumptions for a Markov network Separation defines global independencies I(H) Pairwise Markov Independence: Ipv(H) Pairs of non-adjacent variables are independent given all others ALB | X - {A,B} Markov Blanket: Imb(H) Variable independent of rest given its neighbors N(A) Table Tolonomy Ta

Equivalence of independencies in Markov networks

- **Soundness Theorem**: For all <u>positive</u> distributions *P*, the following three statements are equivalent:
 - \square *P* entails the global Markov assumptions $P \models \bot(H)$
 - \square P entails the pairwise Markov assumptions $P \models \mathcal{T}_{PW}(H)$
 - ☐ P entails the local Markov assumptions (Markov blanket)

0-708 = ©Carlos Guestrin 200

Minimal I-maps and Markov **Networks**

- A fully connected graph is an I-map
- Remember minimal I-maps?
 - □ A "simplest" I-map → Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map

Theorem: In a Markov network, minimal I-map is unique!!

Many ways to find minimal I-map, e.g.,

- □ Take pairwise Markov assumption: X; & X; not adject

If P doesn't entail it, add edge: $\begin{cases}
x_1 \pm x_1 \\
x_2 \\
x_3
\end{cases}$ Problem with f_{x_1, x_2, x_3} $\begin{cases}
x_1 \pm x_2 \\
x_2 \\
x_3
\end{cases}$ Problem with f_{x_1, x_2, x_3} P(x₁, x₃) \ P(x₂, x₃) \ P(x₃, x₃

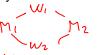
How about a perfect map?

- Remember perfect maps?
 - \Box independencies in the graph are exactly the same as those in P
- For BNs, doesn't always exist

 □ counter example: Swinging Couples

 How about for Markov networks? NOT

 The state of the state of



F A FIA minimal F-A I-map; F-A 1-map; TFIA

Unifying properties of BNs and MNs

BNs:

- □ give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
- but: require acyclicity, and thus no perfect map for swinging couples

MNs:

- □ give you: cycles, and perfect maps for swinging couples
- but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function
- Remember PDAGS??? ((hain Graphs) ?
 □ skeleton + immoralities
 - □ provides a (somewhat) unified representation)
 - □ see book for details

no perfect

map for you

XIY, YIZ

71X

ラムヤマメータ/2

10-708 - ©Carlos Guestrin 2006

What you need to know so far about Markov networks

Markov network representation:

- □ undirected graph
- □ potentials over cliques (or sub-cliques)
- □ normalize to obtain probabilities
- need partition function

Representation Theorem for Markov networks

- □ if P factorizes, then it's an I-map
- □ if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
 - □ active paths and separation
 - □ pairwise Markov and Markov blanket assumptions
 - equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

10-708 - ©Carlos Guestrin 2006

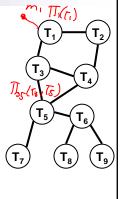
Some common Markov networks and generalizations

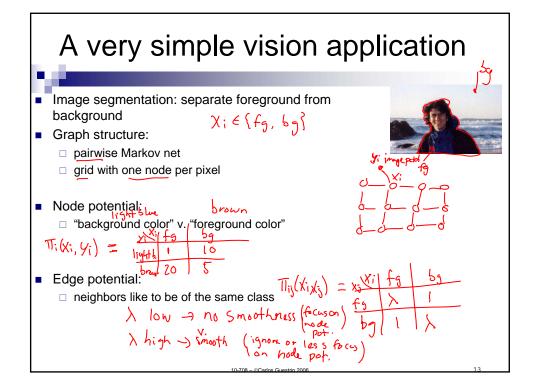
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
- Factorization:

Note that there may be bigger cliques in the graph, but only consider pairwise potentials





Logarithmic representation Logarithmic representation

- Standard model: $P(X_1,...,X_n) = \frac{1}{Z} \prod_{i=1}^m \pi_i(D_i)$
- Log representation of potential (assuming positive potential):

 □ also called the energy function $\psi_i(\mathcal{D}_i) = -\underbrace{\ln \mathcal{T}_i(\mathcal{D}_i)}_{i}$

$$P(x) = \frac{1}{2} \prod_{i=1}^{m} \Pi_i (D_i) = \frac{1}{2} \exp \{\log \prod_{i=1}^{m} \Pi_i (D_i)\} = \frac{1}{2} \exp \{\sum_{i=1}^{m} \log \Pi_i(o_i)\}$$

■ Log representation of Markov net: = 1 exp (-₹ Ψ; (D;))}

2

Augy functions

10-708 - @Carlos Guestrin 2006

Log-linear Markov network (most common representation)

- Feature is some function $\phi[D]$ for some subset of variables D□ e.g., indicator function $\phi(D) = \begin{cases} 1 & \text{if all of } D \text{ is the} \\ 0 & \text{otherwise} \end{cases}$
- Log-linear model over a Markov network H:
 - \square a set of features $\phi_1[\mathbf{D}_1], \ldots, \phi_k[\mathbf{D}_k]$
 - each **D**; is a subset of a clique in *H*
 - two φ's can be over the same variables
- linear models: \(\sum \text{Wi } \Pi \) \(\sum \text{ID} \) \(\sum \text{ID} \) \(\sum \text{ID} \)

- □ a set of weights w₁,...,w_k
 - usually learned from data

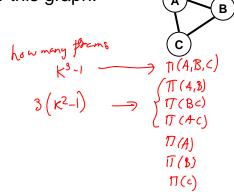
$$\Box P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i (\mathbf{D}_i) \right]$$
sometimes defined as $\exp \left[-\sum_{i=1}^K \omega_i (\mathcal{P}_i (\mathcal{D}_i)) \right]$

10-708 - ©Carlos Guestrin 2006

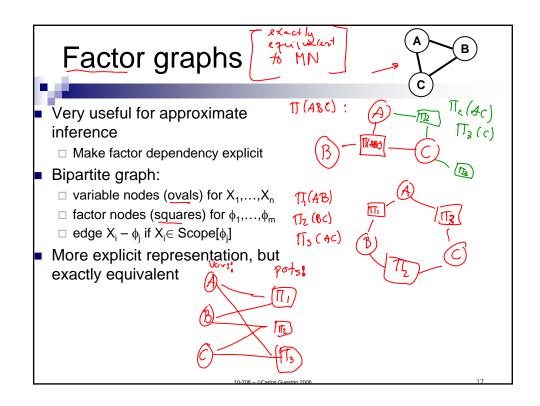
15

Structure in cliques

Possible potentials for this graph:



10-708 – ©Carlos Guestrin 2006



Exact inference in MNs and Factor Graphs

- Variable elimination algorithm presented in terms of factors → exactly the same VE algorithm can be applied to MNs & Factor Graphs
- Junction tree algorithms also applied directly here:
 - □ triangulate MN graph as we did with moralized graph for the BA
 - □ each factor belongs to a clique
 - $\hfill \square$ same message passing algorithms

10-708 - @Carlos Guestrin 2006

Summary of types of Markov nets

- Pairwise Markov networks
 - □ very common
 - □ potentials over nodes and edges
- Log-linear models
 - □ log representation of potentials
 - □ linear coefficients learned from data
 - □ most common for learning MNs
- Factor graphs
 - □ explicit representation of factors
 - you know exactly what factors you have
 - □ very useful for approximate inference

10-708 - @Carlos Guestrin 2006

19

What you learned about so far

- Bayes nets
- Junction trees
- (General) Markov networks
- Pairwise Markov networks
- Factor graphs
- How do we transform between them?
- More formally:
 - □ I give you an graph in one representation, find an **I-map** in the other

10-708 = @Carlos Guestrin 2006

