

Approximate inference overview

- There are many many many many approximate inference algorithms for PGMs
- We will focus on three representative ones:
 - □ sampling *today*
 - □ variational inference continues next class
 - □ loopy belief propagation and generalized belief propagation

Goal

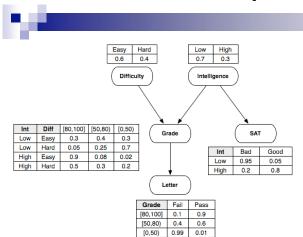
Often we want expectations given samples
 x[1] ... x[m] from a distribution P.

$$E_P[f] pprox rac{1}{M} \sum_{m=1}^M f(x[m])$$
 $P(\mathbf{Y} = \mathbf{y}) pprox rac{1}{M} \sum_{m=1}^M \mathbf{1}(\mathbf{y}[m] = \mathbf{y})$

10-708 - ©Ajit Singh 2006

3

Forward Sampling



Sample nodes in topological order

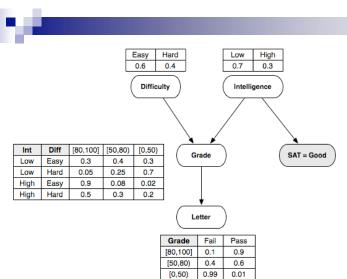
Forward Sampling

- P(Y = y) = #(Y = y) / N
- $P(Y = y \mid E = e) = \#(Y = y, E = e) / \#(E = e)$
 - □ Rejection sampling: throw away samples that do not match the evidence.
- Sample efficiency
 - \square How often do we expect to see a record with E = e?

10-708 - ©Ajit Singh 2006

Ę

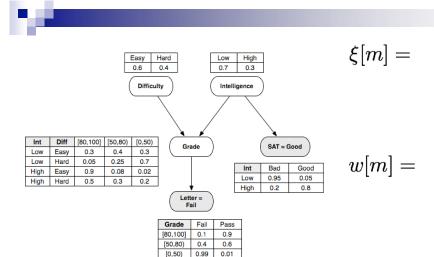
Idea



What is we just fix the value of evidence nodes?

What is expected number of records with (Intelligence = Low)?

Likelihood Weighting



10-708 - ©Ajit Singh 2006

7

Importance Sampling

- What if you cannot easily sample ?
 - □ Posterior distribution on a Bayesian network
 - P(Y = y | E = e) where the evidence itself is a rare event.
 - □ Sampling from a Markov network with cycles is always hard
 - See homework 4
- Pick some distribution Q(X) that is easier to sample from.
 - \square Assume that if P(x) > 0 then Q(x) > 0
 - □ Hopefully D(P||Q) is small

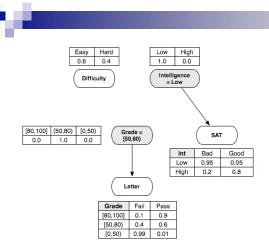
Importance Sampling

Unnormalized Importance Sampling

10-708 - ©Ajit Singh 2006

9

Mutilated BN Proposal



- Generating a proposal distribution for a Bayesian network
- Evidenced nodes have no parents.
- Each evidence node Z_i
 = z_i has distribution
 P(Z_i = z_i) = 1
- Equivalent to likelihood weighting

Forward Sampling Approaches

- Forward sampling, rejection sampling, and likelihood weighting are all forward samplers
 - □ Requires a topological ordering. This limits us to
 - Bayesian networks
 - Tree Markov networks
 - □ Unnormalized importance sampling can be done on cyclic Markov networks, but it is expensive
 - See homework 4
- Limitation
 - ☐ Fixing an evidence node only allows it to directly affect its descendents.

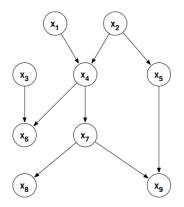
10-708 - ©Ajit Singh 2006

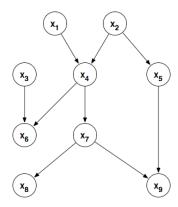
11

Scratch space

Markov Blanket Approaches

- Forward Samplers: Compute weight of X_i given assignment to ancestors in topological ordering
- Markov Blanket Samplers: Compute weight of X_i given assignment to its Markov Blanket.





10-708 - ©Ajit Singh 2006

13

Markov Blanket Samplers

Works on any type of graphical model covered in the course thus far.

Gibbs Sampling

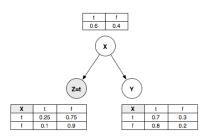
- Let X be the non-evidence variables
- 2. Generate an initial assignment $\xi^{(0)}$
- 3. For t = 1...T
 - 1. $\xi^{(t)} = \xi^{(t-1)}$
 - 2. For each X_i in X
 - 1. \mathbf{u}_i = Value of variables \mathbf{X} $\{X_i\}$ in sample $\xi^{(t)}$
 - 2. Compute $P(X_i | \mathbf{u}_i)$
 - 3. Sample $x_i^{(t)}$ from $P(X_i | \mathbf{u}_i)$
 - 4. Set the value of $X_i = x_i^{(t)}$ in $\xi^{(t)}$
- 4. Samples are taken from $\xi^{(0)} \dots \xi^{(T)}$

10-708 - ©Ajit Singh 2006

15

Computing $P(X_i | \mathbf{u}_i)$

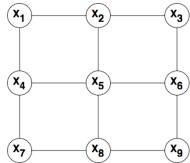
- The major task in designing a Gibbs sampler is deriving P(X_i | u_i)
- Use conditional independence
 - $\square X_i \perp X_i \mid MB(X_i)$ for all X_i in **X** $MB(X_i)$ $\{X_i\}$



P(X|Y = y) =

P(Y|X = x) =

Pairwise Markov Random Field



$$P(x) = \frac{1}{Z} \prod_i \Phi(x_i) \prod_{(j,k) \in E} \Psi(x_j, x_k)$$

10-708 – ©Ajit Singh 2006

 $P(x_i|x_1,\ldots x_{i-1},x_{i+1},\ldots,x_n) =$

Markov Chain Interpretation

- The state space consists of assignments to X.
- P(x_i | u_i) are the transition probability (neighboring states differ only in one variable)
- Given the transition matrix you could compute the exact stationary distribution
 - ☐ Typically impossible to store the transition matrix.
- Gibbs does not need to store the transition matrix!

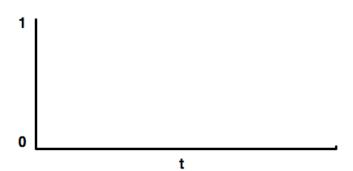
Scratch space

10-708 - ©Ajit Singh 2006

19

Convergence

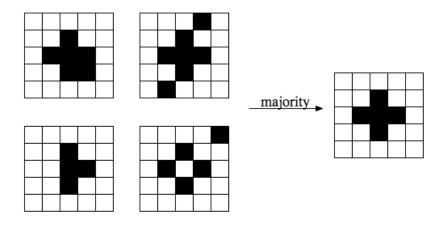
■ Not all samples $\xi^{(0)}$... $\xi^{(T)}$ are independent. Consider one marginal $P(x_i|\mathbf{u}_i)$.



- Burn-in
- Thinning

MAP by Sampling

- Generate a few samples from the posterior
- For each X_i the MAP is the majority assignment



10-708 - ©Ajit Singh 2006

21

What you need to know

- Forward sampling approaches
 - □ Forward Sampling / Rejection Sampling
 - Generate samples from P(X) or P(X|e)
 - □ Likelihood Weighting / Importance Sampling
 - Sampling where the evidence is rare
 - Fixing variables lowers variance of samples when compared to rejection sampling.
 - Useful on Bayesian networks & tree Markov networks
- Markov blanket approaches
 - ☐ Gibbs Sampling
 - Works on any graphical model where we can sample from P(X_i | rest).
 - Markov chain interpretation.
 - Samples are independent when the Markov chain converges.
 - Convergence heuristics, burn-in, thinning.