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Approximate inference overview
" J
m There are many many many many approximate
inference algorithms for PGMs
m We will focus on three representative ones:

sampling - today
variational inference - continues next class
loopy belief propagation and generalized belief propagation



Goal
" J
m Often we want expectations given samples
X[1] ... x[m] from a distribution P.
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Forward Sampling
" I

| Easy ‘ Hard |
| 06 | 04 |

| Low | High |

[ o7 | oa |

—

int | Diff [[80.100] [[50.80) [ [0.50) Grade SAT
Low | Easy 03 04 0.3
H!gh H‘ﬁ; 0- E;B 62 Low | 095 0.05
igl ar .5 . . High 0.2 0.8
Letter

Grade Fail Pass

[80,100] [ 0.1 0.9

50,80) | 0.4 | 06

[0,50) 0.88 0.01

Sample nodes in topological order
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Forward Sampling

" J
mP(Y=y)=#(Y=y)/N
mPY=y|E=¢e)=#(Y=y,E=¢e)/#(E=¢)

Rejection sampling: throw away samples that do not
match the evidence.

m Sample efficiency
How often do we expect to see a record withE = e ?
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" A
I Zup I ik I I — I - I What is we just fix the

w value of evidence nodes ?
Intelligence

Int | Diff |[80,100] | [50,80) | [0,50) Grade ———
Low Easy 0.3 0.4 0.3

Low Hard 0.05 0.25 0.7 H
R ey T 06 T 008 o002 What is expe_cted number
High | Hard | 0.5 0.3 0.2 ' of records with

( Leter ) (Intelligence = Low) ?

Grade Fail Pass
Bo100] | 01 | o8
[50,80) | 0.4 | 06
[0,50) | 0.88 | 0.01
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Likelihood Weighting
" I

Easy | Herd \LwIHq'\ {[m]=

06 | 04 \07|03

K Intslligan
SAT Good

Int Ditt | [80,100] | [50,80) [0 50)

Grade

Low | Easy 0.3 0.4
Low | Hard | 005 | 0.5
High | Easy | 0.9 | 0.08 o oz int | Bad | Good w [m] =
High | Had | 05 0.3 0.2 Low | 095 005
High | o2 0.8

Grade Fail Pass

180,100 | 01 [ 08

[50,80) | 0.4 | 08
10500 | 099 | 001
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Importance Sampling
" J
m What if you cannot easily sample ?

Posterior distribution on a Bayesian network
m P(Y =y | E = e) where the evidence itself is a rare event.

Sampling from a Markov network with cycles is

always hard
= See homework 4

m Pick some distribution Q(X) that is easier to

sample from.
Assume that if P(x) > 0 then Q(x) >
Hopefully D(P||Q) is small
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Importance Sampling

" J
m Unnormalized Importance Sampling

Mutilated BN Proposal

o L ] m Generating a proposal
o) (o) distribution for a
Bayesian network

m Evidenced nodes have

=TT no parents.
=) m Each evidence node Z
om0 [0 os = z, has distribution
P(Z =2)=1

m Equivalent to likelihood
weighting

10



Forward Sampling Approaches
" J
m Forward sampling, rejection sampling, and
likelihood weighting are all forward samplers

Requires a topological ordering. This limits us to
= Bayesian networks
m Tree Markov networks

Unnormalized importance sampling can be done on
cyclic Markov networks, but it is expensive
m See homework 4

m Limitation

Fixing an evidence node only allows it to directly
affect its descendents.
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Scratch space
" I
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Markov Blanket Approaches
" J

m Forward Samplers: Compute weight of X; given
assignment to ancestors in topological ordering

m Markov Blanket Samplers: Compute weight of X: given
assignment to its Markov Blanket.

RAL KA
7 g
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Markov Blanket Samplers

" J
m \Works on any type of graphical model covered in
the course thus far.
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Gibbs Sampling

" J
1. Let X be the non-evidence variables
2. Generate an initial assignment £©)
3. Fort=1.T

E® = £t
For each X;in X

1. u;= Value of variables X - {X}in sample E®
2. Compute P(X, | u)

3. Sample x from P(X; | u;)

4. Set the value of X; = x® in E®

4. Samples are taken from €@ ... €M
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Computing P(X; | u))
" J
m The major task in designing a Gibbs sampler is
deriving P(X; | u;)
m Use conditional independence
X; L X | MB(X)) for all X; in X - MB(X;) - {X}

PXXIY =y) =

R

@ O

X t f X t f
f

wle]  p(y]X=x)=

0.75
f 0.1 09
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Pairwise Markov Random Field

@ @ @ P($i|$1,... $g_1}$¢+1,.,,}$n) =

17

Markov Chain Interpretation
" JJ
m The state space consists of assignments to X.
m P(x; | u;) are the transition probability
(neighboring states differ only in one variable)

m Given the transition matrix you could compute
the exact stationary distribution
Typically impossible to store the transition matrix.
m Gibbs does not need to store the transition
matrix !
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Scratch space
" J

19

Convergence

"= A
m Not all samples £© ... €M are independent. Consider
one marginal P(x;|u;).

1

m Burn-in
m Thinning

20



MAP by Sampling
" Jd
m Generate a few samples from the posterior
m For each X, the MAP is the majority assignment

majority
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What you need to know
"

m Forward sampling approaches
Forward Sampling / Rejection Sampling
m Generate samples from P(X) or P(X|e)
Likelihood Weighting / Importance Sampling
m Sampling where the evidence is rare
m Fixing variables lowers variance of samples when compared to rejection
sampling.
Useful on Bayesian networks & tree Markov networks
m Markov blanket approaches
Gibbs Sampling
= Works on any graphical model where we can sample from P(X; | rest).
m Markov chain interpretation.
m Samples are independent when the Markov chain converges.
m Convergence heuristics, burn-in, thinning.
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