

The Kalman Filter

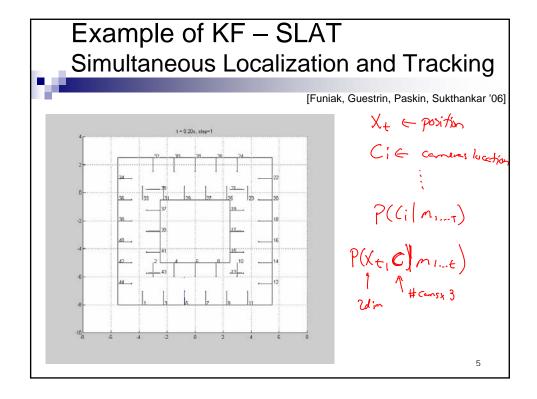
- An HMM with Gaussian distributions
- Has been around for at least 50 years
- Possibly the most used graphical model ever
- It's what
 - □ does your cruise control
 - □ tracks missiles
 - controls robots
 - □ ...
- And it's so simple...
 - □ Possibly explaining why it's so used
- Many interesting models build on it...
 - ☐ An example of a Gaussian BN (more on this later)

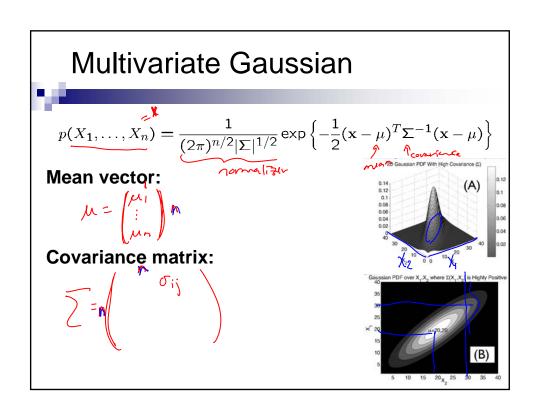
-

Example of KF – SLAT Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar '06]

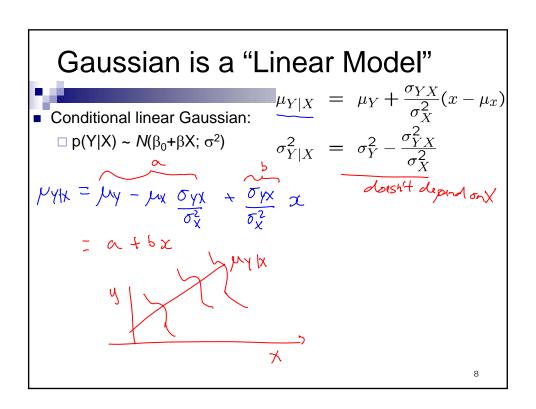
- Place some cameras around an environment, don't know where they are
- Could measure all locations, but requires lots of grad. student (Stano) time
- Intuition:
 - A person walks around
 - ☐ If camera 1 sees person, then camera 2 sees person, learn about relative positions of cameras





Conditioning a Gaussian
$$\nabla x = E[x-y^2]$$

Joint Gaussian: $\int_{0}^{\infty} \frac{1}{E[x]} \int_{0}^{\infty} \frac{$



Conditioning a Gaussian
$$\Sigma_{YY}$$
 Σ_{XY} Σ_{X

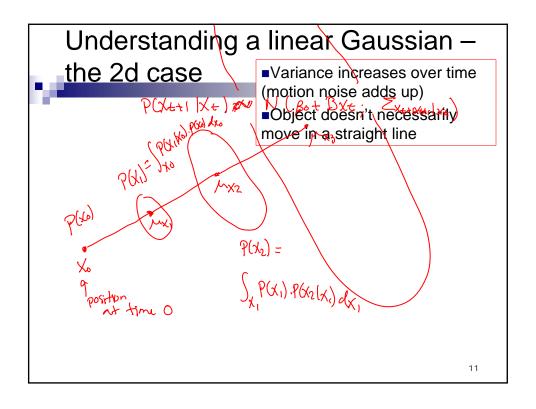
Conditional Linear Gaussian (CLG) general case

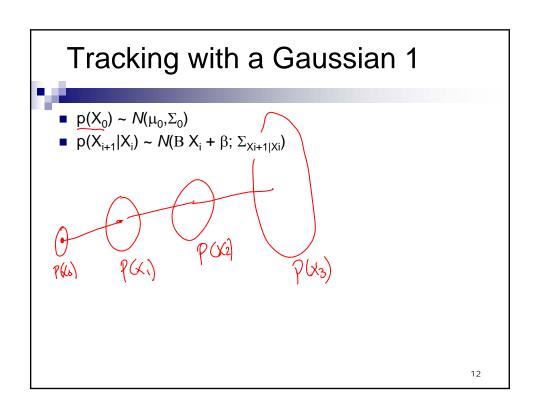
- Conditional linear Gaussian:
 - \square p(Y|X) ~ $N(\beta_0+BX; \Sigma_{YY|X})$

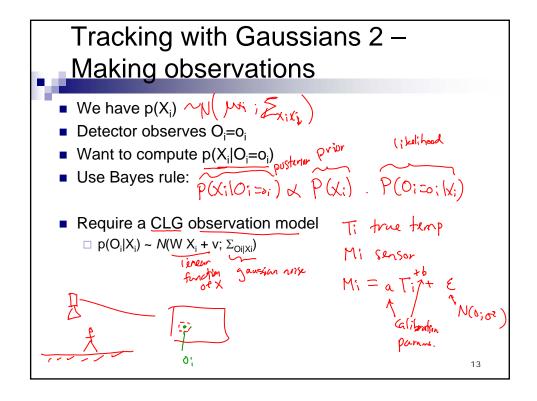
$$\mu_{V|V} = \mu_V + \sum_{V|V} \sum_{v|V}^{-1} (x - \mu_v)$$

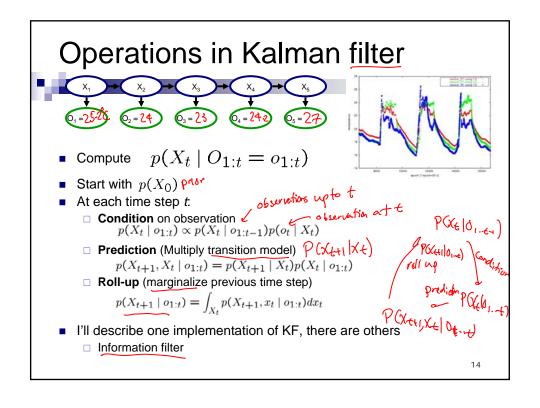
$$\Sigma_{YY|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_x)$$

$$\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$









Exponential family representation of Gaussian: Canonical Form
$$p(X_{1},...,X_{n}) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T}\Sigma^{-1}(\mathbf{x}-\mu)\right\}$$

$$\exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^{T}\Sigma^{-1}(\mathbf{x}-\mu)\right\} = \exp\left[-\frac{1}{2}(\mathbf{x}^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T}\Sigma^{-1}\mathbf{x}^{-1}+\mu^{T}\Sigma^{-1}\mu)\right]$$

$$\exp\left\{-\frac{1}{2}(\mathbf{x}^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T}\Sigma^{-1}\mathbf{x}^{-1}+\mu^{T}\Sigma^{-1}\mu\right\}$$

$$\exp\left\{-\frac{1}{2}(\mathbf{x}^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T}\Sigma^{-1}\mathbf{x}^{-1}+\mu^{T}\Sigma^{-1}\mu\right\}$$

$$\exp\left\{-\frac{1}{2}(\mathbf{x}^{T}\Sigma^{-1}\mathbf{x}^{-1}-2\mu^{T$$

Canonical form

$$\mu = \Lambda^{-1}\eta \qquad \qquad \eta = \Sigma^{-1}\mu \Rightarrow \mu = \Sigma \eta = \Lambda^{-1}\eta$$

$$\Sigma = \Lambda^{-1}$$

- Conditioning is easy in canonical form
- Marginalization easy in standard form

Conditioning in canonical form

$$p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1}) p(o_t \mid X_t)$$

$$\text{First multiply: } p(\mathring{A}, \mathring{B}) = p(A) p(B \mid A)$$

$$p(A) : N(\eta_1, \Lambda_1)$$

$$p(B \mid A) : \eta_2, \Lambda_2$$

$$p(A, B) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

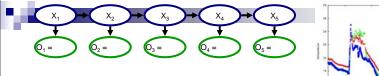
$$p(\mathring{A}, \mathring{B}) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$$

■ Then, condition on value B = y $p(A \mid B = y)$

$$\frac{\eta_{A|B=y}}{\Lambda_{AA|B=y}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|B=y}} \qquad \frac{P(A_{1}B)}{\Lambda_{AA|B}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|B}} \qquad \frac{P(A_{1}B)}{\Lambda_{AA|B}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|B}} \qquad \frac{\rho(A_{1}B)}{\Lambda_{AA|B}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|B}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|B}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|A}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|A}} = \frac{\eta_{A} - \Lambda_{AB} \cdot y}{\Lambda_{AA|A}} = \frac{\eta_{A} - \Lambda_{AB$$

17

Operations in Kalman filter



- Compute $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with $p(X_0)$
- At each time step t.

 - □ **Prediction** (Multiply transition model)

 $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$

□ Roll-up (marginalize previous time step)

$$p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$$

- Prediction & roll-up in canonical form $p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1} \mid x_t) p(x_t \mid o_{1:t}) dx_t$
 - First multiply: $p(A, B) = p(A)p(B \mid A)$
 - Then, marginalize X_t : $p(A) = \int_B p(A, b) db$

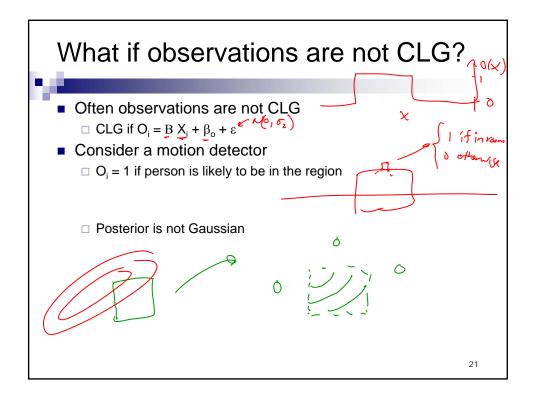
$$\eta_A^m = \eta_A - \Lambda_{AB} \Lambda_{BB}^{-1} \eta_B$$

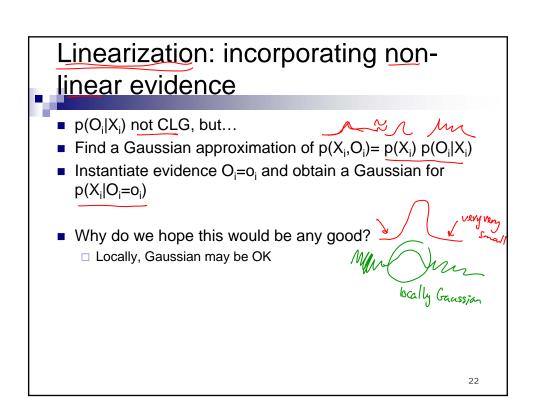
$$\Lambda_{AA}^m = \Lambda_{AA} - \Lambda_{AB} \Lambda_{BB}^{-1} \Lambda_{BA}$$

19

Announcements

- Lectures the rest of the semester:
 - □ Special time: Monday Nov 27 5:30-7pm, Wean 4615A: Dynamic BNs
 - □ Wed. 11/30, regular class time: Causality (Richard Scheines)
 - □ Friday 12/1, regular class time: Finish Dynamic BNs & Overview of Advanced Topics
 of Classes Wilk of 12/4
 Deadlines & Presentations:
- - □ Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)
 - popular vote for best poster
 - ☐ Project write up: Dec. 8th by 2pm by email
 - 8 pages limit will be strictly enforced
 - ☐ Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)





Linearization as integration

- Gaussian approximation of $p(X_i, O_i) = p(X_i) p(O_i | X_i)$
- Need to compute moments

Need to compute moments
$$\begin{array}{l}
\text{Need to compute moments} \\
\text{O} \in [X_i] = \mu_i; \\
\text{O} \in [O_i] = \int_{O_i} O_i P(o_i) do_i = \iint_{X_i} O_i P(o_i) P(o_i) do_i dx_i
\end{array}$$

 \Box E[O_i²]

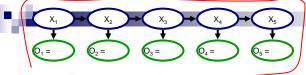
Note: Integral is product of a Gaussian with an arbitrary function

23

Linearization as numerical integration

- Product of a Gaussian with arbitrary function
- Effective numerical integration with Gaussian quadrature method
 - □ Approximate integral as weighted sum over integration points
 - □ Gaussian quadrature defines location of points and weights
- Exact if arbitrary function is polynomial of bounded degree
- Number of integration points exponential in number of dimensions d
- Exact monomials requires exponentially fewer points
 - ☐ For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
 - □ Generalizes to many more points

Operations in non-linear Kalman filter



- Compute $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with $p(X_0)$
- At each time step t.
 - □ Condition on observation (use numerical integration) $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1})p(o_t \mid X_t)$
 - □ **Prediction** (Multiply transition model, use numerical integration)
 - $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$

25

What you need to know about Kalman Filters

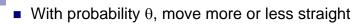
Kalman filter

- □ Probably most used BN
- □ Assumes Gaussian distributions
- □ Equivalent to linear system
- □ Simple matrix operations for computations

■ Non-linear Kalman filter

- □ Usually, observation or motion model not CLG
- Use numerical integration to find Gaussian approximation

What if the person chooses different motion models?



■ With probability 1-θ, do the "moonwalk"

27

The moonwalk

What if the person chooses different motion models?

- With probability θ , move more or less straight
- With probability 1-0, do the "moonwalk"

29

Switching Kalman filter

- At each time step, choose one of *k* motion models:
 - □ You never know which one!
- $p(X_{i+1}|X_i,Z_{i+1})$
 - \Box CLG indexed by Z_i
 - $\label{eq:posterior} \begin{array}{ll} & \square & p(X_{i+1}|X_i,Z_{i+1}\!\!=\!\!j) \sim \textit{N}(\beta^j_0 + B^j|X_i; \; \Sigma^j_{X_i+1|X_i}) \end{array}$

Inference in switching KF – one step

- Suppose
 - \Box p(X₀) is Gaussian
 - □ Z₁ takes one of two values
 - \Box p(X₁|X₀,Z₁) is CLG
- Marginalize X₀
- Marginalize Z₁
- Obtain mixture of two Gaussians!

31

Multi-step inference

- Suppose
 - \Box p(X_i) is a mixture of *m* Gaussians
 - \Box Z_{i+1} takes one of two values
- Marginalize X_i
- Marginalize Z_i
- Obtain mixture of 2m Gaussians!
 - □ Number of Gaussians grows exponentially!!!

Visualizing growth in number of Gaussians

33

Computational complexity of inference in switching Kalman filters

- Switching Kalman Filter with (only) 2 motion models
- Query:
- Problem is NP-hard!!! [Lerner & Parr `01]
 - □ Why "!!!"?
 - □ Graphical model is a tree:
 - Inference efficient if all are discrete
 - Inference efficient if all are Gaussian
 - But not with hybrid model (combination of discrete and continuous)

Bounding number of Gaussians

- P(X_i) has 2^m Gaussians, but...
- usually, most are bumps have low probability and overlap:

- Intuitive approximate inference:
 - ☐ Generate k.m Gaussians
 - □ Approximate with *m* Gaussians

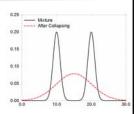
35

Collapsing Gaussians – Single Gaussian from a mixture

- Given mixture P <w_i; N(μ_i,Σ_i)>
- Obtain approximation $Q \sim N(\mu, \Sigma)$ as:

$$\mu = \sum_{i} w_{i} \mu_{i}$$

$$\Sigma = \sum_{i} w_{i} \Sigma_{i} + \sum_{i} w_{i} (\mu_{i} - \mu) (\mu_{i} - \mu)^{T}$$



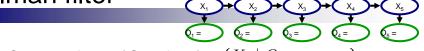
- Theorem:
 - □ P and Q have same first and second moments
 - □ **KL projection:** *Q* is single Gaussian with lowest KL divergence from *P*

Collapsing mixture of Gaussians into smaller mixture of Gaussians

- Hard problem!
 - ☐ Akin to clustering problem...
- Several heuristics exist
 - □ c.f., K&F book

37

Operations in non-linear switching Kalman filter



- Compute mixture of Gaussians for $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with $p(X_0)$
- At each time step t.
 - □ For each of the *m* Gaussians in $p(X_i|o_{1:i})$:
 - Condition on observation (use numerical integration)
 - Prediction (Multiply transition model, use numerical integration)
 - □ Obtain k Gaussians
 - Roll-up (marginalize previous time step)
 - $\ \square$ **Project** k.m Gaussians into m' Gaussians $p(X_i|o_{1:i+1})$

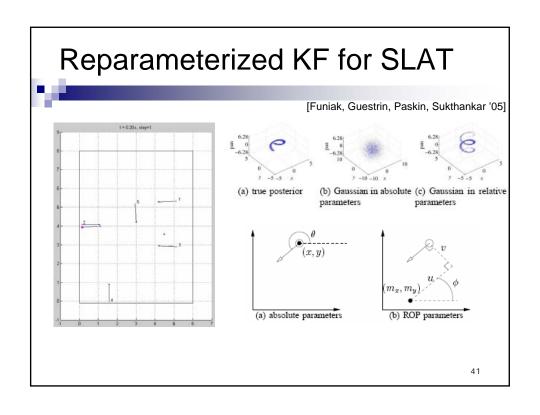
Assumed density filtering

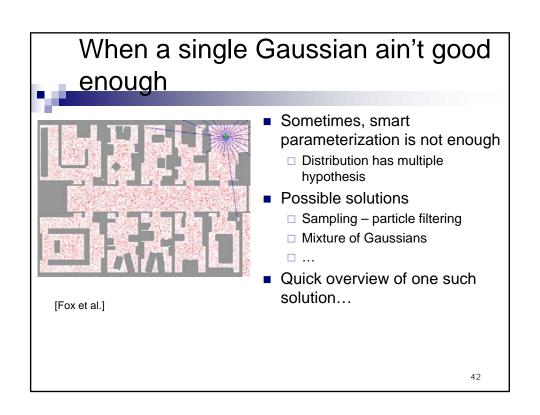
- Examples of very important assumed density filtering:
 - □ Non-linear KF
 - □ Approximate inference in switching KF
- General picture:
 - □ Select an assumed density
 - e.g., single Gaussian, mixture of *m* Gaussians, ...
 - After conditioning, prediction, or roll-up, distribution no-longer representable with assumed density
 - e.g., non-linear, mixture of k.m Gaussians,...
 - Project back into assumed density
 - e.g., numerical integration, collapsing,...

39

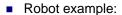
When non-linear KF is not good enough

- Sometimes, distribution in non-linear KF is not approximated well as a single Gaussian
 - □ e.g., a banana-like distribution
- Assumed density filtering:
 - □ Solution 1: reparameterize problem and solve as a single Gaussian
 - □ Solution 2: more typically, approximate as a mixture of Gaussians





Approximating non-linear KF with mixture of Gaussians



- $P(X_i)$ is a Gaussian, $P(X_{i+1})$ is a banana
- Approximate P(X_{i+1}) as a mixture of m Gaussians
 - □ e.g., using discretization, sampling,...
- Problem:
 - \Box P(X_{i+1}) as a mixture of *m* Gaussians
 - \Box P(X_{i+2}) is *m* bananas
- One solution:
 - □ Apply collapsing algorithm to project *m* bananas in *m'* Gaussians

43

What you need to know

Switching Kalman filter

- ☐ Hybrid model discrete and continuous vars.
- □ Represent belief as mixture of Gaussians
- □ Number of mixture components grows exponentially in time
- □ Approximate each time step with fewer components

Assumed density filtering

- □ Fundamental abstraction of most algorithms for dynamical systems
- Assume representation for density
- □ Every time density not representable, project into representation