Readings:
K&F: 4.5,12.2,12.3,12.4

Kalman Filters
Switching Kalman Filter

Graphical Models — 10708
Carlos Guestrin
Carnegie Mellon University

November 20", 2006 )

Adventures of our BN hero
" JE
m Compact representation for 1. Naive Bayes
probability distributions

m Fast inference
m Fast learning

_ _ —=G Y Aidbt,
m Approximate inference j{pg P

2 and 3.
‘ Hidden Markov models (HMMs

m But...’Who are the most Kalman Filters N ol gends
. (\ Confnucay
popular kids? Csnssion




The Kalman Filter
= JEE

= An HMM with Gaussian distributions
m Has been around for at Ieastéo years
m Possibly the most used graphical model ever
m It's what
does your cruise control
tracks missiles
controls robots
m And it's so simple...

Possibly explaining why it's so used
Many interesting models build on it...
An example of a Gaussian BN (more on this later)
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Example of KF — SLAT

Simultaneous Localization and Tracking

" JEE
[Funiak, Guestrin, Paskin, Sukthankar '06]

m Place some cameras around an environment, don’t know where they are
m Could measure all locations, but requires lots of grad. student (Stano) time
= Intuition:

A person walks around

If camera 1 sees person, then camera 2 sees person, learn about relative

positions of cameras //J 5{7
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Example of KF — SLAT
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar '06]
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Multivariate Gaussian
" JEE
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Conditioning a Gaussmn‘”n by

m Joint Gaussian: /A:(ﬁ,
POXY) ~ N(w%)

] Condltlonal linear Gaus ssian:
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Gaussian is a “Linear Model”
" N Py|x = ny + (@ — pa)

m Conditional linear Gaussian: —— Ox
P(YIX) ~ N(Bo+BX; 02) 02 = of - ILX
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Conditioning a Gaussyan 2V cner b

m Joint Gaussian: M=
LAY m
pP(X,Y) ~ N(w;Z)
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Conditional Linear Gaussian (CLG) —

_ general case

m Conditional linear Gaussian:
P(Y[X) ~ N(Bo+BX; Zyyx)
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Understandiry a lineax Gaussian —

the 2d case mVariance wﬁgreases over time
T (@ otion |se adds up)
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Tracking with a Gaussian 1

* A
u ﬂo) ~ N(u0.Zo)
B P(XiuqX) ~ NB X + B Zyiqjx1)
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Tracking with Gaussians 2 —

. gaking observations
= We have p(X;) ™\ P% )meh
m Detector observes O=0,

= Want to compute p(X;|O;=0;)
m Use Bayes rule:

Q"W le'\L\&A

\)ds'{imy/\f/\ "
PE01=) o PO P(Oizoil)

m Require a CLG observation model T e 4“”‘?
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Operations in Kalman filter

O O G G SR
B CD €D @D €D a._J‘-

s Compute p( X | O1:t = 01:1)
m Start with p(Xg) ¢1¢*

m At each time step t; osurwhios "‘flto g 44
Condition on observation o bseriditn & PG 0
P(X¢ | 01:4) o p(X¢ | 01:0-1)p(0t ] X0) 6 )
Prediction (Multiply transition model) PCDQ;&\ \7(—63 ?M—ulohé) G
p(Xiy1. Xt | 01:4) = p(Xyq1 | X)p(X¢ | 01:4) rdl g %Ma
Roll-up (nw_li_ze previous time step) ?rM'&.
p(Xigp1 | o14) = f[\_f P( X1, 2 | 01:4)day o ?®@!+)

e
m ['ll describe one implementation of KF, there are others 2 | Bt»é
Information filter
——




Exponential family representatlgn g
_ of Gaussian: Canonical Form U
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Canonical form

_ 1 S e O
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= Kexp {nTX — 2XT/y\X} o Iocj linger madel )l
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m Standard form and canonical forms are related: )

po= Aty N E 7 pe Ty
> = AH

m Conditioning is eagy in canonical form
m Marginalization easy in standard form 1




Conditioning in canonical form
"l (X:tory) o p(Xe | o1 1)p(0t | Xt)

Ib = N-veeh.
m First multiply: p(A B) _p(A)p(B \ A) A= xamdn
p(A) N 7717 /\1? Nz n(mﬂ)xﬁmh)
p(B | A) 7127 /\2 ,EL-—‘\_;V\ “(/Qe-k,,
p(A, R\ n3=m 4—772’ _/\_3:/\1_!_/\2,L N
N i n J\,\g n L°
M(O} PL'LJ m<0 O> ~ _[\,2 ) ’l (2)

m Then, condition onvalue B=y P(A|B

MAlB=y = NA—NaBY PAg) 5
NaaB=y = Naa V\\‘me 3 s
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Operations in Kalman filter

= Compute p(Xt | O1:¢ = 01:¢)

= Start with P(X0)
m At each time step t:

Condition on observation

p(Xe | 01:4) o< p(X¢ | 01:4-1)p(op | Xt)
Prediction (Multiply transition model)

p(Xipg1. Xe | 01:4) = p(Xpp1 | Xe)p(Xe | 01:4)
Roll-up (marginalize previous time step)

p(Xpg1 | o1:4) = [\_ P( X1, %0 | 01:4)dy
Jx,
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Prediction & roll-up in canonical form
7\)(%(4.- /_/1/3(@4&)
" lp(Xip1 | one) = [ p(Xpga | 2e)p(ar | o1:p)day
t

m First multiply: »(A, B) = p(A)p(B | A)
Sum Ns A s

m Then, marginalize X;: »(A) = /Bp(A,b)db

—~

"t = na— AaBNpEIB
A = Nga— /\AB/\élB/\BA
Announcements

o ﬂm
m Lectures th,%f%ﬂg L@&sﬁsmester:

Special time: Monday Nov 27 - 5:30-7pm, Wean 4615A:
Dynamic BNS
Wed. 11/30, regular class time: Causality (Richard Scheines)

Friday 12/1, regular class time: Finish Dynamic BNs & Overview

@of ﬁxdv&nced "/I'uokpiicsdf 12 / ‘f
no clasg e of .
m Deadlines é Presentations:

Project Poster Presentations: Dec. 15t 3-6pm (NSH Atrium)
= popular vote for best poster
Project write up: Dec. 8" by 2pm by email

=8 pages — limit will be strictly enforced

Final: Out Dec. 1¢t, Due Dec. 15" by 2pm (strict deadline)
e
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What if observations are not CLG?

mw@

= JEE '

m Often observations are not CLG o
« e, 5—;3

X
CLGITO=BX+po e Ui i

m Consider a motion detector /{b o
O, = 1 if person is likely to be in the region W

(-~

Posterior is not Gaussian

-7

21

Linearization: incorporating non-
_ linear evidence
o
m p(G;|X)) not CLG, but... N M
m Find a Gaussian approximation of p(X;,0;)= p(X;) p(O,|X)

m Instantiate evidence O;=0; and obtain a Gaussian for
p(X|O=0;)

Vij
= Why do we hope this would be any goo%‘élwz\/ﬁjﬁz

Locally, Gaussian may be OK

hQ"“’J c‘ﬁuss,‘a,\

22
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Linearization as yfgra}(tllv%\ N

" S g g

m Gaussian approximation of p(X;,0)= p(X) p(O;|X;) €L0;]
[/\I//G‘\mic\h /UL; E

s

= Need to compute moments
O EX) =% ‘ &-)?(o:ba:) ﬂ(o;dy,
€] = § 03 P00 doi :lsof‘ f |
o\

E[O7]
E[O, X] = g % 01 XS QCOz\L;) ?Gc;> O{o,- ﬂ(X;
7 .
Ly 70, NLJ{’\WU CZ-DJA%/An
m Note: Integral is product of a Gaussian with an arbitrary function

23

Linearization as numerical

_ integration

m Product of a Gaussian with arbitrary function

m Effective numerical integration with Gaussian quadrature method
Approximate integral as weighted sum over integration points
Gaussian quadrature defines location of points and weights

m Exact if arbitrary function is polynomial of bounded degree
m Number of integration points exponential in nuerns d
m Exact monomials requires exponentially fewer points
For 2d+1 points, this method is equivalent to effective Unscented Kalman filter

- . | —
Generalizes to many more points N———

24
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Operations in non-linear Kalman filter

s Compute p(X¢|O1:4 = 01:¢)

= Start with P(X0)
m Ateachtime step t:
Condition on observation (use numerical integration)
p(X¢ | 01:4) o< p(Xy | 01:4-1)p(0r | Xt)
Prediction (Multiply transition model, use numerical integration)
p(Xpg1, Xt | 01:4) = p( X1 | X)p(Xy | 01:4)
Roll-up (marginalize previous time step)
P(Xe41 | o) = [ p(Xer, 0| ox:)da

oN- (t"r\u_y k'F
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What you need to know about
Kalman Filters
" N

m Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations
m Non-linear Kalman filter
Usually, observation or motion model not CLG

Use numerical integration to find Gaussian
approximation

26
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What if the person chooses
different motion models?
SR

m With probability 6, move more or less straight
m With probability 1-6, do the “moonwalk”

27

The moonwalk
= JEE

28
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What if the person chooses
different motion models?
" SN

m With probability 6, move more or less straight
m With probability 1-6, do the “moonwalk”

29

Switching Kalman filter
" JEE

m At each time step, choose one of k motion models:
You never know which one!

n p(xi+1|Xi’Zi+1)
CLG indexed by 7,
P(Xir1]XZi1=)) ~ N(B)y + B X;; Zin+1|Xi)

30
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Inference in switching KF — one step

" JE
m Suppose
p(X,) is Gaussian
Z, takes one of two values
p(X,1X,,Z,) is CLG

m  Marginalize X,

m  Marginalize Z,

m Obtain mixture of two Gaussians!

31

Multi-step inference
" JE

m Suppose
p(X;) is a mixture of m Gaussians
Z,,, takes one of two values
P(X;,11%;Z;,,) is CLG

m  Marginalize X;

m  Marginalize Z;

m Obtain mixture of 2m Gaussians!
Number of Gaussians grows exponentially!!!

32
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Visualizing growth in number of
Gaussians
" JES

33

Computational complexity of

Inference in switching Kalman filters
" S

m Switching Kalman Filter with (only) 2 motion models
m Query:

m Problem is NP-hard!!! [Lerner & Parr "01]
Why “111"?
Graphical model is a tree:
= Inference efficient if all are discrete
= Inference efficient if all are Gaussian
= But not with hybrid model (combination of discrete and continuous)

34

17



Bounding number of Gaussians
“ JEE

m P(X) has 2™ Gaussians, but...
m usually, most are bumps have low probability and overlap:

m Intuitive approximate inference:
Generate k.m Gaussians
Approximate with m Gaussians

35

Collapsing Gaussians — Single
_ Gaussian from a mixture
S

m  Given mixture P <w;N(u,XZ)>

m  Obtain approximation Q~N(u,X) as:
I[L = ZI'.'!,‘“"U..;
o= Y wisi+ Y wil — ) (g — )T

m Theorem:
P and Q have same first and second moments

KL projection: Q is single Gaussian with
lowest KL divergence from P

36
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Collapsing mixture of Gaussians
Into smaller mixture of Gaussians
" S

m Hard problem!
AKin to clustering problem...

m Several heuristics exist
c.f., K&F book

37

Operations in non-linear switching

_Kalman filter o O I O

= Compute mixture of Gaussians for p(X; | O1:4 = 01:1)

= Start with p(Xg)
m At each time step t:
For each of the m Gaussians in p(X|[o,,):
= Condition on observation (use numerical integration)

= Prediction (Multiply transition model, use numerical integration)
Obtain k Gaussians

= Roll-up (marginalize previous time step)
Project k.m Gaussians into m’ Gaussians p(X|0,.,,)

38
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Assumed density filtering
“ JEE

m  Examples of very important assumed density
filtering:
Non-linear KF
Approximate inference in switching KF

m  General picture:

Select an assumed density

= e.g., single Gaussian, mixture of m Gaussians, ...
After conditioning, prediction, or roll-up,
distribution no-longer representable with
assumed density

= e.g., non-linear, mixture of k.m Gaussians,...
Project back into assumed density

= e.g., numerical integration, collapsing,...

39

When non-linear KF is not good enough
" S

m  Sometimes, distribution in non-linear KF is not approximated well as
a single Gaussian
e.g., a banana-like distribution

m  Assumed density filtering:
Solution 1: reparameterize problem and solve as a single Gaussian
Solution 2: more typically, approximate as a mixture of Gaussians

40
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Reparameterized KF for SLAT
.. [Funiak, Guestrin, Paskin, Sukthankar '05]

. 120204, step=t
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When a single Gaussian ain’t good

_ enough

m Sometimes, smart
parameterization is not enough
O Distribution has multiple

hypothesis

m Possible solutions
1 Sampling — patrticle filtering
[ Mixture of Gaussians
O ...

m Quick overview of one such
solution...

[Fox et al.]

42
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Approximating non-linear KF with
mixture of Gaussians
S

m Robot example: '

m P(X) is a Gaussian, P(X,,) is a banana
m  Approximate P(X,,;) as a mixture of m Gaussians
e.g., using discretization, sampling,...
m Problem:
P(X;,,) as a mixture of m Gaussians
P(X;,,) is m bananas
m  One solution:
Apply collapsing algorithm to project m bananas in m’ Gaussians

43

What you need to know
" JEE

m Switching Kalman filter
Hybrid model — discrete and continuous vars.
Represent belief as mixture of Gaussians
Number of mixture components grows exponentially in time
Approximate each time step with fewer components

m Assumed density filtering
Fundamental abstraction of most algorithms for dynamical systems
Assume representation for density
Every time density not representable, project into representation

44
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