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Kalman Filters
Switching Kalman Filter

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 20th, 2006

Readings:
K&F: 4.5, 12.2, 12.3, 12.4

2

Adventures of our BN hero

Compact representation for 
probability distributions
Fast inference
Fast learning
Approximate inference

But… Who are the most 
popular kids?

1. Naïve Bayes

2 and 3. 
Hidden Markov models (HMMs)
Kalman Filters
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The Kalman Filter

An HMM with Gaussian distributions
Has been around for at least 50 years
Possibly the most used graphical model ever
It’s what

does your cruise control
tracks missiles
controls robots
…

And it’s so simple…
Possibly explaining why it’s so used

Many interesting models build on it…
An example of a Gaussian BN (more on this later)
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Example of KF – SLAT
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar ’06]

Place some cameras around an environment, don’t know where they are
Could measure all locations, but requires lots of grad. student (Stano) time
Intuition:

A person walks around
If camera 1 sees person, then camera 2 sees person, learn about relative 
positions of cameras
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Example of KF – SLAT 
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar ’06]
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Multivariate Gaussian

Mean vector:

Covariance matrix:
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Conditioning a Gaussian

Joint Gaussian:
p(X,Y) ~ N(µ;Σ)

Conditional linear Gaussian:
p(Y|X) ~ N(µY|X; σ2)
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Gaussian is a “Linear Model”

Conditional linear Gaussian:
p(Y|X) ~ N(β0+βX; σ2)
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Conditioning a Gaussian

Joint Gaussian:
p(X,Y) ~ N(µ;Σ)

Conditional linear Gaussian:
p(Y|X) ~ N(µY|X; ΣYY|X)
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Conditional Linear Gaussian (CLG) –
general case

Conditional linear Gaussian:
p(Y|X) ~ N(β0+ΒX; ΣYY|X)
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Understanding a linear Gaussian –
the 2d case Variance increases over time 

(motion noise adds up)
Object doesn’t necessarily 

move in a straight line
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Tracking with a Gaussian 1

p(X0) ~ N(µ0,Σ0)
p(Xi+1|Xi) ~ N(Β Xi + β; ΣXi+1|Xi)
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Tracking with Gaussians 2 –
Making observations
We have p(Xi)
Detector observes Oi=oi

Want to compute p(Xi|Oi=oi)
Use Bayes rule:

Require a CLG observation model
p(Oi|Xi) ~ N(W Xi + v; ΣOi|Xi)
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Operations in Kalman filter

Compute

Start with  
At each time step t:

Condition on observation

Prediction (Multiply transition model)

Roll-up (marginalize previous time step)

I’ll describe one implementation of KF, there are others
Information filter

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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Exponential family representation 
of Gaussian: Canonical Form
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Canonical form

Standard form and canonical forms are related:

Conditioning is easy in canonical form
Marginalization easy in standard form
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Conditioning in canonical form

First multiply:

Then, condition on value B = y
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Operations in Kalman filter

Compute

Start with  
At each time step t:

Condition on observation

Prediction (Multiply transition model)

Roll-up (marginalize previous time step)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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Prediction & roll-up in canonical form

First multiply:

Then, marginalize Xt:
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Announcements

Lectures the rest of the semester:
Special time: Monday Nov 27 - 5:30-7pm, Wean 4615A: 
Dynamic BNs
Wed. 11/30, regular class time: Causality (Richard Scheines)
Friday 12/1, regular class time: Finish Dynamic BNs & Overview 
of Advanced Topics

Deadlines & Presentations:
Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)

popular vote for best poster
Project write up: Dec. 8th by 2pm by email 

8 pages – limit will be strictly enforced
Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)



11

21

What if observations are not CLG?

Often observations are not CLG
CLG if Oi = Β Xi + βo + ε

Consider a motion detector 
Oi = 1 if person is likely to be in the region

Posterior is not Gaussian
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Linearization: incorporating non-
linear evidence

p(Oi|Xi) not CLG, but…
Find a Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi)
Instantiate evidence Oi=oi and obtain a Gaussian for 
p(Xi|Oi=oi)

Why do we hope this would be any good?
Locally, Gaussian may be OK
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Linearization as integration

Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi)

Need to compute moments

E[Oi]

E[Oi
2]

E[Oi Xi]

Note: Integral is product of a Gaussian with an arbitrary function
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Linearization as numerical 
integration

Product of a Gaussian with arbitrary function

Effective numerical integration with Gaussian quadrature method
Approximate integral as weighted sum over integration points
Gaussian quadrature defines location of points and weights

Exact if arbitrary function is polynomial of bounded degree
Number of integration points exponential in number of dimensions d
Exact monomials requires exponentially fewer points

For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
Generalizes to many more points
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Operations in non-linear Kalman filter

Compute

Start with  
At each time step t:

Condition on observation (use numerical integration)

Prediction (Multiply transition model, use numerical integration)

Roll-up (marginalize previous time step)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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What you need to know about 
Kalman Filters 

Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations

Non-linear Kalman filter
Usually, observation or motion model not CLG
Use numerical integration to find Gaussian 
approximation
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What if the person chooses 
different motion models?
With probability θ, move more or less straight
With probability 1-θ, do the “moonwalk”

28

The moonwalk
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What if the person chooses 
different motion models?
With probability θ, move more or less straight
With probability 1-θ, do the “moonwalk”
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Switching Kalman filter
At each time step, choose one of k motion models:

You never know which one!

p(Xi+1|Xi,Zi+1) 
CLG indexed by Zi

p(Xi+1|Xi,Zi+1=j) ~ N(βj
0 + Βj Xi; Σj

Xi+1|Xi)
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Inference in switching KF – one step

Suppose 
p(X0) is Gaussian
Z1 takes one of two values
p(X1|Xo,Z1) is CLG

Marginalize X0

Marginalize Z1

Obtain mixture of two Gaussians!
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Multi-step inference
Suppose 

p(Xi) is a mixture of m Gaussians
Zi+1 takes one of two values
p(Xi+1|Xi,Zi+1) is CLG

Marginalize Xi

Marginalize Zi

Obtain mixture of 2m Gaussians!
Number of Gaussians grows exponentially!!!



17

33

Visualizing growth in number of 
Gaussians
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Computational complexity of 
inference in switching Kalman filters
Switching Kalman Filter with (only) 2 motion models

Query:

Problem is NP-hard!!!   [Lerner & Parr `01]
Why “!!!”?
Graphical model is a tree:

Inference efficient if all are discrete
Inference efficient if all are Gaussian
But not with hybrid model (combination of discrete and continuous)
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Bounding number of Gaussians
P(Xi) has 2m Gaussians, but…
usually, most are bumps have low probability and overlap:

Intuitive approximate inference:
Generate k.m Gaussians
Approximate with m Gaussians
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Collapsing Gaussians – Single 
Gaussian from a mixture 
Given mixture P <wi;N(µi,Σi)>
Obtain approximation Q~N(µ,Σ) as:

Theorem:
P and Q have same first and second moments
KL projection: Q is single Gaussian with 
lowest KL divergence from P
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Collapsing mixture of Gaussians 
into smaller mixture of Gaussians
Hard problem!

Akin to clustering problem…

Several heuristics exist
c.f., K&F book 
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Operations in non-linear switching 
Kalman filter

Compute mixture of Gaussians for

Start with  
At each time step t:

For each of the m Gaussians in p(Xi|o1:i):
Condition on observation (use numerical integration)
Prediction (Multiply transition model, use numerical integration)

Obtain k Gaussians
Roll-up (marginalize previous time step)

Project k.m Gaussians into m’ Gaussians p(Xi|o1:i+1)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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Assumed density filtering
Examples of very important assumed density 
filtering:

Non-linear KF
Approximate inference in switching KF

General picture:
Select an assumed density

e.g., single Gaussian, mixture of m Gaussians, …
After conditioning, prediction, or roll-up, 
distribution no-longer representable with 
assumed density

e.g., non-linear, mixture of k.m Gaussians,…
Project back into assumed density

e.g., numerical integration, collapsing,…
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When non-linear KF is not good enough

Sometimes, distribution in non-linear KF is not approximated well as 
a single Gaussian

e.g., a banana-like distribution

Assumed density filtering:
Solution 1: reparameterize problem and solve as a single Gaussian
Solution 2: more typically, approximate as a mixture of Gaussians
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Reparameterized KF for SLAT
[Funiak, Guestrin, Paskin, Sukthankar ’05]
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When a single Gaussian ain’t good 
enough

Sometimes, smart 
parameterization is not enough

Distribution has multiple 
hypothesis

Possible solutions
Sampling – particle filtering
Mixture of Gaussians
…

Quick overview of one such 
solution…[Fox et al.]
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Approximating non-linear KF with 
mixture of Gaussians 
Robot example: 

P(Xi) is a Gaussian, P(Xi+1) is a banana
Approximate P(Xi+1) as a mixture of m Gaussians

e.g., using discretization, sampling,…
Problem: 

P(Xi+1) as a mixture of m Gaussians
P(Xi+2) is m bananas

One solution:
Apply collapsing algorithm to project m bananas in m’ Gaussians
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What you need to know
Switching Kalman filter

Hybrid model – discrete and continuous vars.
Represent belief as mixture of Gaussians
Number of mixture components grows exponentially in time
Approximate each time step with fewer components

Assumed density filtering
Fundamental abstraction of most algorithms for dynamical systems
Assume representation for density
Every time density not representable, project into representation


