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One of the most exciting 
developments in machine 
learning (knowledge 
representation, AI, EE, 
Stats,…) in the last two (or 
three, or more) decades…

My expectations are already high… ☺
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Speech recognition

Hidden Markov models and their generalizations
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Tracking and robot localization
Kalman Filters

[Fox et al.] [Funiak et al.]
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Evolutionary biology

Bayesian networks

[Friedman et al.]
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Modeling sensor data

Undirected graphical models

[Guestrin et al.]
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Planning under uncertainty
Dynamic Bayesian networks
Factored Markov decision problems
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[Guestrin et al.]
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Images and text data

Hierarchical Bayesian models

[Barnard et al.]
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Structured data (text, webpages,…)

Probabilistic relational models

[Koller et al.]
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And many

many
many

many
many

more…
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Syllabus

� Covers a wide range of Probabilistic Graphical 
Models topics  – from basic to state-of-the-art

� You will learn about the methods you heard about:
� Bayesian networks, Markov networks, factor graphs, decomposable models, 

junction trees, parameter learning, structure learning, semantics, exact inference, 
variable elimination, context-specific independence, approximate inference, 
sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief 
propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing 
data, EM, Chow-Liu, structure search, IPF for tabular MRFs, Gaussian and hybrid 
models, discrete and continuous variables, temporal and template models, hidden 
Markov Models, Forwards-Backwards, Viterbi, Baum-Welch, Kalman filter, 
linearization, switching Kalman filter, assumed density filtering, DBNs, BK, Relational 
probabilistic models, Causality,…

� Covers algorithms, theory and applications
� It’s going to be fun and hard work ☺
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Prerequisites

� 10-701 – Machine Learning, especially:
� Probabilities 

� Distributions, densities, marginalization…
� Basic statistics

� Moments, typical distributions, regression…
� Algorithms

� Dynamic programming, basic data structures, complexity…
� Programming

� Matlab will be very useful
� We provide some background, but the class will be fast paced

� Ability to deal with “abstract mathematical concepts”
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Review Sessions

� Very useful!
� Review material
� Present background
� Answer questions

� Thursdays, 5:00-6:30 in Wean Hall 4615A
� First recitation is tomorrow

� Review of probabilities & statistics

� Sometimes this semester: Especial recitations on 
Mondays 5:30-7pm in Wean Hall 4615A
� Cover special topics that we can’t cover in class
� These are optional, but you are here to learn… ☺

� Do we need a Matlab review session?
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Staff

� Two Great TAs: Great resource for learning, interact 
with them!
� Khalid El-Arini <kbe@cs.cmu.edu> 

� Ajit Paul Singh <ajit@cs.cmu.edu>

� Administrative Assistant
�Monica Hopes, Wean 4619, x8-5527,      

meh@cs.cmu.edu
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First Point of Contact for HWs

� To facilitate interaction, a TA will be assigned to each 
homework question – This will be your “first point of 
contact” for this question
� But, you can always ask any of us
� (Due to logistic reasons, we will only start this policy for HW2)

� For e-mailing instructors, always use:
� 10708-instructors@cs.cmu.edu

� For announcements, subscribe to:
� 10708-announce@cs
� https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce
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Text Books

� Primary: Daphne Koller and Nir Friedman, Bayesian 
Networks and Beyond, in preparation. These chapters 
are part of the course reader. You can purchase one 
from Monica Hopes. 

� Secondary: M. I. Jordan, An Introduction to 
Probabilistic Graphical Models, in preparation. Copies 
of selected chapters will be made available. 
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Grading

� 5 homeworks (50%)
� First one goes today!
� Homeworks are long and hard ☺

� please, please, please, please, please, please start early!!!

� Final project (30%)
� Done individually or in pairs
� Details out October 4th

� Final (20%)
� Take home, out Dec. 1st, due Dec. 15th
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Homeworks
� Homeworks are hard, start early ☺
� Due in the beginning of class
� 3 late days for the semester
� After late days are used up:

� Half credit within 48 hours
� Zero credit after 48 hours

� All homeworks must be handed in, even for zero credit
� Late homeworks handed in to Monica Hopes, WEH 4619

� Collaboration
� You may discuss the questions
� Each student writes their own answers
� Write on your homework anyone with whom you collaborate

� IMPORTANT:
� We may use some material from previous years or from papers for the homeworks.  

Unless otherwise specified, please only look at the readings when doing your 
homework → You are taking this advanced graduate class because you want to
learn, so this rule is self-enforced ☺
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Enjoy!

� Probabilistic graphical models are having 
significant impact in science, engineering and 
beyond

� This class should give you the basic foundation 
for applying GMs and developing new methods

� The fun begins…
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What are the fundamental 
questions of graphical models?

� Representation:
�What are the types of models? 
�What does the model 

mean/imply/assume? (Semantics)

� Inference:
� How do I answer questions/queries 

with my model?

� Learning:
�What model is the right for my data?
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More details???

� Representation:
� Graphical models represent exponentially large probability distributions 

compactly
� Key concept: Conditional Independence

� Inference:
� What is the probability of X given some observations?
� What is the most likely explanation for what is happening?
� What decisions should I make?

� Learning:
� What are the right/good parameters for the model?
� How do I obtain the structure of the model?
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Where do we start?

� From Bayesian networks 
� “Complete” BN presentation first 

� Representation 
� Exact inference 
� Learning
� Only discrete variables for now

� Later in the semester
� Undirected models
� Approximate inference
� Continuous
� Temporal models
� And more…

� Class focuses on fundamentals – Understand the 
foundation and basic concepts
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Today

� Probabilities
� Independence
� Two nodes make a BN
� Naïve Bayes

� Should be a review for everyone – Setting up 
notation for the class
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Event spaces

� Outcome space Ω

� Measurable events S
� Each α∈S is a subset of Ω

� Must contain
� Empty event ∅
� Trivial event Ω

� Closed under
� Union: α∪β∈S
� Complement: α∈S, then Ω-α also in S
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Probability distribution P over (Ω,S)

� P(α)≥ 0
� P(Ω)=1
� If α∩β=∅, then P(α∪β) = P(α)+P(β)

� From here, you can prove a lot, e.g.,
� P(∅)=0
� P(α∪β) = P(α)+P(β)- P(α∩β)
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Interpretations of probability –
A can of worms!

� Frequentists
� P(α) is the frequency of α in the limit
� Many arguments against this interpretation

� What is the frequency of the event “it will rain tomorrow”?

� Subjective interpretation
� P(α) is my degree of belief that α will happen
� What the …. does “degree of belief mean?
� If I say P(α)=0.8, then I am willing to bet!!!

� For this class, we (mostly) don’t care what camp you are in
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Conditional probabilities

� After learning that α is true, how do we feel 
about β?

� P(β|α)
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Two of the most important rules of 
the semester: 1. The chain rule
� P(α∩β)=P(α)P(β|α)

� More generally: 
� P(α1∩…∩αk)= P(α1) P(α2|α1)···P(αk|α1∩…∩αk-1)
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Two of the most important rules of 
the semester: 2. Bayes rule
�

� More generally, external event γ: 
�
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Most important concept: 
a) Independence

� α and β independent, if P(β|α)=P(β)
� P ² (α ⊥ β)

� Proposition: α and β independent if and only if 
P(α∩β)=P(α)P(β) 
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Most important concept: 
b) Conditional independence

� Independence is rarely true, but conditionally…

� α and β conditionally independent given γ if 
P(β|α∩γ)=P(β|γ)
� P ² (α ⊥ β | γ)

Proposition: P ² (α ⊥ β | γ) if and only if 
P(α∩β |γ)=P(α |γ)P(β |γ) 
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Random variable

� Events are complicated – we think about attributes
� Age, Grade, HairColor

� Random variables formalize attributes:
�Grade=A shorthand for event {ω∈Ω: fGrade(ω) = A}

� Properties of random vars, X:
� Val(X) = possible values of random var X
� For discrete (categorical): ∑i=1…|Val(X)| P(X=xi) = 1
� For continuous: ∫x p(X=x)dx = 1
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Marginal distribution

� Probability P(X) of possible outcomes X
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Joint distribution, Marginalization

� Two random variables – Grade & Intelligence

� Marginalization – Compute marginal over single var
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Marginalization – The general case

� Compute marginal distribution P(Xi):
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Basic concepts for random variables

� Atomic outcome: assignment x1,…,xn to X1,…,Xn

� Conditional probability: P(X,Y)=P(X)P(Y|X)

� Bayes rule: P(X|Y)=

� Chain rule: 
� P(X1,…,Xn) = P(X1)P(X2|X1)···P(Xk|X1,…,Xk-1)
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Conditionally independent random 
variables
� Sets of variables X, Y, Z
� X is independent of Y given Z if

� P ²(X=x⊥Y=y|Z=z), ∀ x∈Val(X), y∈Val(Y), z∈Val(Z)

� Shorthand:
� Conditional independence: P ² (X ⊥ Y | Z)
� For P ² (X ⊥ Y | ∅), write P ² (X ⊥ Y)

� Proposition: P statisfies (X ⊥ Y | Z) if and only if
� P(X,Y|Z) = P(X|Z) P(Y|Z)



10-708 – ©Carlos Guestrin 2006 38

Properties of independence

� Symmetry:
� (X ⊥ Y | Z) ⇒ (Y ⊥ X | Z)

� Decomposition:
� (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z)

� Weak union:
� (X ⊥ Y,W | Z) ⇒ (X ⊥ Y | Z,W)

� Contraction: 
� (X ⊥ W | Y,Z) & (X ⊥ Y | Z) ⇒ (X ⊥ Y,W | Z)

� Intersection:
� (X ⊥ Y | W,Z) & (X ⊥ W | Y,Z) ⇒ (X ⊥ Y,W | Z)
� Only for positive distributions!
� P(α)>0, ∀α, α≠∅

� Notation: I(P) – independence properties entailed by P
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Bayesian networks

� One of the most exciting recent advancements 
in statistical AI

� Compact representation for exponentially-large 
probability distributions

� Fast marginalization too
� Exploit conditional independencies
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Handwriting recognition
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Webpage classification

Company home page

vs

Personal home page

vs

Univeristy home page

vs

…
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Handwriting recognition 2
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Webpage classification 2
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Let’s start on BNs…

� Consider P(Xi)
� Assign probability to each xi ∈ Val(Xi)
� Independent parameters

� Consider P(X1,…,Xn)
� How many independent parameters if |Val(Xi)|=k?
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What if variables are independent?

� What if variables are independent?
� (Xi ⊥ Xj), ∀ i,j
� Not enough!!! (See homework 1 ☺)
�Must assume that (X ⊥ Y), ∀ X,Y subsets of {X1,…,Xn}

� Can write
� P(X1,…,Xn) = ∏i=1…n P(Xi)

� How many independent parameters now?
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Conditional parameterization –
two nodes
� Grade is determined by Intelligence
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Conditional parameterization –
three nodes
� Grade and SAT score are determined by 

Intelligence
� (G ⊥ S | I)
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The naïve Bayes model –
Your first real Bayes Net

� Class variable: C
� Evidence variables: X1,…,Xn

� assume that (X ⊥ Y | C), ∀ X,Y subsets of {X1,…,Xn}
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What you need to know

� Basic definitions of probabilities

� Independence

� Conditional independence

� The chain rule

� Bayes rule

� Naïve Bayes
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Next class

� We’ve heard of Bayes nets, we’ve played with 
Bayes nets, we’ve even used them in your 
research

� Next class, we’ll learn the semantics of BNs, 
relate them to independence assumptions 
encoded by the graph
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