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Unifying Variational and GBP
Learning Parameters of MNs
EM for BNs

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 15th, 2006

Readings:
K&F: 11.3, 11.5
Yedidia et al. paper from the class website
Chapter 9 – Jordan
K&F: 16.2
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Revisiting Mean-Fields

� Choice of Q:
� Optimization problem:
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Interpretation of energy functional

� Energy functional:

� Exact if P=Q:

� View problem as an approximation of entropy term:
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Entropy of a tree distribution

� Entropy term:
� Joint distribution:

� Decomposing entropy term:

� More generally: 
� di number neighbors of Xi

Difficulty
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Job

Coherence
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Intelligence
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Loopy BP & Bethe approximation

� Energy functional:

� Bethe approximation of Free Energy:
� use entropy for trees, but loopy graphs:

� Theorem: If Loopy BP converges, resulting πij & πi are 
stationary point (usually local maxima) of Bethe Free energy! 

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

10-708 – ©Carlos Guestrin 2006 6

GBP & Kikuchi approximation
� Exact Free energy: Junction Tree

� Bethe Free energy:

� Kikuchi approximation: Generalized cluster 
graph 
� spectrum from Bethe to exact
� entropy terms weighted by counting numbers
� see Yedidia et al.

� Theorem: If GBP converges, resulting πCi are 
stationary point (usually local maxima) of 
Kikuchi Free energy! 
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What you need to know about GBP

� Spectrum between Loopy BP & Junction Trees:
�More computation, but typically better answers

� If satisfies RIP, equations are very simple

� General setting, slightly trickier equations, but 
not hard

� Relates to variational methods: Corresponds to 
local optima of approximate version of energy 
functional 
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Announcements

� Tomorrow’s recitation
� Khalid on learning Markov Networks
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Learning Parameters of a BN

� Log likelihood decomposes:

� Learn each CPT independently
� Use counts

D

SG

H
J

C

L

I

10-708 – ©Carlos Guestrin 2006 10

Log Likelihood for MN
� Log likelihood of the data:
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Log Likelihood doesn’t decompose 
for MNs
� Log likelihood:

� A concave problem
� Can find global optimum!!

� Term log Z doesn’t decompose!!
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Derivative of Log Likelihood for MNs
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Derivative of Log Likelihood for MNs

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence� Derivative:

� Setting derivative to zero
� Can optimize using gradient ascent

� Let’s look at a simpler solution
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Iterative Proportional Fitting (IPF)

Difficulty

SATGrade

Happy
Job

Coherence

Letter

Intelligence

� Setting derivative to zero:

� Fixed point equation:

� Iterate and converge to optimal parameters
� Each iteration, must compute: 
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Log-linear Markov network
(most common representation)

� Feature is some function φ[D] for some subset of variables D
� e.g., indicator function

� Log-linear model over a Markov network H:
� a set of features φ1[D1],…, φk[Dk]

� each Di is a subset of a clique in H
� two φ’s can be over the same variables

� a set of weights w1,…,wk
� usually learned from data

�
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Learning params for log linear models 1 –
Generalized Iterative Scaling

� IPF generalizes easily if:
� φi(x) ≥ 0
� ∑i φi(x) = 1

� Update rule:

� Must compute:

� If conditions violated, equations are not so simple…
� c.f., Improved Iterative Scaling [Berger ’97]
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Learning params for log linear models 2 –
Gradient Ascent 

� Log-likelihood of data:

� Compute derivative & optimize
� usually with conjugate gradient ascent
� You will do an example in your homework! ☺
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What you need to know about 
learning MN parameters?
� BN parameter learning easy
� MN parameter learning doesn’t decompose!

� Learning requires inference!

� Apply gradient ascent or IPF iterations to obtain 
optimal parameters
� applies to both tabular representations and log-linear 

models
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Thus far, fully supervised learning

� We have assumed fully supervised learning:

� Many real problems have missing data:
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The general learning problem with 
missing data

� Marginal likelihood – x is observed, z is missing:
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E-step

� x is observed, z is missing
� Compute probability of missing data given current choice of θ

� Q(z|xj) for each xj
� e.g., probability computed during classification step
� corresponds to “classification step” in K-means
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Jensen’s inequality 

� Theorem: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z) 
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Applying Jensen’s inequality

� Use:  log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z) 
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The M-step maximizes lower bound on 
weighted data
� Lower bound from Jensen’s:

� Corresponds to weighted dataset:
� <x1,z=1> with weight Q(t+1)(z=1|x1)
� <x1,z=2> with weight Q(t+1)(z=2|x1)
� <x1,z=3> with weight Q(t+1)(z=3|x1)
� <x2,z=1> with weight Q(t+1)(z=1|x2)
� <x2,z=2> with weight Q(t+1)(z=2|x2)
� <x2,z=3> with weight Q(t+1)(z=3|x2)
� …
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The M-step

� Maximization step:

� Use expected counts instead of counts:
� If learning requires Count(x,z)
� Use EQ(t+1)[Count(x,z)]

10-708 – ©Carlos Guestrin 2006 26

Convergence of EM

� Define potential function F(θ,Q):

� EM corresponds to coordinate ascent on F
� Thus, maximizes lower bound on marginal log likelihood
� As seen in Machine Learning class last semester
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Data likelihood for BNs

� Given structure, log likelihood of fully 
observed data:

Flu Allergy

Sinus

Headache Nose
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Marginal likelihood

� What if S is hidden?

Flu Allergy

Sinus

Headache Nose
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Log likelihood for BNs with hidden 
data

� Marginal likelihood – O is observed, H is hidden
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E-step for BNs

� E-step computes probability of hidden vars h given o

� Corresponds to inference in BN
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The M-step for BNs

� Maximization step:

� Use expected counts instead of counts:
� If learning requires Count(h,o)
� Use EQ(t+1)[Count(h,o)]

Flu Allergy

Sinus

Headache Nose
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M-step for each CPT

� M-step decomposes per CPT
� Standard MLE:

�M-step uses expected counts:
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Computing expected counts

� M-step requires expected counts:
� For a set of vars A, must compute ExCount(A=a)
� Some of A in example j will be observed

� denote by AO = aO
(j)

� Some of A will be hidden
� denote by AH

� Use inference (E-step computes expected counts):
� ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))
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Data need not be hidden in 
the same way

� When data is fully observed
� A data point is 

� When data is partially observed
� A data point is 

� But unobserved variables can be different for different data points
� e.g.,

� Same framework, just change definition of expected counts
� ExCount(t+1)(AO = aO

(j), AH = aH) ← P(AH = aH | AO = aO
(j),θ(t))

Flu Allergy

Sinus
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What you need to know

� EM for Bayes Nets
� E-step: inference computes expected counts

� Only need expected counts over Xi and Paxi

� M-step: expected counts used to estimate 
parameters

� Hidden variables can change per datapoint

� Use labeled and unlabeled data → some data 
points are complete, some include hidden 
variables


