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Thus far, fully supervised learning
" S

m We have assumed fully supervised learning:

m Many real problems have missing data:




The general learning problem with

_ missing data

m Marginal likelihood — x is observed, z is missing:
06:D) = log [] P(x;|0)

J—41

m

= log P(x; | 6)

j=1
m

= > log) P(xj,z]|0)
j=1

V4

E-step
" JEE
m X is observed, z is missing

m Compute probability of missing data given current choice of 6
Q(z|x,) for each x;
= e.g., probability computed during classification step
m corresponds to “classification step” in K-means

QUt(z|x;) = P(z|x;,0M)




Jensen’s inequality
" JEE
06:D) = §:1|ogzsz(z|xj)P(xj|e)

m Theorem: log >, P(z) f(z) > 2., P(z) log f(2)

Applying Jensen’s inequality
" JEE
m Use: log >, P(z) f(z) > 2>, P(z) log f(2)

P(z,x; | 0)

W.py = V7 WD) (5 | ;) 0% 1O
e(0\V : D) j§=:1|og§Z:Q (Z|XJ)Q(t+1)(z|Xj)




The M-step maximizes lower bound on
welghted data

m Lower bound from Jensen’s:

(0D D) > 3 Y QU (z | x)) log Pz, x; | 1) + H(QUHD)
j=17

m Corresponds to weighted dataset:
<X;,2=1> with weight Qt+")(z=1|x,
<X,,2=2> with weight Q+")(z=2|x,
<X,,2=3> with weight Q+")(z=3|x,
<X,,z=1> with weight Qt+1)(z=1|x,
<X,,2=2> with weight Qt+1)(z=2|x,
<X,,2=3> with weight Qt+1)(z=3|x,

)
)
)
)
)
)

The M-step
" JEE

m
10® D) > 3 Y QD (2| x:)l0g P(z,x; | ) + H(QUHD)
( ) = Y Y QU (2 x))10g Pz, x; | 61)) + H(QUHD)
j=1z

m Maximization step:

00+  arg max > YUY (z | x;) log P(z,x; | 6)
=17

m Use expected counts instead of counts:
If learning requires Count(x,z)
Use Eq.1)[Count(x,z)]




Convergence of EM
" JE
m Define potential function F(6,Q):

WD) > FO,Q) =3 Y Q| x;)log L1
j=1 z Q( ‘ g)

m EM corresponds to coordinate ascent on F
Thus, maximizes lower bound on marginal log likelihood
As seen in Machine Learning class last semester

Announcements
= JE
m Lectures the rest of the semester:

Special time: Monday Nov 20 - 5:30-7pm, Wean 4615A:
Gaussian GMs & Kalman Filters

Special time: Monday Nov 27 - 5:30-7pm, Wean 4615A:
Dynamic BNs

Wed. 11/30, regular class time: Causality (Richard Scheines)
Friday 12/1, regular class time: Finish Dynamic BNs & Overview
of Advanced Topics

m Deadlines & Presentations:
Project Poster Presentations: Dec. 15t 3-6pm (NSH Atrium)
Project write up: Dec. 8t by 2pm by email

= 8 pages — limit will be strictly enforced

Final: Out Dec. 18!, Due Dec. 15™ by 2pm (strict deadline)




Data likelihood for BNs
<
_ Q /.
m Given structure, log likelihood of fully >, I
observed data:

log P(D | 6g,G)

Marginal likelihood
_ R_=
m What if S is hidden?
log P(D | 6g,G)




Log likelihood for BNs with hidden

data
= Marginal likelihood — O is observed, H is hidden
((6:D) = i log P(0?) | ) <>
j=1
= i log > P(h, o) | 9)
=1 h
E-step for BNs <D\
" J =5 =

m E-step computes probability of hidden vars h given o

QU (x|0) = P(x]o0,0)

m Corresponds to inference in BN




D
The M-step for BNs /.

m Maximization step:

6UFD) —argmax 3 QU (h | 0)log P(h, 0| 6)

m Use expected counts instead of counts:
If learning requires Count(h,0)
Use Eq.1)[Count(h,0)]

M-step for each CPT /.

" JE >
m M-step decomposes per CPT
Standard MLE:

Count(X; = xz;,Pay. =z
P(X; = | PaXi —=2) = Xi=u X )

Count(Pay, = z)

M-step uses expected counts:
ExCount(X,L- = x;, PaXl, = Z)
ExCount(Pay, = z)

P(X’Lsz'PaXL:Z):




Computlng expected counts%.\

= =

ExCount(X; = z;, Pay. = z
P(X;=u;|Pax, =2z) = ( =i, Pax; = 2)
’ ExCount(Pay, = z)

m M-step requires expected counts:
For a set of vars A, must compute ExCount(A=a)
Some of A in example j will be observed
= denote by Ag = ag¥
Some of A will be hidden
= denote by Ay
m Use inference (E-step computes expected counts):
ExCountt)(Ag = agl), Ay = ay) + P(Ay =ay | Ag = agl,0m)

Data need not be hidden in <D\ S
- esgme way = =

m When data is fully observed
A data point is

m When data is partially observed
A data point is

m But unobserved variables can be different for different data points

eg.,

m  Same framework, just change definition of expected counts
ExCount®)(Ag = a0, Ay = ay) « P(Ay = ay | Ag = a0),60)




Learning structure with missing data
[K&F 16.6]

" J
m  Known BN structure: Use expected counts, learning q

algorithm doesn’t change

= Unknown BN structure: / I \

Can use expected counts and score model as when we C
talked about structure learning

But, very slow...

= e.g., greedy algorithm would need to redo inference for every
edge we test...

m (Much Faster) Structure-EM: Iterate:
compute expected counts
do a some structure search (e.g., many greedy steps)
repeat

m Theorem: Converges to local optima of marginal log-
likelihood

details in the book

What you need to know about

. dgaming with missing data

m EM for Bayes Nets
m E-step: inference computes expected counts
Only need expected counts over X; and Pa,;
m M-step: expected counts used to estimate
parameters
m Which variables are hidden can change per
datapoint

Also, use labeled and unlabeled data — some data
points are complete, some include hidden variables

m Structure-EM:

iterate between computing expected counts & many
structure search steps

10



Adventures of our BN hero
" JEE
m Compact representation for 1. Naive Bayes
probability distributions
m Fast inference
m Fast learning

m Approximate inference 2 and 3.

Hidden Markov models (HMMs)
m But... Who are the most Kalman Filters

popular kids?

21

The Kalman Filter
* J
An HMM with Gaussian distributions
Has been around for at least 50 years
Possibly the most used graphical model ever
I's what

does your cruise control

tracks missiles
controls robots

And it’s so simple...
Possibly explaining why it's so used
Many interesting models build on it...
An example of a Gaussian BN (more on this later)

22
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Example of KF — SLAT

Simultaneous Localization and Tracking
" J
[Funiak, Guestrin, Paskin, Sukthankar '06]
m Place some cameras around an environment, don’t know where they are
m Could measure all locations, but requires lots of grad. student (Stano) time
m Intuition:
A person walks around

If camera 1 sees person, then camera 2 sees person, learn about relative
positions of cameras

23

Example of KF — SLAT
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar '06]
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Multivariate Gaussian
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m Joint Gaussian:
PX,Y) ~ N(i;X)

m Conditional linear Gaussian:
P(YIX) ~ Nyx; 62)

oy X
py|lx = py +—5 (= — pz)

9X
2
2 _ 2 9yx
9 |x — 9y 2
9X
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Gaussian is a “Linear Model”
“ RN Hy|x = py + 255 (@ — pia)

2

m Conditional linear Gaussian: ‘;X
Y|X) ~ N X: 62 2 _ 2 ©

P(Y[X) ~ N(Bo+BX; 62) o2x = UY_GL?

27

Conditioning a Gaussian
"

= Joint Gaussian:
PX,Y) ~ N(i;X)

m Conditional linear Gaussian:
PYIX) ~ N(kyx; Zyyix)

—1 o
py)x = py +EZyxE (@ — pa)

Syyix = Zyy — ZyxTyxIxy

Y

28
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Conditional Linear Gaussian (CLG) —

. general case

m Conditional linear Gaussian:
P(Y[X) ~ N(Bo+BX; Zyyx)

py + Ty x X (@ = p2)
Tyy — ZYXZ;(%YZXY

My |x

2yy|x

29

Understanding a linear Gaussian —
3 the 2d case mVariance increases over time
SN

(motion noise adds up)

mObject doesn’t necessarily
move in a straight line

30
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Tracking with a Gaussian 1

P(Xo) ~ N(io,Z)
P(Xi,11X) ~ N(B X; + B; Zxi1x:)

31

Tracking with Gaussians 2 —

. gMaKing observations

We have p(X;)

Detector observes O=0,
Want to compute p(X;|O;=0;)
Use Bayes rule:

Require a CLG observation model
P(OIX) ~ N(W X; + V; Zoix)

32
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Operations in Kalman filter
€ D € D € D € D & D
= Compute  p(X; | O1:¢ = 01)

m Start with p(Xg)
m At each time step t:
Condition on observation
p(X¢ [ 01:4) o< p(X¢ | 01:4-1)p(ot | X¢)
Prediction (Multiply transition model)
P( X1, Xt | 01:0) = p(Xpq1 | X)p(Xy¢ | 01:4)
Roll-up (marginalize previous time step)

p(Xyq1 o) = /Y P( X1, 2t | 01:¢)day
J X

m ['ll describe one implementation of KF, there are others
Information filter
33

Exponential family representation
of Gaussian: Canonical Form
" S

_ 1 1 Ts—1
PO Xn) = s P G T )

34
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Canonical form

p(X]_?"')X’fb) =

oy {50 w =)

1
= Kexp {nTx — §XT/\X}

m Standard form and canonical forms are related:
po= N1y
> = AL

m Conditioning is easy in canonical form
m Marginalization easy in standard form 3

Conditioning in canonical form
= P (X: | o01:4) o< p(X¢ | 01:4—1)p(or | X¢)
m First multiply: (A, B) = p(A)p(B | A)
p(A): m1, M1

p(B|A): mn2, N>
p(A,B): m3=mn1+mn2, N\3=NAN1+ N>

= Then, condition onvalue B=y P(A[B=y)
NA|B=y = 1A —NAB-Y
ANpaaB=y = Naa

36
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Operations in Kalman filter

S & & O _ G
ﬂ_i,f“&* o
€ D € D € D € D & D i |

s Compute P(Xy| O1:4 = 01:¢)

m Start with 7(Xo0)
m At eachtime step t:
Condition on observation
p(Xt | 01:) o< p(Xt | 014—1)p(0t | X¢)
Prediction (Multiply transition model)
P( X1, Xt | 01:0) = p(Xpq1 | X)p(Xy¢ | 01:4)
Roll-up (marginalize previous time step)
p(Xyq1lo1:4) = /\ p(Xyg1, 2 | 01:)dy
A

37

Prediction & roll-up in canonical form

" dlp(Xiq1|o14) = /X P(Xig1 | ze)p(xy | 01:¢)day
t

m First multiply: »(A, B) = p(A)p(B | A)

m Then, marginalize X;: »(4) = Q/ép(A, b)db

-1
77:r4n — 7714_/\AB/\BB77B
-1
/\ZLA = Naa _/\AB/\BB/\BA

38
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What if observations are not CLG?
" I

m Often observations are not CLG
CLGIifO;=B X +B,+¢

m Consider a motion detector
O, = 1 if person is likely to be in the region

Posterior is not Gaussian

39

Linearization: incorporating non-

. linear evidence
o
= p(O,X)) not CLG, but...
m Find a Gaussian approximation of p(X;,0,)= p(X;) p(O;|X;)

m Instantiate evidence O;=0; and obtain a Gaussian for
p(X|O=0))

m Why do we hope this would be any good?
Locally, Gaussian may be OK

40
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Linearization as integration

" JEE
m Gaussian approximation of p(X;,0))= p(X;) p(O,|X))

m Need to compute moments
E[O]
E[O7]

E[O, X

m Note: Integral is product of a Gaussian with an arbitrary function

41

Linearization as numerical

_ integration

m Product of a Gaussian with arbitrary function

m Effective numerical integration with Gaussian quadrature method
Approximate integral as weighted sum over integration points
Gaussian quadrature defines location of points and weights

m Exact if arbitrary function is polynomial of bounded degree
= Number of integration points exponential in number of dimensions d

m Exact monomials requires exponentially fewer points
For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
Generalizes to many more points

42
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Operations in non-linear Kalman filter

S EN
p(X¢ | O1:p = 01:4) L ,\l

m Compute

m Start with 7(Xo0)
m At eachtime step t:
Condition on observation (use humerical integration)
p(Xt | 01:) o< p(Xt | 014—1)p(0t | X¢)
Prediction (Multiply transition model, use numerical integration)
P( X1, Xt | 01:0) = p(Xpq1 | X)p(Xy¢ | 01:4)
Roll-up (marginalize previous time step)
p(Xi1 | 014) = /\ (X1, 2t | 01:4)day
A

43

What you need to know about
Kalman Filters
" SRS

m Kalman filter
Probably most used BN
Assumes Gaussian distributions
Equivalent to linear system
Simple matrix operations for computations
m Non-linear Kalman filter
Usually, observation or motion model not CLG

Use numerical integration to find Gaussian
approximation

44
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