

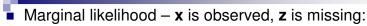
Thus far, fully supervised learning

• We have assumed fully supervised learning:

Many real problems have missing data:

0-708 - @Carlos Guestrin 2006

The general learning problem with missing data



$$\ell(\theta : \mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta)$$
$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$

10-708 - ©Carlos Guestrin 200

E-step

- x is observed, z is missing
- \blacksquare Compute probability of missing data given current choice of θ
 - \square Q(**z**|**x**_i) for each **x**_i
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

In-708 = @Carlos Guestrin 2006

Jensen's inequality

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{z} \mid \mathbf{x}_{j}) P(\mathbf{x}_{j} \mid \theta)$$

■ Theorem: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

10-708 - ©Carlos Guestrin 2006

Applying Jensen's inequality

• Use: $\log \Sigma_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \Sigma_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$\ell(\theta^{(t)}: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})}$$

I-708 = ©Carlos Guestrin 2006

The M-step maximizes lower bound on weighted data

Lower bound from Jensen's:

$$\ell(\theta^{(t)}: \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}) + H(Q^{(t+1)})$$

- Corresponds to weighted dataset:
 - \square < $\mathbf{x}_1, \mathbf{z} = 1$ > with weight $Q^{(t+1)}(\mathbf{z} = 1 | \mathbf{x}_1)$
 - \Box < \mathbf{x}_1 , \mathbf{z} =2> with weight Q^(t+1)(\mathbf{z} =2| \mathbf{x}_1)
 - \Box < \mathbf{x}_1 , \mathbf{z} =3> with weight Q^(t+1)(\mathbf{z} =3| \mathbf{x}_1)
 - $= \langle \mathbf{x}_2, \mathbf{z} = 1 \rangle$ with weight $Q^{(t+1)}(\mathbf{z} = 1 | \mathbf{x}_2)$
 - $\neg < \mathbf{x}_2, \mathbf{z} = 2 > \text{ with weight } Q^{(t+1)}(\mathbf{z} = 2 | \mathbf{x}_2)$
 - $= \langle \mathbf{x}_2, \mathbf{z} = 3 \rangle$ with weight $Q^{(t+1)}(\mathbf{z} = 3 | \mathbf{x}_2)$
 - □ ...

10-708 - ©Carlos Guestrin 2006

The M-step

$$\ell(\boldsymbol{\theta}^{(t)}: \mathcal{D}) \; \geq \; \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}^{(t)}) + H(Q^{(t+1)})$$

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)$$

- Use expected counts instead of counts:
 - ☐ If learning requires Count(x,z)
 - \square Use $E_{Q(t+1)}[Count(\boldsymbol{x},\boldsymbol{z})]$

10-708 - ©Carlos Guestrin 2006

Convergence of EM

■ Define potential function $F(\theta,Q)$:

$$\ell(\theta:\mathcal{D}) \geq F(\theta,Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z},\mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

- EM corresponds to coordinate ascent on F
 - □ Thus, maximizes lower bound on marginal log likelihood
 - ☐ As seen in Machine Learning class last semester

10-708 - ©Carlos Guestrin 2006

Announcements

- Lectures the rest of the semester:
 - □ Special time: Monday Nov 20 5:30-7pm, Wean 4615A: Gaussian GMs & Kalman Filters
 - □ Special time: Monday Nov 27 5:30-7pm, Wean 4615A: Dynamic BNs
 - □ Wed. 11/30, regular class time: Causality (Richard Scheines)
 - ☐ Friday 12/1, regular class time: Finish Dynamic BNs & Overview of Advanced Topics
- Deadlines & Presentations:
 - □ Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)
 - □ Project write up: Dec. 8th by 2pm by email
 - 8 pages limit will be strictly enforced
 - ☐ Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)

10-708 = @Carlos Guestrin 2006

Data likelihood for BNs

Given structure, log likelihood of fully observed data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$$

e Guestrin 2006

11

Marginal likelihood

What if S is hidden?

 $\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$

10-708 – ©Carlos Guestrin 2006

Log likelihood for BNs with hidden data

■ Marginal likelihood – **O** is observed, **H** is hidden

$$\ell(\theta : \mathcal{D}) = \sum_{j=1}^{m} \log P(\mathbf{o}^{(j)} | \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{o}^{(j)} | \theta)$$

10-708 - ©Carlos Guestrin 2006

12

E-step for BNs

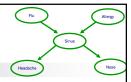
■ E-step computes probability of hidden vars **h** given **o**

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

Corresponds to inference in BN

10-708 - ©Carlos Guestrin 2006

The M-step for BNs



Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) \log P(\mathbf{h}, \mathbf{o} \mid \theta)$$

- Use expected counts instead of counts:
 - \square If learning requires Count(\mathbf{h}, \mathbf{o})
 - \square Use $E_{Q(t+1)}[Count(\mathbf{h},\mathbf{o})]$

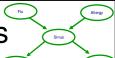
M-step for each CPT

- M-step decomposes per CPT

☐ M-step uses expected counts:

$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

Computing expected counts



$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

- M-step requires expected counts:
 - ☐ For a set of vars **A**, must compute ExCount(**A**=**a**)
 - \square Some of **A** in example *j* will be observed
 - denote by $\mathbf{A}_{\mathbf{O}} = \mathbf{a}_{\mathbf{O}}^{(j)}$
 - □ Some of **A** will be hidden
 - denote by A_H
- Use inference (E-step computes expected counts):
 - $\square \mathsf{ExCount}^{(\mathsf{t+1})}(\mathbf{A_O} = \mathbf{a_O}^{(j)}, \, \mathbf{A_H} = \mathbf{a_H}) \leftarrow \mathsf{P}(\mathbf{A_H} = \mathbf{a_H} \mid \, \mathbf{A_O} = \mathbf{a_O}^{(j)}, \mathbf{\theta^{(t)}})$

10-708 = @Carlos Guestrin 2006

17

Data need not be hidden in the same way



- When data is fully observed
 - A data point is
- When data is partially observed
 - □ A data point is
- But unobserved variables can be different for different data points
 - □ e.g.,
- Same framework, just change definition of expected counts
 - \square ExCount(t+1)($\mathbf{A_O} = \mathbf{a_O}^{(j)}, \mathbf{A_H} = \mathbf{a_H}$) $\leftarrow P(\mathbf{A_H} = \mathbf{a_H} \mid \mathbf{A_O} = \mathbf{a_O}^{(j)}, \mathbf{\theta}^{(t)})$

10-708 = ©Carlos Guestrin 2006

Learning structure with missing data [K&F 16.6]

- Known BN structure: Use expected counts, learning algorithm doesn't change
- Unknown BN structure:
 - □ Can use expected counts and score model as when we talked about structure learning
 - □ But, very slow...
 - e.g., greedy algorithm would need to redo inference for every edge we test...
- (Much Faster) Structure-EM: Iterate:
 - compute expected counts
 - □ do a some structure search (e.g., many greedy steps)
- Theorem: Converges to local optima of marginal loglikelihood
 - details in the book

What you need to know about learning with missing data

- EM for Bayes Nets
- E-step: inference computes expected counts □ Only need expected counts over X_i and **Pa**_{xi}
- M-step: expected counts used to estimate parameters
- Which variables are hidden can change per datapoint
 - \square Also, use labeled and unlabeled data \rightarrow some data points are complete, some include hidden variables
- Structure-EM:
 - □ iterate between computing expected counts & many structure search steps

Adventures of our BN hero

- Compact representation for 1. Naïve Bayes probability distributions
- Fast inference
- Fast learning
- Approximate inference

2 and 3. Hidden Markov models (HMMs) Kalman Filters

But... Who are the most popular kids?

21

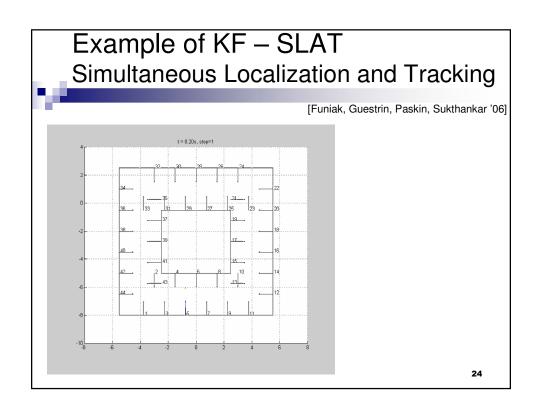
The Kalman Filter

- An HMM with Gaussian distributions
- Has been around for at least 50 years
- Possibly the most used graphical model ever
- It's what
 - □ does your cruise control
 - □ tracks missiles
 - controls robots
 - □ ...
- And it's so simple...
 - □ Possibly explaining why it's so used
- Many interesting models build on it...
 - ☐ An example of a Gaussian BN (more on this later)

Example of KF – SLAT Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar '06]

- Place some cameras around an environment, don't know where they are
- Could measure all locations, but requires lots of grad. student (Stano) time
- Intuition:
 - □ A person walks around
 - ☐ If camera 1 sees person, then camera 2 sees person, learn about relative positions of cameras

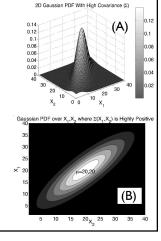


Multivariate Gaussian

$$p(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right\}$$

Mean vector:

Covariance matrix:



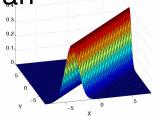
Conditioning a Gaussian

- Joint Gaussian:
 - \square p(X,Y) ~ $N(\mu;\Sigma)$
- Conditional linear Gaussian:

$$\ \ \square \ p(Y|X) \sim \textit{N}(\mu_{Y|X}; \, \sigma^2)$$

$$\mu_{Y|X} = \mu_Y + \frac{\sigma_{YX}}{\sigma_X^2} (x - \mu_X)$$

$$\sigma_{Y|X}^2 = \sigma_Y^2 - \frac{\sigma_{YX}^2}{\sigma_X^2}$$



Gaussian is a "Linear Model"

- $\mu_{Y|X} = \mu_Y + \frac{\sigma_{YX}}{\sigma_X^2}(x \mu_x)$ Conditional linear Gaussian:
 - $\label{eq:sigma_def} \begin{array}{lll} & \square \; \mathrm{p}(\mathrm{Y}|\mathrm{X}) \; \sim \; \mathit{N}(\beta_0 + \beta \mathrm{X}; \, \sigma^2) \\ & \sigma_{Y}^2|_X & = & \sigma_Y^2 \frac{\sigma_{YX}^2}{\sigma_X^2} \end{array}$

27

Conditioning a Gaussian

- $\ \ \square \ p(X,Y) \, \sim \, \textit{N}(\mu;\! \Sigma)$
- Conditional linear Gaussian:

$$\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_x)$$

$$\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

Conditional Linear Gaussian (CLG) – general case

- Conditional linear Gaussian:
 - \square p(Y|X) ~ $N(\beta_0+BX; \Sigma_{YY|X})$

$$\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (x - \mu_x)$$

$$\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

29

Understanding a linear Gaussian –

the 2d case

- ■Variance increases over time (motion noise adds up)
- ■Object doesn't necessarily move in a straight line

Tracking with a Gaussian 1

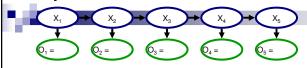
- $p(X_0) \sim N(\mu_0, \Sigma_0)$

31

Tracking with Gaussians 2 – Making observations

- We have p(X_i)
- Detector observes O_i=o_i
- Want to compute $p(X_i|O_i=o_i)$
- Use Bayes rule:
- Require a CLG observation model

Operations in Kalman filter



- Compute
- $p(X_t \mid O_{1:t} = o_{1:t})$
- Start with $p(X_0)$
 - At each time step t:
 - □ Condition on observation $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1})p(o_t \mid X_t)$
 - □ **Prediction** (Multiply transition model) $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t) p(X_t \mid o_{1:t})$
 - □ **Roll-up** (marginalize previous time step) $p(X_{t+1} \mid o_{1:t}) = \int_{Y_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$
- I'll describe one implementation of KF, there are others
 - Information filter

33

Exponential family representation of Gaussian: Canonical Form

$$p(X_1,...,X_n) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right\}$$

Canonical form

- $p(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} \mu)^T \Sigma^{-1} (\mathbf{x} \mu)\right\}$ $= K \exp\left\{\eta^T \mathbf{x} \frac{1}{2} \mathbf{x}^T \Lambda \mathbf{x}\right\}$
 - Standard form and canonical forms are related:

$$\mu = \Lambda^{-1} \eta$$
$$\Sigma = \Lambda^{-1}$$

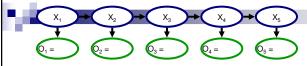
- Conditioning is easy in canonical form
- Marginalization easy in standard form

35

Conditioning in canonical form

- $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1}) p(o_t \mid X_t)$
- First multiply: $p(A, B) = p(A)p(B \mid A)$ $p(A) : \eta_1, \Lambda_1$ $p(B \mid A) : \eta_2, \Lambda_2$ $p(A, B) : \eta_3 = \eta_1 + \eta_2, \Lambda_3 = \Lambda_1 + \Lambda_2$
- Then, condition on value B = y $p(A \mid B = y)$ $\eta_{A\mid B=y} = \eta_A \Lambda_{AB}.y$ $\Lambda_{AA\mid B=y} = \Lambda_{AA}$

Operations in Kalman filter



- $\bullet \quad \text{Compute} \quad p(X_t \mid O_{1:t} = o_{1:t})$
- Start with $p(X_0)$
- At each time step t:
 - □ Condition on observation $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1}) p(o_t \mid X_t)$
 - □ **Prediction** (Multiply transition model) $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$

37

Prediction & roll-up in canonical form

- - First multiply: $p(A, B) = p(A)p(B \mid A)$
 - Then, marginalize X_t : $p(A) = \int_B p(A, b) db$

$$\eta_A^m = \eta_A - \Lambda_{AB} \Lambda_{BB}^{-1} \eta_B
\Lambda_{AA}^m = \Lambda_{AA} - \Lambda_{AB} \Lambda_{BB}^{-1} \Lambda_{BA}$$

What if observations are not CLG?

- Often observations are not CLG
 - \Box CLG if $O_i = B X_i + \beta_o + \epsilon$
- Consider a motion detector
 - \Box O_i = 1 if person is likely to be in the region
 - □ Posterior is not Gaussian

39

Linearization: incorporating nonlinear evidence

- p(O_i|X_i) not CLG, but...
- Find a Gaussian approximation of $p(X_i, O_i) = p(X_i) p(O_i|X_i)$
- Instantiate evidence O_i=o_i and obtain a Gaussian for p(X_i|O_i=o_i)
- Why do we hope this would be any good?
 - □ Locally, Gaussian may be OK

Linearization as integration

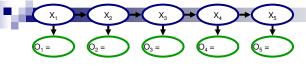
- Gaussian approximation of $p(X_i, O_i) = p(X_i) p(O_i | X_i)$
- Need to compute moments
 - □ E[O_i]
 - \Box E[O_i²]
 - \Box E[O_i X_i]
- Note: Integral is product of a Gaussian with an arbitrary function

4

Linearization as numerical integration

- Product of a Gaussian with arbitrary function
- Effective numerical integration with Gaussian quadrature method
 - □ Approximate integral as weighted sum over integration points
 - □ Gaussian quadrature defines location of points and weights
- Exact if arbitrary function is polynomial of bounded degree
- Number of integration points exponential in number of dimensions d
- Exact monomials requires exponentially fewer points
 - □ For 2d+1 points, this method is equivalent to effective Unscented Kalman filter
 - □ Generalizes to many more points

Operations in non-linear Kalman filter



- $p(X_t \mid O_{1:t} = o_{1:t})$ Compute
- Start with $p(X_0)$
- At each time step t:
 - □ Condition on observation (use numerical integration) $p(X_t \mid o_{1:t}) \propto p(X_t \mid o_{1:t-1})p(o_t \mid X_t)$
 - □ **Prediction** (Multiply transition model, use **numerical integration**) $p(X_{t+1}, X_t \mid o_{1:t}) = p(X_{t+1} \mid X_t)p(X_t \mid o_{1:t})$
 - □ **Roll-up** (marginalize previous time step) $p(X_{t+1} \mid o_{1:t}) = \int_{X_t} p(X_{t+1}, x_t \mid o_{1:t}) dx_t$

43

What you need to know about Kalman Filters

Kalman filter

- □ Probably most used BN
- □ Assumes Gaussian distributions
- □ Equivalent to linear system
- ☐ Simple matrix operations for computations

Non-linear Kalman filter

- ☐ Usually, observation or motion model not CLG
- ☐ Use numerical integration to find Gaussian approximation