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EM for BNs

Kalman Filters

Gaussian BNs

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

November 17th, 2006

Readings:

K&F: 16.2

Jordan Chapter 20

K&F: 4.5, 12.2, 12.3
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Thus far, fully supervised learning

� We have assumed fully supervised learning:

� Many real problems have missing data:



2

10-708 – Carlos Guestrin 2006 3

The general learning problem with 
missing data

� Marginal likelihood – x is observed, z is missing:
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E-step

� x is observed, z is missing

� Compute probability of missing data given current choice of θ

� Q(z|xj) for each xj

� e.g., probability computed during classification step

� corresponds to “classification step” in K-means
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Jensen’s inequality 

� Theorem: log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z) 
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Applying Jensen’s inequality

� Use:  log ∑z P(z) f(z)  ≥ ∑z P(z) log f(z) 
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The M-step maximizes lower bound on 
weighted data

� Lower bound from Jensen’s:

� Corresponds to weighted dataset:
� <x1,z=1> with weight Q(t+1)(z=1|x1)

� <x1,z=2> with weight Q(t+1)(z=2|x1)
� <x1,z=3> with weight Q(t+1)(z=3|x1)
� <x2,z=1> with weight Q(t+1)(z=1|x2)
� <x2,z=2> with weight Q(t+1)(z=2|x2)

� <x2,z=3> with weight Q(t+1)(z=3|x2)
� …
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The M-step

� Maximization step:

� Use expected counts instead of counts:
� If learning requires Count(x,z)

� Use EQ(t+1)[Count(x,z)]
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Convergence of EM

� Define potential function F(θ,Q):

� EM corresponds to coordinate ascent on F

� Thus, maximizes lower bound on marginal log likelihood

� As seen in Machine Learning class last semester
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Announcements

� Lectures the rest of the semester:

� Special time: Monday Nov 20 - 5:30-7pm, Wean 4615A: 

Gaussian GMs & Kalman Filters

� Special time: Monday Nov 27 - 5:30-7pm, Wean 4615A: 

Dynamic BNs

� Wed. 11/30, regular class time: Causality (Richard Scheines)

� Friday 12/1, regular class time: Finish Dynamic BNs & Overview 

of Advanced Topics

� Deadlines & Presentations:

� Project Poster Presentations: Dec. 1st 3-6pm (NSH Atrium)

� Project write up: Dec. 8th by 2pm by email 

� 8 pages – limit will be strictly enforced

� Final: Out Dec. 1st, Due Dec. 15th by 2pm (strict deadline)
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Data likelihood for BNs

� Given structure, log likelihood of fully 
observed data:

Flu Allergy

Sinus

Headache Nose
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Marginal likelihood

� What if S is hidden?

Flu Allergy

Sinus

Headache Nose
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Log likelihood for BNs with hidden 
data

� Marginal likelihood – O is observed, H is hidden

Flu Allergy

Sinus

Headache Nose
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E-step for BNs

� E-step computes probability of hidden vars h given o

� Corresponds to inference in BN

Flu Allergy
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Headache Nose
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The M-step for BNs

� Maximization step:

� Use expected counts instead of counts:

� If learning requires Count(h,o)

� Use EQ(t+1)[Count(h,o)]

Flu Allergy

Sinus

Headache Nose
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M-step for each CPT

� M-step decomposes per CPT

� Standard MLE:

� M-step uses expected counts:

Flu Allergy

Sinus

Headache Nose
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Computing expected counts

� M-step requires expected counts:

� For a set of vars A, must compute ExCount(A=a)

� Some of A in example j will be observed

� denote by AO = aO
(j)

� Some of A will be hidden

� denote by AH

� Use inference (E-step computes expected counts):

� ExCount(t+1)(AO = aO
(j), AH = aH) ← P(AH = aH | AO = aO

(j),θθθθ(t))

Flu Allergy

Sinus

Headache Nose
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Data need not be hidden in 
the same way

� When data is fully observed

� A data point is 

� When data is partially observed

� A data point is 

� But unobserved variables can be different for different data points

� e.g.,

� Same framework, just change definition of expected counts

� ExCount(t+1)(AO = aO
(j), AH = aH) ← P(AH = aH | AO = aO

(j),θθθθ(t))

Flu Allergy

Sinus

Headache Nose
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Learning structure with missing data
[K&F 16.6]

� Known BN structure: Use expected counts, learning 

algorithm doesn’t change

� Unknown BN structure: 

� Can use expected counts and score model as when we 

talked about structure learning

� But, very slow...

� e.g., greedy algorithm would need to redo inference for every 
edge we test…

� (Much Faster) Structure-EM: Iterate:

� compute expected counts

� do a some structure search (e.g., many greedy steps)

� repeat

� Theorem: Converges to local optima of marginal log-

likelihood 

� details in the book

Flu Allergy

Sinus

Headache Nose

10-708 – Carlos Guestrin 2006 20

What you need to know about 
learning with missing data

� EM for Bayes Nets

� E-step: inference computes expected counts
� Only need expected counts over Xi and Paxi

� M-step: expected counts used to estimate 
parameters

� Which variables are hidden can change per 
datapoint
� Also, use labeled and unlabeled data → some data 

points are complete, some include hidden variables

� Structure-EM:
� iterate between computing expected counts & many 

structure search steps
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Adventures of our BN hero

� Compact representation for 
probability distributions

� Fast inference

� Fast learning

� Approximate inference

� But… Who are the most 

popular kids?

1. Naïve Bayes

2 and 3. 
Hidden Markov models (HMMs)
Kalman Filters
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The Kalman Filter

� An HMM with Gaussian distributions

� Has been around for at least 50 years

� Possibly the most used graphical model ever

� It’s what
� does your cruise control

� tracks missiles

� controls robots

� …

� And it’s so simple…
� Possibly explaining why it’s so used

� Many interesting models build on it…
� An example of a Gaussian BN (more on this later)
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Example of KF – SLAT
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar ’06]

� Place some cameras around an environment, don’t know where they are

� Could measure all locations, but requires lots of grad. student (Stano) time

� Intuition:

� A person walks around

� If camera 1 sees person, then camera 2 sees person, learn about relative 

positions of cameras

24

Example of KF – SLAT 
Simultaneous Localization and Tracking

[Funiak, Guestrin, Paskin, Sukthankar ’06]
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Multivariate Gaussian

Mean vector:

Covariance matrix:
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Conditioning a Gaussian

� Joint Gaussian:

� p(X,Y) ~ N(µ;Σ)

� Conditional linear Gaussian:

� p(Y|X) ~ N(µY|X; σ2)
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Gaussian is a “Linear Model”

� Conditional linear Gaussian:

� p(Y|X) ~ N(β0+βX; σ2)
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Conditioning a Gaussian

� Joint Gaussian:

� p(X,Y) ~ N(µ;Σ)

� Conditional linear Gaussian:

� p(Y|X) ~ N(µY|X; ΣYY|X)
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Conditional Linear Gaussian (CLG) –
general case

� Conditional linear Gaussian:

� p(Y|X) ~ N(β0+ΒX; ΣYY|X)

30

Understanding a linear Gaussian –
the 2d case �Variance increases over time 

(motion noise adds up)

�Object doesn’t necessarily 

move in a straight line
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Tracking with a Gaussian 1

� p(X0) ~ N(µ0,Σ0)

� p(Xi+1|Xi) ~ N(Β Xi + β; ΣXi+1|Xi)

32

Tracking with Gaussians 2 –
Making observations

� We have p(Xi)

� Detector observes Oi=oi

� Want to compute p(Xi|Oi=oi)

� Use Bayes rule:

� Require a CLG observation model

� p(Oi|Xi) ~ N(W Xi + v; ΣOi|Xi)
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Operations in Kalman filter

� Compute

� Start with  

� At each time step t:

� Condition on observation

� Prediction (Multiply transition model)

� Roll-up (marginalize previous time step)

� I’ll describe one implementation of KF, there are others

� Information filter

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          

34

Exponential family representation 
of Gaussian: Canonical Form
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Canonical form

� Standard form and canonical forms are related:

� Conditioning is easy in canonical form

� Marginalization easy in standard form

36

Conditioning in canonical form

� First multiply:

� Then, condition on value B = y
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Operations in Kalman filter

� Compute

� Start with  

� At each time step t:

� Condition on observation

� Prediction (Multiply transition model)

� Roll-up (marginalize previous time step)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          

38

Prediction & roll-up in canonical form

� First multiply:

� Then, marginalize Xt:
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What if observations are not CLG?

� Often observations are not CLG

� CLG if Oi = Β Xi + βo + ε

� Consider a motion detector 

� Oi = 1 if person is likely to be in the region

� Posterior is not Gaussian
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Linearization: incorporating non-
linear evidence

� p(Oi|Xi) not CLG, but…

� Find a Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi)

� Instantiate evidence Oi=oi and obtain a Gaussian for 

p(Xi|Oi=oi)

� Why do we hope this would be any good?

� Locally, Gaussian may be OK
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Linearization as integration

� Gaussian approximation of p(Xi,Oi)= p(Xi) p(Oi|Xi)

� Need to compute moments

� E[Oi]

� E[Oi
2]

� E[Oi Xi]

� Note: Integral is product of a Gaussian with an arbitrary function

42

Linearization as numerical 
integration

� Product of a Gaussian with arbitrary function

� Effective numerical integration with Gaussian quadrature method

� Approximate integral as weighted sum over integration points

� Gaussian quadrature defines location of points and weights

� Exact if arbitrary function is polynomial of bounded degree

� Number of integration points exponential in number of dimensions d

� Exact monomials requires exponentially fewer points

� For 2d+1 points, this method is equivalent to effective Unscented Kalman filter

� Generalizes to many more points
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Operations in non-linear Kalman filter

� Compute

� Start with  

� At each time step t:

� Condition on observation (use numerical integration)

� Prediction (Multiply transition model, use numerical integration)

� Roll-up (marginalize previous time step)

X1

O1 =          

X5X3 X4X2

O2 =          O3 =          O4 =          O5 =          
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What you need to know about 
Kalman Filters 

� Kalman filter

� Probably most used BN

� Assumes Gaussian distributions

� Equivalent to linear system

� Simple matrix operations for computations

� Non-linear Kalman filter

� Usually, observation or motion model not CLG

� Use numerical integration to find Gaussian 

approximation


