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Clique Trees 3
Let’s get BP right

Undirected Graphical Models
Here the couples get to swing!

Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

October 25th, 2006

Readings:
K&F: 9.1, 9.2, 9.3, 9.4
K&F: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6
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Factor division

Let X and Y be disjoint set 
of variables
Consider two factors: 
φ1(X,Y) and φ2(Y)
Factor ψ=φ1/φ2

0/0=0



2

10-708 – ©Carlos Guestrin 2006 3

Introducing message passing with division

Variable elimination (message passing 
with multiplication)

message:

belief:

Message passing with division:
message:

belief update:

C2: SE

C4: GJS

C1: CD

C3: GDS
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Separator potentials µij
one per edge (same both directions)
holds “last message”
initialized to 1

Message i→j
what does i think the separator potential 
should be?

σi→j

update belief for j:
pushing j to what i thinks about separator

replace separator potential:

C2: SE

C4: GJS

C1: CD

C3: GDS

Lauritzen-Spiegelhalter Algorithm 
(a.k.a. belief propagation)
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Clique tree invariant

Clique tree potential:
Product of clique potentials divided by separators potentials

Clique tree invariant:
P(X) = πΤ (X)
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Belief propagation and clique tree 
invariant

Theorem: Invariant is maintained by BP algorithm!

BP reparameterizes clique potentials and 
separator potentials

At convergence, potentials and messages are marginal 
distributions
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Subtree correctness

Informed message from i to j, if all messages into i 
(other than from j) are informed

Recursive definition (leaves always send informed 
messages)

Informed subtree:
All incoming messages informed

Theorem:
Potential of connected informed subtree T’ is marginal over 
scope[T’]

Corollary:
At convergence, clique tree is calibrated

πi = P(scope[πi])
µij = P(scope[µij])
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Clique trees versus VE

Clique tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

Clique tree disadvantages
Space requirements – no factors are “deleted”
Slower for single query
Local structure in factors may be lost when they are 
multiplied together into initial clique potential
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Clique tree summary
Solve marginal queries for all variables in only twice the 
cost of query for one variable
Cliques correspond to maximal cliques in induced graph
Two message passing approaches

VE (the one that multiplies messages)
BP (the one that divides by old message)

Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials

Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph

Running time (only) exponential in size of largest clique
Solve exactly problems with thousands (or millions, or more) of 
variables, and cliques with tens of nodes (or less) 
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Announcements

Recitation tomorrow, don’t miss it!!!
Khalid on Undirected Models
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Swinging Couples revisited

This is no perfect map in BNs
But, an undirected model will be a perfect map
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Potentials (or Factors) in Swinging 
Couples
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Computing probabilities in Markov 
networks v. BNs

In a BN, can compute prob. of an 
instantiation by multiplying CPTs

In an Markov networks, can only 
compute ratio of probabilities directly
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Normalization for computing 
probabilities

To compute actual probabilities, must compute 
normalization constant (also called partition function)

Computing partition function is hard! → Must sum over 
all possible assignments
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Factorization in Markov networks

Given an undirected graph H over variables 
X={X1,...,Xn}

A distribution P factorizes over H if ∃
subsets of variables D1⊆X,…, Dm⊆X, such that the Di
are fully connected in H
non-negative potentials (or factors) π1(D1),…, πm(Dm)

also known as clique potentials
such that

Also called Markov random field H, or Gibbs 
distribution over H
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Global Markov assumption in 
Markov networks

A path X1 – … – Xk is active when set of 
variables Z are observed if none of Xi ∈
{X1,…,Xk} are observed (are part of Z) 

Variables X are separated from Y given Z in 
graph H, sepH(X;Y|Z), if there is no active path 
between any X∈X and any Y∈Y given Z

The global Markov assumption for a Markov 
network H is
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The BN Representation Theorem

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Independencies are sufficient to obtain BN structure G

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Read independencies of P from BN structure G
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Markov networks representation Theorem 1

If you can write distribution as a normalized product of 
factors ⇒ Can read independencies from graph

Then H is an I-map for P
If joint probability

distribution P:
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What about the other direction for Markov 
networks ?

Counter-example: X1,…,X4 are binary, and only eight assignments 
have positive probability:

For example, X1⊥X3|X2,X4:

But distribution doesn’t factorize!!!

If H is an I-map for P Then
joint probability
distribution P:
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Markov networks representation Theorem 2
(Hammersley-Clifford Theorem)

Positive distribution and independencies ⇒ P factorizes 
over graph

If H is an I-map for P
and 

P is a positive distribution
Then

joint probability
distribution P:
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Representation Theorem for 
Markov Networks

If H is an I-map for P
and 

P is a positive distribution
Then

joint probability
distribution P:

Then H is an I-map for P
If joint probability

distribution P:
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Completeness of separation in 
Markov networks

Theorem: Completeness of separation
For “almost all” distributions that P factorize over Markov 
network H, we have that I(H) = I(P)
“almost all” distributions: except for a set of measure zero of 
parameterizations of the Potentials (assuming no finite set of 
parameterizations has positive measure)

Analogous to BNs
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What are the “local” independence 
assumptions for a Markov network?

In a BN G:
local Markov assumption: variable independent of 
non-descendants given parents 
d-separation defines global independence
Soundness: For all distributions:  

In a Markov net H:
Separation defines global independencies
What are the notions of local independencies?
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Local independence assumptions 
for a Markov network

Separation defines global independencies

Pairwise Markov Independence:
Pairs of non-adjacent variables are independent given all others

Markov Blanket: 
Variable independent of rest given its neighbors

T1

T3 T4

T5 T6

T2

T7 T8 T9
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Equivalence of independencies in 
Markov networks

Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent:

P entails the global Markov assumptions

P entails the pairwise Markov assumptions

P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov 
Networks

A fully connected graph is an I-map
Remember minimal I-maps?

A “simplest” I-map → Deleting an edge makes it no longer an I-map 

In a BN, there is no unique minimal I-map

Theorem: In a Markov network, minimal I-map is unique!!
Many ways to find minimal I-map, e.g.,

Take pairwise Markov assumption:
If P doesn’t entail it, add edge:
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How about a perfect map?

Remember perfect maps?
independencies in the graph are exactly the same as those in P

For BNs, doesn’t always exist
counter example: Swinging Couples

How about for Markov networks?
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Unifying properties of BNs and MNs

BNs:
give you: V-structures, CPTs are conditional probabilities, can 
directly compute probability of full instantiation
but: require acyclicity, and thus no perfect map for swinging 
couples

MNs:
give you: cycles, and perfect maps for swinging couples
but: don’t have V-structures, cannot interpret potentials as 
probabilities, requires partition function

Remember PDAGS???
skeleton + immoralities
provides a (somewhat) unified representation
see book for details
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What you need to know so far 
about Markov networks
Markov network representation:

undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function

Representation Theorem for Markov networks
if P factorizes, then it’s an I-map
if P is an I-map, only factorizes for positive distributions 

Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions

Minimal I-maps in MNs are unique
Perfect maps don’t always exist
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Some common Markov networks 
and generalizations
Pairwise Markov networks
A very simple application in computer vision
Logarithmic representation
Log-linear models
Factor graphs
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Pairwise Markov Networks

All factors are over single variables or pairs of 
variables:

Node potentials
Edge potentials

Factorization:

Note that there may be bigger cliques in the 
graph, but only consider pairwise potentials

T1

T3 T4

T5 T6

T2

T7 T8 T9
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A very simple vision application
Image segmentation: separate foreground from 
background
Graph structure: 

pairwise Markov net
grid with one node per pixel

Node potential:
“background color” v. “foreground color”

Edge potential:
neighbors like to be of the same class



17

10-708 – ©Carlos Guestrin 2006 33

Logarithmic representation
Standard model:

Log representation of potential (assuming positive potential):
also called the energy function

Log representation of Markov net:
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Log-linear Markov network
(most common representation)

Feature is some function φ[D] for some subset of variables D
e.g., indicator function

Log-linear model over a Markov network H:
a set of features φ1[D1],…, φk[Dk]

each Di is a subset of a clique in H
two φ’s can be over the same variables

a set of weights w1,…,wk
usually learned from data
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Structure in cliques

Possible potentials for this graph: A B

C
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Factor graphs

Very useful for approximate inference
Make factor dependency explicit

Bipartite graph:
variable nodes (ovals) for X1,…,Xn

factor nodes (squares) for φ1,…,φm

edge Xi – φj if Xi∈ Scope[φj]

A B

C
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Summary of types of Markov nets

Pairwise Markov networks
very common
potentials over nodes and edges

Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs

Factor graphs
explicit representation of factors

you know exactly what factors you have

very useful for approximate inference


