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Let's get BP right
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Here the couples get to swing!
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Introducing message passing with division
" S

m Variable elimination (message passing
with multiplication)
message: /3% (6,57
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m Separator potentials ;
one per edge (same both directions)
holds “last message”
initialized to 1, Auos(0)

m Messagei_—>j

what does i think the separator potential
should be? -
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Clique tree invariant
" JE
m Clique tree potential: 1,003 j/;—_s{g,s)
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Belief propagation and clique tree
Invariant

- Theorem): Invariant is maintained by BP algorithm!
M= P o
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m BP reparameterizes clique potentials and
separator potentials
At convergence, potentials and messages are marginal

distributions PlK) = IT ?CC‘.)
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Subtree correctness
* J
m Informed message from i to j, if all messages into i

(other than from j) are informed

Recursive definition (leaves always send informed
messages)

m Informed subtree:
All incoming messages informed

m Theorem:
Potential of connected informed subtree T' is marginal over
scope[T’]

m Corollary:

At convergence, clique tree is calibrated
= 7, = P(scope[rn])
= ;= P(scope[w;])

Clique trees versus VE
" JE
m Cligue tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

m Clique tree disadvantages
Space requirements — no factors are “deleted”
Slower for single query

Local structure in factors may be lost when they are
multiplied together into initial clique potential




Clique tree summary
“ JEE

m Solve marginal queries for all variables in only twice the
cost of query for one variable
Cliques correspond to maximal cliques in induced graph
Two message passing approaches
VE (the one that multiplies messages)
BP (the one that divides by old message)
Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials
Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph
Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of
variables, and cliques with tens of nodes (or less)

Announcements
= JEE
m Recitation tomorrow, don’t miss it!!!
Khalid on Undirected Models




Swinging Couples revisited
“ JE
m This is no perfect map in BNs

m But, an undirected model will be a perfect map
W ..L. (’\/2 \ M) ,Mz
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Potentials (or Factors) in Swinging
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Computing probabilities in Markov
networks v. BNs f\{
SR

m In a BN, can compute prob. of an P(Ase B4, coe, Ded) SD\/
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Normalization for computing

grobabilities

. Assignment | Unnormalized | Normalized
m  To compute actual probabilities, must compute e 300000 o
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Factorization in Markov networks m
= S

m A distribution P factorizes over H if 3
LA AE in
subsets of variables D,CX, ..., D,CX, such that the D;
are fully connected in H — -
non-negative potentials (or factors) =,(D,),..., (D)
= also known as clique potentials - -

such that ~

§
PLO=L T Mi(D)
1z
% Ly
Bep -
m  Also called Markay random field H, or Gibbs 3 Velies
distribution over H

Global Markov assumption in
Markov networks m
I

m Apath X; — ... = X, is active when set of
variables Z are observed if none of X; €
{X1,...,X,} are observed (are part of Z)

m Variables X are separated from_Y given Zin g ==/
graph H, sep,(X;Y|Z), if there is no active path
between any XeX and any YeY given Z

i

m The global Markov assumption for a Markov 1 Aontt Ohstnn
neworkHis () = § X%, 2 [ Sepyllivlal] il




The BN Representation Theorem

16) ¢ I(g) T-rep

If condition

Joint babilit
independencies oint probabiiity

. distribution:
in BN are subset of

conditional i n i
independencies in P P(X1,...,Xn) = ,1;[1’3(‘\:' | Pay,)

Important because:
Independencies are sufficient to obtain BN structure G

Then Corfditiohal
If joint probability independencies
distribution: in BN are subset of
~ conditional

n
P(Xq1,....Xp) = H P (.\’,‘ | Pa_\'a)
i=1

Important because:
Read independencies of P from BN structure G

independencies in P

Markov networks representation Theorem 1

If joint probability
distribution P: His an I-map for P
T e,

P(Xl'."'r‘\"“) = %jgl ﬂﬁ) IC H> é I(?)

P ¥OC%VIM cxcc,ord("'* ’b H’
= |f you can write distribution as a normalized product of
factors = Can read independencies from graph

—_—
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What about the other direction for Markov
networks ?

joint probability
distribution P:

; 1 T
Y\O_}_,}%&\\D(). - - \):;H 7 (D)

m Counter-example: X,,...,X, are binary, and onIy elght%s%farﬁ?féntiqwécj

have pos|t|ve proba5|||ty {DUOGL% (1, UOB)“Q (1L,1,00) (1L.LL0}
(0,0,0,1) " (0,0,1,1) (03,3,1} (3,131)
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If His an I-map for P

T(H) <T(P)

X
~ |
= For example, X; L X,|X,,X,: ?63(1 0| Xq20,%X4 -0) vj/?’ /

inzﬂnPD\C Vol of v % X

\./
X3

m But distribution doesn’t factorize!!! HWWM[L_\ )
J
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Markov networks representation Theorem 2
Hammersley-Clifford Theorem)

If His an I-map for P joint probability
and distribution P:
Pis apositive distribution

P(X1q,. Xpn) = ;i (D;)
¥ PO >0 : 211

m Positive distribution and independencies = P factorizes
over graph

10



Representation Theorem for
Markov Networks
"

If joint probability
distribution P: His an I-map for P

; 1
P(Xl._ N ,x\n) = - |I i (Dr)
=1

joint probability
distribution P:

T

; 1
P(Xl._ N ,x\n) = ; H i (Dr)
Y i=1

If His an I-map for P
and
P is a positive distribution

[ —
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Completeness of separation in
Markov networks
" NN

m Theorem: Completeness of separation

For “almost all” distributions that P factorize over Markov
network H, we have th m, Yow kenno FAS
“almost all” distributions: except for a set of mgggél’/e-géfd of

parameterizations has positive measure)
m Analogous to BNs

parameterizations of the Potentials (assuming no finite set of

11



What are the “local” independence
_ assumgtions for a Markov network?

m Ina BN G:

local Markov assumption: variable independent of
non-descendants given parents ¢ (¢-)

d-separation defines global independence T ()
Soundness: For all distributions: P = ié(@) = Pl:' j:(@)

m |In a Markov net H:
Separation defines global independencies

What are the notions OW

Local independence assumptions
for a Markov network
" S

m Separation defines global independencies s (H)

m Pairwise Markov Independence; IP” (H)
Pairs of non-adjacent variables are independent given all others

ALB | - (AR

—
o Markov Blanket: -r'% (&)
VariableAl'ndependent of rest given its neighbors }\)(4)

EREPIING i,
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Equivalence of independencies in
Markov networks
" SN

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions
PE L(H)
P entails the pairwise Markov assumptions

1% E fvw(H)

P entails the local Markov assumptions (Markov blanket)

Ty Ims(‘@b
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Minimal I-maps and Markov
Networks

m A fully connected graph is an I-map
m Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an I-map

m In a BN, there is no unique minimal I-map

m Theorem: In a Markov network, minimal I-map is unique!!
= Many ways to find minimal I-map, e.g.,

Take pairwise Markov assumption:

If P doesn’t entail it, add edge:

13



How about a perfect map?
“ JEE

m Remember perfect maps?

independencies in the graph are exactly the same as those in P
m For BNs, doesn’t always exist

counter example: Swinging Couples
m How about for Markov networks?

Unifying properties of BNs and MNs

" JEE
m BNSs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNs:
give you: cycles, and perfect maps for swinging couples
but: don't have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS???
skeleton + immoralities
provides a (somewhat) unified representation
see book for details

14



What you need to know so far
about Markov networks
SR

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist

29

Some common Markov networks

_ .and generalizations

Pairwise Markov networks

A very simple application in computer vision
Logarithmic representation

Log-linear models

Factor graphs

30
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Pairwise Markov Networks
= JEE

m All factors are over single variables or pairs of G
variables:
Node potentials e

Edge potentials
m Factorization:

iV,

m Note that there may be bigger cliques in the
graph, but only consider pairwise potentials

A very simple vision application
" JEE

m Image segmentation: separate foreground from
background
m Graph structure:
pairwise Markov net
grid with one node per pixel

= Node potential:

“background color” v. “foreground color”

m Edge potential:
neighbors like to be of the same class

32
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Logarithmic representation
“ JEE

: 1
m Standard model: P(X1,..., Xp) = > I = (D)
=1

m Log representation of potential (assuming positive potential):
also called the energy function

m Log representation of Markov net:

Log-linear Markov network

Smost common representation)
|

m Feature is some function ¢[D] for some subset of variables D
e.g., indicator function
m Log-linear model over a Markov network H:

a set of features ¢,[D,],..., §,[D,]

= each D, is a subset of a clique in H

= two ¢’'s can be over the same variables
a set of weights wy,...,w,

= usually learned from data

k
P(X]_, .y o n) = %QXD |:Z wtéi (D!’):|
i=1
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Structure in cliques

m Possible potentials for this graph:

35

Factor graphs

m Very useful for approximate inference

Make factor dependency explicit

m Bipartite graph:
variable nodes (ovals) for X,

factor nodes (squares) for ¢,
edge X, — ¢, if X;c Scope[¢]

18



Summary of types of Markov nets
"
m Pairwise Markov networks

very common
potentials over nodes and edges

m Log-linear models
log representation of potentials
linear coefficients learned from data
most common for learning MNs

m Factor graphs

explicit representation of factors
= you know exactly what factors you have

very useful for approximate inference
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