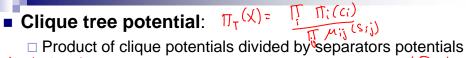


Clique tree invariant



- Product of clique potentials divided by separators potentials initialization: $\Pi_{\tau}(X) = \Pi_{\tau} \Pi_{\delta}(c_{i}) = \Pi_{\tau} P(X_{j}) P_{\alpha X_{j}}$ $\Pi_{\tau}(x_{j}) = 1$ $\Pi_{\tau}(x_{j}) = 1$
- Clique tree invariant: Send message $i \rightarrow j$ $P(X) = \pi_T(X)$ $\mu_{ij} = \pi_{ij} \cdot \frac{\partial i}{\partial x_{ij}}$ $\mu_{ij} = \frac{\pi_i \cdot \partial_i \cdot \partial_j}{\mu_{ij}}$ $\mu_{ij} = \frac{\pi_i \cdot \partial_i \cdot \partial_j}{\mu_{ij}}$

Belief propagation and clique tree invariant

■ Theorem: Invariant is maintained by BP algorithm!

$$T_{\Gamma}(x) = P(x)$$
at convergue:
$$T_{\Gamma}(c_i) = P(c_i)$$

$$M_{\Gamma_{\Gamma}}(s_{ij}) = P(s_{ij})$$

- BP reparameterizes clique potentials and separator potentials
 - □ At convergence, potentials and messages are marginal distributions $P(x) = \bigcap_{i=1}^{n} P(C_i)$

•

Subtree correctness

- Informed message from i to j, if all messages into i (other than from j) are informed
 - □ Recursive definition (leaves always send informed messages)
- Informed subtree:
 - □ All incoming messages informed
- Theorem:
 - □ Potential of connected informed subtree T' is marginal over scope[T']
- Corollary:
 - ☐ At convergence, clique tree is calibrated
 - $\pi_i = P(scope[\pi_i])$
 - $\mu_{ii} = P(scope[\mu_{ii}])$

10-708 - ©Carlos Guestrin 2006

Clique trees versus VE

- Clique tree advantages
 - Multi-query settings
 - □ Incremental updates
 - □ Pre-computation makes complexity explicit
- Clique tree disadvantages
 - □ Space requirements no factors are "deleted"
 - ☐ Slower for single query
 - □ Local structure in factors may be lost when they are multiplied together into initial clique potential

10-708 - ©Carlos Guestrin 2006

Clique tree summary

- Solve marginal queries for all variables in only twice the cost of query for one variable
- Cliques correspond to maximal cliques in induced graph
- Two message passing approaches
 - □ VE (the one that multiplies messages)
 - □ BP (the one that divides by old message)
- Clique tree invariant
 - ☐ Clique tree potential is always the same
 - ☐ We are only reparameterizing clique potentials
- Constructing clique tree for a BN
 - ☐ from elimination order
 - □ from triangulated (chordal) graph
- Running time (only) exponential in size of <u>largest clique</u>
 - □ Solve **exactly** problems with thousands (or millions, or more) of variables, and cliques with tens of nodes (or less)

10-708 - ©Carlos Guestrin 2006

9

Announcements

- Recitation tomorrow, don't miss it!!!
 - □ Khalid on Undirected Models

0-708 = ©Carlos Guestrin 2006

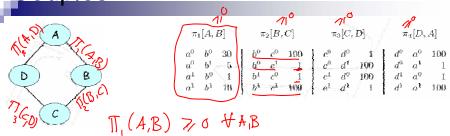
Swinging Couples revisited

- This is no perfect map in BNs
- But, an undirected model will be a perfect map

$$W_1 \perp W_2 \mid M_1, M_2$$
 $M_1 \perp M_2 \mid W_1, W_2$
 $W_1 \qquad W_2$
 $M_2 \qquad M_3$

10-708 - ©Carlos Guestrin 2006

Potentials (or Factors) in Swinging



$$P(A_{1}B_{1}C_{1}D) = \prod_{A_{1}B_{1}} \prod_{A_{1}B_{2}} \prod_{A_{2}B_{1}C_{1}} \prod_{A_{3}B_{1}C_{1}D_{2}} \prod_{A_{3}B_{1}C_{1}D_{2}C_{2}D_{3}C_{1}D_{3}C_{2$$

10-708 = @Carlos Guestrin 2006

Computing probabilities in Markov networks v. BNs

In a BN, can compute prob. of an instantiation by multiplying CPTs =
$$P(A=a)$$
, $P(B=b|A=a)$, $P(B=b|A=a)$. $P(C=c|A=a)$. $P(D=c|A=b)$ and $P(A=a)$ in a Markov networks, can only compute ratio of probabilities directly

$$P(A=c,B=c,C=c,D=c)$$

$$P(A=c,B=c,D=c)$$

$$P(A=c,B=c,D=c)$$

$$P(A=c,B=c,D=c)$$

$$P(A=c,B=c,D=c)$$

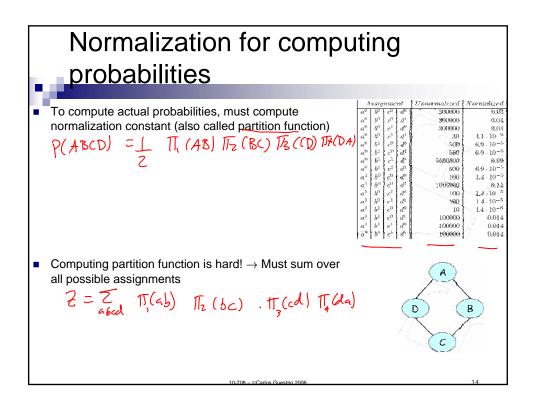
$$P(A=c,B=c,D=c)$$

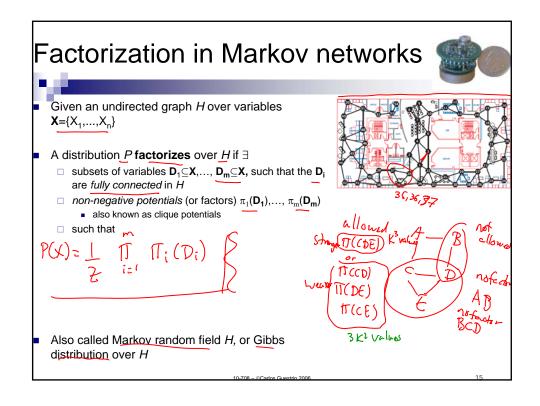
$$P(A=c,B=c,D=c)$$

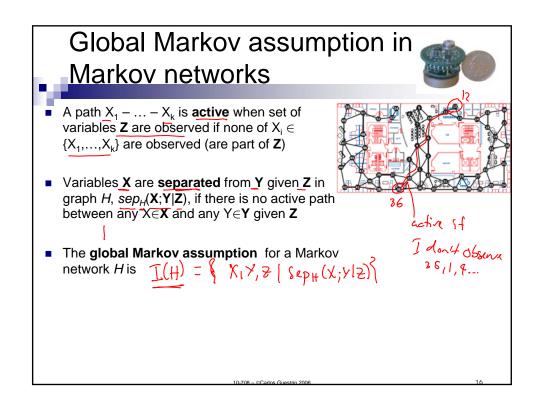
$$P(A=c,B=c,D=c)$$

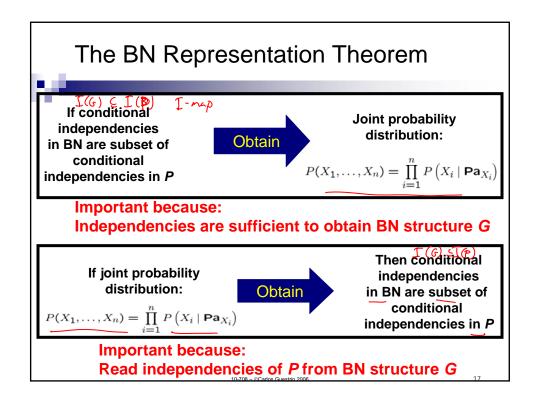
$$P(A=c,B=c)$$

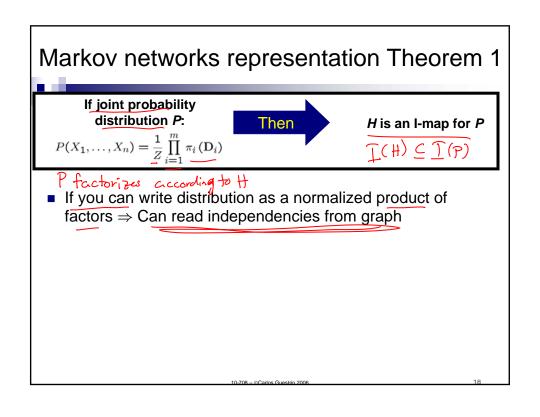
$$P(A=$$











What about the other direction for Markov networks?

joint probability distribution P: Then If H is an I-map for P not fine $P(X_1,\ldots,X_n) = \frac{1}{Z}\prod_{i=1}^m \pi_i(\mathbf{D}_i)$ $I(H) \subseteq I(P)$

• Counter-example: X_1, \dots, X_4 are binary, and only eight assignments have positive probability: $(0.0,0.0) \times (1.0,0.0) \times (1.1,0.0) \times ($

P(0,1,0,1) = 0

For example, $X_1 \perp X_3 \mid X_2, X_4$: $P(\chi_1 = 0 \mid \chi_2 = 0, \chi_4 = 0) = \frac{1}{2}$

Homework-!! But distribution doesn't factorize!!!

Markov networks representation Theorem 2 (Hammersley-Clifford Theorem)

If H is an I-map for P and P is a positive distribution +x P(x) >0

<u>Then</u>

joint probability distribution P:

 $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \pi_i(\mathbf{D}_i)$

■ Positive distribution and independencies ⇒ P factorizes over graph

Representation Theorem for Markov Networks If joint probability distribution P: $P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{i=1}^m \pi_i(\mathbf{D}_i)$ H is an I-map for P

If H is an I-map for P and P is a positive distribution P: $P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \pi_i(\mathbf{D}_i)$

10-708 - ©Carlos Guestrin 200

21

Completeness of separation in Markov networks

- Theorem: Completeness of separation
 - □ For "almost all" distributions that P factorize over Markov network H, we have that I(H) = I(P)
 - "almost all" distributions: except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Analogous to BNs

10-708 = @Carlos Guestrin 2006

What are the "local" independence assumptions for a Markov network?

- In a BN *G*:
 - □ local Markov assumption: variable independent of non-descendants given parents
 - □ d-separation defines global independence \(\big(\((r \) \)
 - □ Soundness: For all distributions: P⊨ Ie(6) ←> P⊨ I(6)
- In a Markov net H:
 - □ Separation defines global independencies
 - □ What are the notions of local independencies?

10-708 = @Carlos Guestrin 2006

23

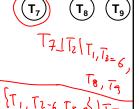
Local independence assumptions for a Markov network

- Separation defines global independencies (H)
- Pairwise Markov Independence: [Pw (H)
 - □ Pairs of non-adjacent variables are independent given all others

ALB | X - {A,B}

- Markov Blanket: Ing (H)
 - □ Variable independent of rest given its neighbors $\mathcal{N}(4)$

 $A \perp \chi - \chi (A), A \mid N(A)$



10-708 = @Carlos Guestrin 2006

Equivalence of independencies in Markov networks

- **Soundness Theorem**: For all <u>positive</u> distributions *P*, the following three statements are equivalent:

 - \square *P* entails the pairwise Markov assumptions $P \models \mathcal{T}_{PW}(\mathcal{H})$
 - ☐ P entails the local Markov assumptions (Markov blanket)

10-708 - ©Carlos Guestrin 2006

25

Minimal I-maps and Markov Networks

- A fully connected graph is an I-map
- Remember minimal I-maps?
 - □ A "simplest" I-map → Deleting an edge makes it no longer an I-map
- In a BN, there is no unique minimal I-map
- Theorem: In a Markov network, minimal I-map is unique!!
- Many ways to find minimal I-map, e.g.,
 - □ Take pairwise Markov assumption:
 - ☐ If P doesn't entail it, add edge:

10-708 = @Carlos Guestrin 2006

How about a perfect map?

- Remember perfect maps?
 - \Box independencies in the graph are exactly the same as those in P
- For BNs, doesn't always exist
 - □ counter example: Swinging Couples
- How about for Markov networks?

10-708 - ©Carlos Guestrin 2006

27

Unifying properties of BNs and MNs

BNs:

- □ give you: V-structures, CPTs are conditional probabilities, can directly compute probability of full instantiation
- but: require acyclicity, and thus no perfect map for swinging couples

MNs:

- □ give you: cycles, and perfect maps for swinging couples
- but: don't have V-structures, cannot interpret potentials as probabilities, requires partition function

Remember PDAGS???

- □ skeleton + immoralities
- □ provides a (somewhat) unified representation
- □ see book for details

10-708 = ©Carlos Guestrin 2006

What you need to know so far about Markov networks

- Markov network representation:
 - □ undirected graph
 - □ potentials over cliques (or sub-cliques)
 - □ normalize to obtain probabilities
 - need partition function
- Representation Theorem for Markov networks
 - □ if P factorizes, then it's an I-map
 - □ if P is an I-map, only factorizes for positive distributions
- Independence in Markov nets:
 - □ active paths and separation
 - □ pairwise Markov and Markov blanket assumptions
 - equivalence for positive distributions
- Minimal I-maps in MNs are unique
- Perfect maps don't always exist

10-708 - ©Carlos Guestrin 2006

29

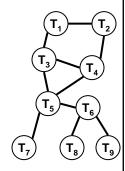
Some common Markov networks and generalizations

- Pairwise Markov networks
- A very simple application in computer vision
- Logarithmic representation
- Log-linear models
- Factor graphs

10-708 - ©Carlos Guestrin 2006

Pairwise Markov Networks

- All factors are over single variables or pairs of variables:
 - Node potentials
 - Edge potentials
- Factorization:



 Note that there may be bigger cliques in the graph, but only consider pairwise potentials

10-708 = @Carlos Guestrin 2006

21

A very simple vision application

- Image segmentation: separate foreground from background
- Graph structure:
 - □ pairwise Markov net
 - □ grid with one node per pixel

- Node potential:
 - □ "background color" v. "foreground color"
- Edge potential:
 - $\hfill\Box$ neighbors like to be of the same class

10-708 = @Carlos Guestrin 2006

Logarithmic representation

- Standard model: $P(X_1,...,X_n) = \frac{1}{Z} \prod_{i=1}^m \pi_i(D_i)$
- Log representation of potential (assuming positive potential):
 - □ also called the energy function
- Log representation of Markov net:

10-708 = ©Carlos Guestrin 200

22

Log-linear Markov network (most common representation)

- Feature is some function φ[D] for some subset of variables D
 - □ e.g., indicator function
- Log-linear model over a Markov network H:
 - \square a set of features $\phi_1[\mathbf{D}_1], \ldots, \phi_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in H
 - two φ's can be over the same variables
 - \square a set of weights $w_1, ..., w_k$
 - usually learned from data

$$\square P(X_1, ..., X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i(\mathbf{D}_i) \right]$$

10-708 = @Carlos Guestrin 2006

Structure in cliques

Possible potentials for this graph:

10-708 - ©Carlos Guestrin 2006

35

Factor graphs

- Very useful for approximate inference
 - □ Make factor dependency explicit
- Bipartite graph:
 - $\hfill \square$ variable nodes (ovals) for X_1, \ldots, X_n
 - $\hfill\Box$ factor nodes (squares) for $\varphi_1, \ldots, \varphi_m$
 - $\ \ \square \ \ \text{edge} \ X_i \varphi_j \ \text{if} \ X_i \!\! \in Scope[\varphi_j]$

0-708 - ©Carlos Guestrin 2006

Summary of types of Markov nets

- Pairwise Markov networks
 - □ very common
 - □ potentials over nodes and edges
- Log-linear models
 - □ log representation of potentials
 - □ linear coefficients learned from data
 - □ most common for learning MNs
- Factor graphs
 - □ explicit representation of factors
 - you know exactly what factors you have
 - □ very useful for approximate inference

10-708 - ©Carlos Guestrin 2006