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Clique Trees 2

Undirected Graphical Models
Here the couples get to swing!

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

October 18th, 2006

Readings:

K&F: 9.1, 9.2, 9.3, 9.4

K&F: 5.1, 5.2, 5.3, 5.4, 5.5
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What if I want to compute 
P(Xi|x0,xn+1) for each i?

Variable elimination for each i?

Compute:

Variable elimination for every i, what’s the complexity?

X0 X5X3 X4X2X1
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Cluster graph

� Cluster graph: For set of factors F

� Undirected graph

� Each node i associated with a cluster Ci

� Family preserving: for each factor fj ∈ F,   

∃ node i such that scope[fi]⊆ Ci

� Each edge i – j is associated with a 
separator Sij = Ci ∩ Cj
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Factors generated by VE

Elimination order:
{C,D,I,S,L,H,J,G}
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Cluster graph for VE

� VE generates cluster tree!

� One clique for each factor used/generated

� Edge i – j, if fi used to generate fj
� “Message” from i  to j generated when 

marginalizing a variable from fi
� Tree because factors only used once

� Proposition:

� “Message” δ
ij

from i  to j

� Scope[δ
ij
] ⊆ Sij
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Running intersection property

� Running intersection property (RIP)

� Cluster tree satisfies RIP if whenever X∈ Ci

and X∈ Cj then X is in every cluster in the 

(unique) path from Ci to Cj

� Theorem:

� Cluster tree generated by VE satisfies RIP
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Constructing a clique tree from VE

� Select elimination order ≺

� Connect factors that would 
be generated if you run VE 
with order ≺

� Simplify!

� Eliminate factor that is subset 
of neighbor
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Find clique tree from chordal graph

� Triangulate moralized graph 

to obtain chordal graph

� Find maximal cliques

� NP-complete in general

� Easy for chordal graphs 

� Max-cardinality search 

� Maximum spanning tree finds 
clique tree satisfying RIP!!!

� Generate weighted graph over 

cliques

� Edge weights (i,j) is separator 
size – |Ci∩Cj|
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Clique tree & Independencies

� Clique tree (or Junction tree)

� A cluster tree that satisfies the RIP

� Theorem:

� Given some BN with structure G and factors F

� For a clique tree T for F consider Ci – Cj with 
separator Sij:

� X – any set of vars in Ci side of the tree

� Y – any set of vars in Ci side of the tree

� Then, (X ⊥ Y | Sij) in BN

� Furthermore, I(T) ⊆ I(G)
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Variable elimination in a clique tree 1

� Clique tree for a BN

� Each CPT assigned to a clique

� Initial potential π0(Ci) is product of CPTs

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Variable elimination in a clique tree 2

� VE in clique tree to compute P(Xi)

� Pick a root (any node containing Xi)

� Send messages recursively from leaves to root

� Multiply incoming messages with initial potential

� Marginalize vars that are not in separator

� Clique ready if received messages from all neighbors

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Belief from message

� Theorem: When clique Ci is ready

� Received messages from all neighbors

� Belief π
i
(Ci) is product of initial factor with messages:
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Choice of root

Root: node 5

Root: node 3

� Message does not 
depend on root!!!

“Cache” computation: Obtain belief for all roots in linear time!!
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Shafer-Shenoy Algorithm 
(a.k.a. VE in clique tree for all roots)

� Clique Ci ready to transmit to 
neighbor Cj if received messages 
from all neighbors but j

� Leaves are always ready to transmit

� While ∃ Ci ready to transmit to Cj

� Send message δi→ j

� Complexity: Linear in # cliques

� One message sent each direction in 

each edge

� Corollary: At convergence

� Every clique has correct belief
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Calibrated Clique tree

� Initially, neighboring nodes don’t agree on 
“distribution” over separators

� Calibrated clique tree:

� At convergence, tree is calibrated

� Neighboring nodes agree on distribution over separator
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Answering queries with clique trees

� Query within clique

� Incremental updates – Observing evidence Z=z

� Multiply some clique by indicator 1(Z=z)

� Query outside clique

� Use variable elimination!
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Message passing with division

� Computing messages by multiplication:

� Computing messages by division:

C2: DIG C4: GJSL C5: HGJC1: CD C3: GSI
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Lauritzen-Spiegelhalter Algorithm 
(a.k.a. belief propagation)

� Initialize all separator potentials to 1

� µij ← 1

� All messages ready to transmit

� While ∃ δi→ j ready to transmit

� µij’ ←

� If µij’ ≠ µij

� δi→j←

� πj ← πj × δi→j

� µij ← µij’

� ∀ neighbors k of j, k≠ i, δj→k ready to transmit

� Complexity: Linear in # cliques

� for the “right” schedule over edges (leaves to root, then root to leaves)

� Corollary: At convergence, every clique has correct belief
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Simplified description

see reading for details
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VE versus BP in clique trees

� VE messages (the one that multiplies)

� BP messages (the one that divides)
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Clique tree invariant

� Clique tree potential:

� Product of clique potentials divided by separators potentials

� Clique tree invariant:

� P(X) = πΤ (X)
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Belief propagation and clique tree 
invariant

� Theorem: Invariant is maintained by BP algorithm!

� BP reparameterizes clique potentials and 
separator potentials

� At convergence, potentials and messages are marginal 

distributions
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Subtree correctness

� Informed message from i to j, if all messages into i 
(other than from j) are informed
� Recursive definition (leaves always send informed 

messages)

� Informed subtree:
� All incoming messages informed

� Theorem:
� Potential of connected informed subtree T’ is marginal over 

scope[T’]

� Corollary:
� At convergence, clique tree is calibrated

� πi = P(scope[πi])

� µij = P(scope[µij])
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Clique trees versus VE

� Clique tree advantages

� Multi-query settings

� Incremental updates

� Pre-computation makes complexity explicit

� Clique tree disadvantages

� Space requirements – no factors are “deleted”

� Slower for single query

� Local structure in factors may be lost when they are 

multiplied together into initial clique potential
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Clique tree summary

� Solve marginal queries for all variables in only twice the 
cost of query for one variable

� Cliques correspond to maximal cliques in induced graph
� Two message passing approaches

� VE (the one that multiplies messages)

� BP (the one that divides by old message)

� Clique tree invariant
� Clique tree potential is always the same

� We are only reparameterizing clique potentials

� Constructing clique tree for a BN
� from elimination order

� from triangulated (chordal) graph

� Running time (only) exponential in size of largest clique
� Solve exactly problems with thousands (or millions, or more) of 

variables, and cliques with tens of nodes (or less) 
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Announcements

� Recitation tomorrow, don’t miss it!!!

� Ajit on Junction Trees
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Swinging Couples revisited

� This is no perfect map in BNs

� But, an undirected model will be a perfect map
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Potentials (or Factors) in Swinging 
Couples
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Computing probabilities in Markov 
networks v. BNs

� In a BN, can compute prob. of an 

instantiation by multiplying CPTs

� In an Markov networks, can only 

compute ratio of probabilities directly
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Normalization for computing 
probabilities

� To compute actual probabilities, must compute 

normalization constant (also called partition function)

� Computing partition function is hard! → Must sum over 

all possible assignments
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Factorization in Markov networks

� Given an undirected graph H over variables 

X={X1,...,Xn}

� A distribution P factorizes over H if ∃

� subsets of variables D1⊆X,…, Dm⊆X, such that the Di

are fully connected in H

� non-negative potentials (or factors) π1(D1),…, π
m
(Dm)

� also known as clique potentials

� such that

� Also called Markov random field H, or Gibbs 

distribution over H
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Global Markov assumption in 
Markov networks

� A path X1 – … – Xk is active when set of 
variables Z are observed if none of Xi ∈

{X1,…,Xk} are observed (are part of Z) 

� Variables X are separated from Y given Z in 

graph H, sepH(X;Y|Z), if there is no active path 
between any X∈X and any Y∈Y given Z

� The global Markov assumption for a Markov 

network H is

10-708 – Carlos Guestrin 2006 32

The BN Representation Theorem

Joint probability

distribution:Obtain

If conditional

independencies

in BN are subset of 

conditional 

independencies in P

Important because: 
Independencies are sufficient to obtain BN structure G

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P

Important because: 
Read independencies of P from BN structure G
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Markov networks representation Theorem 1

� If you can write distribution as a normalized product of 
factors ⇒ Can read independencies from graph

Then H is an I-map for P

If joint probability

distribution P:
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What about the other direction for Markov 

networks ?

� Counter-example: X1,…,X4 are binary, and only eight assignments 

have positive probability:

� For example, X1⊥X3|X2,X4:

� But distribution doesn’t factorize!!!

If H is an I-map for P Then

joint probability

distribution P:
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Markov networks representation Theorem 2

(Hammersley-Clifford Theorem)

� Positive distribution and independencies ⇒ P factorizes 

over graph

If H is an I-map for P

and 

P is a positive distribution
Then

joint probability

distribution P:
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Representation Theorem for 
Markov Networks

If H is an I-map for P

and 

P is a positive distribution
Then

joint probability

distribution P:

Then H is an I-map for P

If joint probability

distribution P:
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Completeness of separation in 
Markov networks

� Theorem: Completeness of separation

� For “almost all” distributions that P factorize over Markov 

network H, we have that I(H) = I(P)

� “almost all” distributions: except for a set of measure zero of 
parameterizations of the Potentials (assuming no finite set of 

parameterizations has positive measure)

� Analogous to BNs
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What are the “local” independence 
assumptions for a Markov network?

� In a BN G:

� local Markov assumption: variable independent of 

non-descendants given parents 

� d-separation defines global independence

� Soundness: For all distributions:  

� In a Markov net H:

� Separation defines global independencies

� What are the notions of local independencies?
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Local independence assumptions 
for a Markov network

� Separation defines global independencies

� Pairwise Markov Independence:

� Pairs of non-adjacent variables are independent given all others

� Markov Blanket: 

� Variable independent of rest given its neighbors

T1

T3 T4

T5 T6

T2

T7 T8 T9
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Equivalence of independencies in 
Markov networks

� Soundness Theorem: For all positive distributions P, 
the following three statements are equivalent:

� P entails the global Markov assumptions

� P entails the pairwise Markov assumptions

� P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov 
Networks

� A fully connected graph is an I-map

� Remember minimal I-maps?

� A “simplest” I-map → Deleting an edge makes it no longer an I-map 

� In a BN, there is no unique minimal I-map

� Theorem: In a Markov network, minimal I-map is unique!!

� Many ways to find minimal I-map, e.g.,

� Take pairwise Markov assumption:

� If P doesn’t entail it, add edge:
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How about a perfect map?

� Remember perfect maps?

� independencies in the graph are exactly the same as those in P

� For BNs, doesn’t always exist

� counter example: Swinging Couples

� How about for Markov networks?
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Unifying properties of BNs and MNs

� BNs:

� give you: V-structures, CPTs are conditional probabilities, can 

directly compute probability of full instantiation

� but: require acyclicity, and thus no perfect map for swinging 

couples

� MNs:

� give you: cycles, and perfect maps for swinging couples

� but: don’t have V-structures, cannot interpret potentials as 

probabilities, requires partition function

� Remember PDAGS???

� skeleton + immoralities

� provides a (somewhat) unified representation

� see book for details
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What you need to know so far 
about Markov networks

� Markov network representation:
� undirected graph

� potentials over cliques (or sub-cliques)

� normalize to obtain probabilities

� need partition function

� Representation Theorem for Markov networks
� if P factorizes, then it’s an I-map

� if P is an I-map, only factorizes for positive distributions 

� Independence in Markov nets:
� active paths and separation

� pairwise Markov and Markov blanket assumptions

� equivalence for positive distributions

� Minimal I-maps in MNs are unique

� Perfect maps don’t always exist


