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Variable elimination for every i, what’s the complexity?
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Cluster graph
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?m m Cluster graph: For set of factors F
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Elimination order:
{C,D.LS,L,H.J,G}




Cluster graph for VE
- W

D
— m VE generates cluster tree!

(D) One clique for each factor used/generated
D Jio oL e
Edge i —j, if f; used to generate f;
Q‘@ Joss (6T) “Message” from i to j generated when
Cr marginalizing a variable from f,
GSD Fae (65) Tree b-ef:ause factors only used once
o m Proposition:
“Message” 6"_ fromi to |
@SM ISt SCOpe[Sij] CS;
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Running intersection property
" JE
@ m Running intersection property (RIP)

Cluster tree satisfies RIP if whenever Xe C,
and Xe C, then Xis in every cluster in the

G@) (unique) path from C; to C;
m Theorem:
S’D Cluster tree generated by VE satisfies RIP
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Constructing a clique tree from VE

" 00
m Select elimination order < c‘
DC—D—D6T

m Connect factors that would ¢t T
be generated if you run VE GéT{ s
with order < B
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= Simplify! AN 5L
Eliminate factor that is subset © 3 — (5
of neighbor HGT — C—’S]

Find clique tree from chordal graph
" JE
m Triangulate moralized graph

to obtain chordal graph

m Find maximal cliques
NP-complete in general
Easy for chordal graphs
Max-cardinality search

m Maximum spanning tree finds
clique tree satisfying RIP!!!
Generate weighted graph over
cliques
Edge weights (i,j) is separator
size — |C,NC;|




Cligue tree & Independencies
" J

@ m Clique tree (or Junction tree)
A cluster tree that satisfies the RIP
m Theorem:
QID Given some BN with structure G and factors A
For a clique tree T for F consider C; — C; with
GSD separator Sy:

= X —any set of vars in C, side of the tree
= Y —any set of vars in C,; side of the tree

s >—— st D Then, (X LY ['S) in BN

Furthermore, I(T) C I(G)
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Variable elimination in a clique tree 1

(e p>——Cex asD——g cusD——(& vad

ZI

<>,
CO D
& & .
D m Clique tree for a BN
Each CPT assigned to a clique
G Initial potential 7,(C,) is product of CPTs




Variable elimination in a clique tree 2
" I
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m VE in clique tree to compute P(X))
Pick a root (any node containing X))

Send messages recursively from leaves to root
= Multiply incoming messages with initial potential
= Marginalize vars that are not in separator

Clique ready if received messages from all neighbors

Belief from message
" JEE
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m Theorem: When clique C; is ready
Received messages from all neighbors
Belief ni(Ci) is product of initial factor with messages:




. m Message does not
Ch0|Ce Of root depeng on root!!!

Root: node 5
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“Cache” computation: Obtain belief for all roots in linear time!!

Shafer-Shenoy Algorithm

. Laka VE in clique tree for all roots)

m Clique C, ready to transmit to
C. neighbor C; if received messages

o from all neighbors but |

Leaves are always ready to transmit

c, m While 3 C; ready to transmit to C,
o Send message 9§,
CD m Complexity: Linear in # cliques

One message sent each direction in

o each edge

@ m Corollary: At convergence

Every clique has correct belief




Calibrated Clique tree

P]C)
P(C)

G,
FGID)

m Initially, neighboring nodes don’t agree on
“distribution” over separators
m Calibrated clique tree:
At convergence, tree is calibrated
Neighboring nodes agree on distribution over separator

Answering queries with clique trees
" S
m Query within clique

m Incremental updates — Observing evidence Z=z
Multiply some clique by indicator 1(Z=z)

m Query outside clique
Use variable elimination!




Message passing with division
" J

(00— D) ——( a5 )——@y cusD——CGe )

m Computing messages by multiplication:

m Computing messages by division:

Lauritzen-Spiegelhalter Algorithm

. Jak.a belief propagation) ceo roading or detais

m Initialize all separator potentials to 1 <D
Hy <>
m All messages ready to transmit T
= While 3§, ; ready to transmit e
i ey <>
Wy
: e
If " # W <>
mJ

i—j
" nj<—nj><8

LI “ij,
= V neighbors k of j, k# i, §;_, ready to transmit
m Complexity: Linear in # cliques
for the “right” schedule over edges (leaves to root, then root to leaves)
m Corollary: At convergence, every clique has correct belief

i—j
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VE versus BP in clique trees
" JE
m VE messages (the one that multiplies)

m BP messages (the one that divides)

Clique tree invariant
" JEE
m Clique tree potential:
Product of clique potentials divided by separators potentials

m Cligue tree invariant:
P(X) = n1(X)
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Belief propagation and clique tree
invariant

m Theorem: Invariant is maintained by BP algorithm!

m BP reparameterizes clique potentials and
separator potentials

At convergence, potentials and messages are marginal
distributions

21

Subtree correctness

" JE
m Informed message from i to j, if all messages into i
(other than from j) are informed

Recursive definition (leaves always send informed
messages)

m Informed subtree:
All incoming messages informed

m Theorem:
Potential of connected informed subtree T’is marginal over
scope[T]

m Corollary:

At convergence, clique tree is calibrated
s 7, = P(scope[n])
= W; = P(scope[w;])
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Clique trees versus VE
" JE
m Clique tree advantages
Multi-query settings
Incremental updates
Pre-computation makes complexity explicit

m Clique tree disadvantages
Space requirements — no factors are “deleted”
Slower for single query

Local structure in factors may be lost when they are
multiplied together into initial clique potential

Clique tree summary
" JE

m Solve marginal queries for all variables in only twice the
cost of query for one variable
m Cliques correspond to maximal cliques in induced graph
m Two message passing approaches
VE (the one that multiplies messages)
BP (the one that divides by old message)
m Clique tree invariant
Clique tree potential is always the same
We are only reparameterizing clique potentials
m Constructing clique tree for a BN
from elimination order
from triangulated (chordal) graph
m Running time (only) exponential in size of largest clique

Solve exactly problems with thousands (or millions, or more) of
variables, and cliques with tens of nodes (or less)

0.208 - ©Caos Guiestio 2008 24
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Announcements
= JEE
m Recitation tomorrow, don’t miss it!!!
Ajit on Junction Trees

Swinging Couples revisited
" JE

m This is no perfect map in BNs
m But, an undirected model will be a perfect map
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Potentials (or Factors) in Swinging

. gouples
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Computing probabilities in Markov
networks v. BNs
SR

m In a BN, can compute prob. of an
instantiation by multiplying CPTs

i [A, B] m[B, ) m3[C, D] (D, A
m In an Markov networks, can only e e o "
. gy . a® B’ 30 »° 100 & d 1 4’ a" 100
compute ratio of probabilities directly B 5| W0 e 1| 100 | & a1
at ° 1 bto° 1 ¢t d® 100 d' a 1
a' bt 10 bt et 100 ¢ odl 1 d' a' 100
Caos G 28
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Normalization for computing

. gRrobabilities

Assignment Unnormalized

Normalized

m  To compute actual probabilities, must compute W TETE
. . oy . 2 | b d
normalization constant (also called partition function) a|w] o | @

0 0 1 i
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m  Computing partition function is hard! — Must sum over
all possible assignments

10.708 _ OC.

S
3
B
B

300000
300000
300000
30

500
500
5000000
500
100
1000000
100

100

10
100000
100000
100000

0.04
0.04

0.04
41-10-6
6.9-107°
6.9-107°
0.69
6.9-107°
14-107°
0.14
14107
14-107°
14-107°
0.014
0.014
0.014

Factorization in Markov networks
= S

m  Given an undirected graph H over variables
X={X,,....X.}

m A distribution P factorizes over Hif 3
subsets of variables D,CX,..., D,,CX, such that the D;

are fully connected in H

non-negative potentials (or factors) m,(D,),..., ©,(Dm)
= also known as clique potentials

such that

m Also called Markov random field H, or Gibbs
distribution over H

10.708 — @Carlos Guiestin 2006
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Global Markov assumption in
Markov networks
S

m Apath X, —... - X, is active when set of i G R R S
variables Z are observed if none of X; € %EL ; l e
{X,,...,X,} are observed (are part of Z) .{‘ V- ) Rl

ARt N~ e

m Variables X are separated from Y given Z in X on
graph H, sep,(X;Y|2), if there is no active path
between any XeX and any YeY given Z

m The global Markov assumption for a Markov
network His

The BN Representation Theorem
" S

If conditional

. babili
independencies Joint probability

distribution:

in BN are subset of istribution
conditional n

independencies in P P(X1,...,Xp) = iglp (Xi | ani)

Important because:
Independencies are sufficient to obtain BN structure G

Then conditional

If joint probability independencies
distribution: in BN are subset of
. n conditional
P(X1,...,Xn) = jI:TIP (i1 Pax,) independencies in P

Important because:
Read independencies of P from BN structure G
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Markov networks representation Theorem 1

If joint probability
distribution P: His an I-map for P
1 m

P(X1,...,Xn) = 7 II = D)
i=1

m If you can write distribution as a normalized product of
factors = Can read independencies from graph

33

What about the other direction for Markov
networks ?

joint probability
If His an I-map for P distribution P:
1 m

P(X1,.., Xp) = ][ mi (D))
=1

m Counter-example: X;,...,X, are binary, and only eight assignments

have positive probability: (00000 (100,0) (1,1,0,0) (1,1,1,0)
0,001y (0,0,1,1) (11,1 (1,1,1,1)

m For example, X;LX;4[X,,X,:

m But distribution doesn’t factorize!!!
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Markov networks representation Theorem 2
(Hammersley-Clifford Theorem)

If His an I-map for P joint probability
and distribution P:
P is a positive distribution i 1m
P(Xq,...,2 Xn) = 7 H m; (D;)

i=1

m Positive distribution and independencies = P factorizes
over graph

Representation Theorem for
Markov Networks
e

If joint probability
distribution P: His an I-map for P

1
P(X1,...,2 Xp) = 7 11 = (D)
i=1

If His an I-map for P joint probability
and distribution P:
P is a positive distribution m

1
P(X1,...,2 Xn) == [[ m (D)
Z =1
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Completeness of separation in
Markov networks
= S

m Theorem: Completeness of separation

For “almost all” distributions that P factorize over Markov
network H, we have that I(H) = I(P)

“almost all” distributions: except for a set of measure zero of
parameterizations of the Potentials (assuming no finite set of
parameterizations has positive measure)

m Analogous to BNs

37

What are the “local” independence
. gassumptions for a Markov network

m InaBN G:

local Markov assumption: variable independent of
non-descendants given parents

d-separation defines global independence
Soundness: For all distributions:

m In a Markov net H:
Separation defines global independencies
What are the notions of local independencies?

19



Local independence assumptions
for a Markov network
" S

m Separation defines global independencies G G
m Pairwise Markov Independence:
Pairs of non-adjacent variables are independent given all others Q Q

m Markov Blanket: e G e

Variable independent of rest given its neighbors

Equivalence of independencies in
Markov networks
" SN

m Soundness Theorem: For all positive distributions P,
the following three statements are equivalent:
P entails the global Markov assumptions

P entails the pairwise Markov assumptions

P entails the local Markov assumptions (Markov blanket)
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Minimal I-maps and Markov
Networks

m A fully connected graph is an I-map

m  Remember minimal I-maps?
A “simplest” I-map — Deleting an edge makes it no longer an I-map

m In a BN, there is no unique minimal I-map

m Theorem: In a Markov network, minimal I-map is unique!!
m  Many ways to find minimal I-map, e.g.,

Take pairwise Markov assumption:

If P doesn’t entail it, add edge:

How about a perfect map?
" JEE

m Remember perfect maps?

independencies in the graph are exactly the same as those in P
m For BNs, doesn’t always exist

counter example: Swinging Couples
m How about for Markov networks?
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Unifying properties of BNs and MNs

= JEE
m BNs:

give you: V-structures, CPTs are conditional probabilities, can
directly compute probability of full instantiation

but: require acyclicity, and thus no perfect map for swinging
couples

m MNs:

give you: cycles, and perfect maps for swinging couples

but: don’t have V-structures, cannot interpret potentials as
probabilities, requires partition function

m Remember PDAGS???
skeleton + immoralities
provides a (somewhat) unified representation
see book for details

What you need to know so far
about Markov networks
SR

m Markov network representation:
undirected graph
potentials over cliques (or sub-cliques)
normalize to obtain probabilities
need partition function
Representation Theorem for Markov networks
if P factorizes, then it's an I-map
if P is an I-map, only factorizes for positive distributions
Independence in Markov nets:
active paths and separation
pairwise Markov and Markov blanket assumptions
equivalence for positive distributions
Minimal I-maps in MNs are unique

Perfect maps don’t always exist
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