

What if variables are independent?

- What if variables are independent?
 - $\square (X_i \perp X_j), \forall i,j \qquad (\{x_1 x_3\} \perp \{x_7, x_7\})$
 - □ Not enough!!! (See homework 1 ©)
 - \square Must assume that $(X \perp Y)$, $\forall X,Y$ subsets of $\{X_1,...,X_n\}$
- Can write

two nodes

How many independent parameters now?

©Carlos Guestrin 2006

Conditional parameterization –

Grade is determined by Intelligence

10-708 – ©Carlos Guestrin 2006

Conditional parameterization – three nodes

- Grade and SAT score are determined by Intelligence
- (G ⊥ S | I)

0-708 - ©Carlos Guestrin 2006

The naïve Bayes model – Your first real Bayes Net

- Class variable: C
- Evidence variables: X₁,...,X_n
- assume that $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{C})$, $\forall \mathbf{X}, \mathbf{Y}$ subsets of $\{X_1, ..., X_n\}$

0-708 – ©Carlos Guestrin 2006

What you need to know (From last class)

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

10-708 - ©Carlos Guestrin 2006

7

Announcements

- Homework 1:
 - □ Out yesterday
 - □ Due September 27th beginning of class!
 - ☐ It's hard start early, ask questions
- Collaboration policy
 - □ OK to discuss in groups
 - ☐ Tell us on your paper who you talked with
 - ☐ Each person must write their **own unique paper**
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
- Upcoming recitation
 - □ Monday 5:30-7pm in Wean 4615A Matlab Tutorial
- Don't forget to register to the mailing list at:
 - □ https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

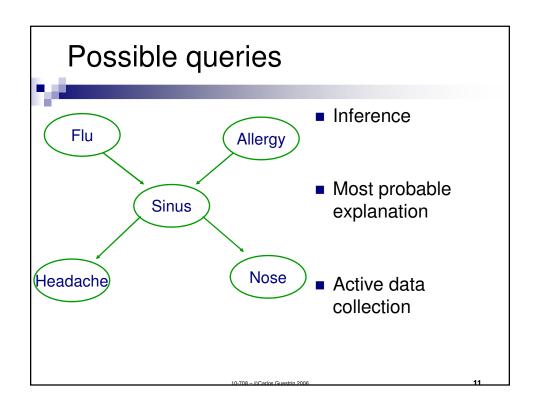
10-708 – ©Carlos Guestrin 2006

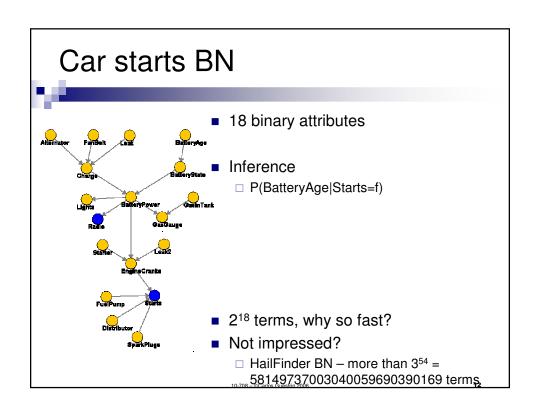
Δ

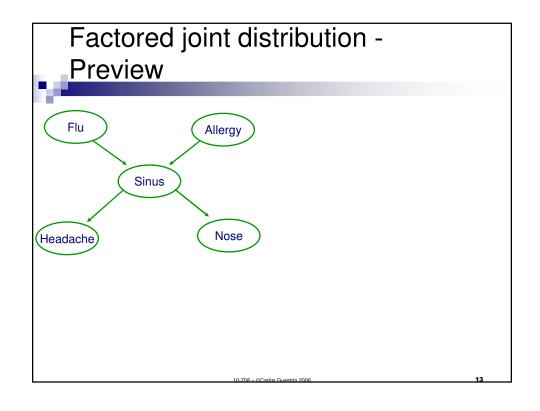
This class

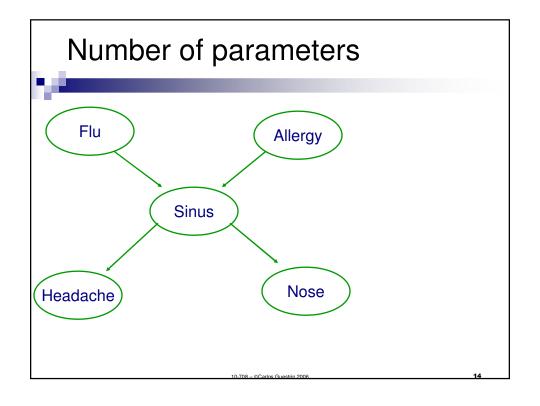
- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- This class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

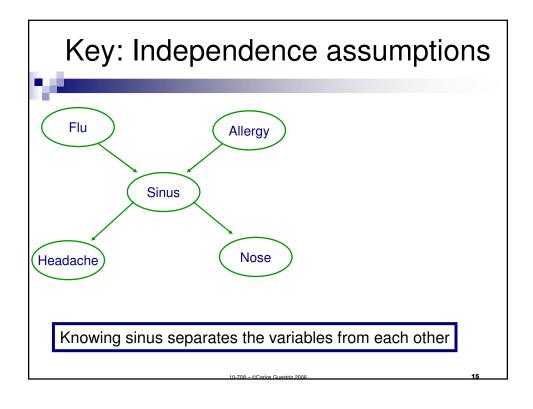
10-708 - ©Carlos Guestrin 2006

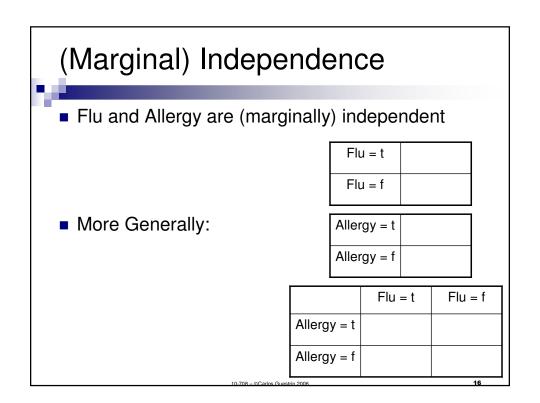

.

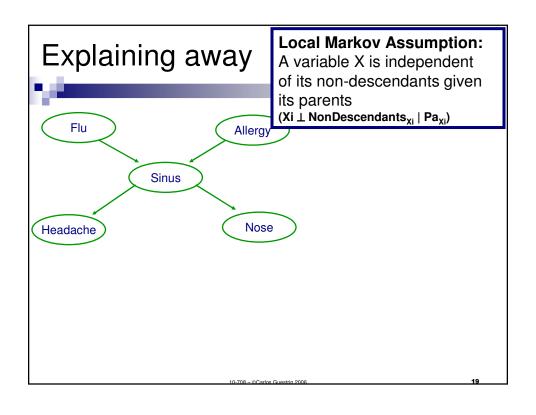

Causal structure

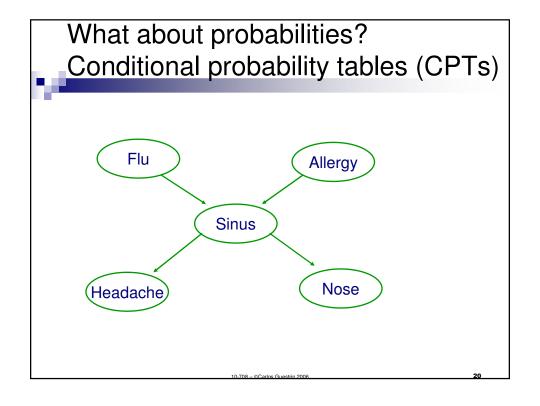



- Suppose we know the following:
 - ☐ The flu causes sinus inflammation
 - □ Allergies cause sinus inflammation
 - ☐ Sinus inflammation causes a runny nose
 - □ Sinus inflammation causes headaches
- How are these connected?

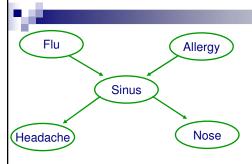

I0-708 – ©Carlos Guestrin 2006






Conditional independence

- ٧
- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection
- More Generally:


10-708 = @Carlos Guestrin 2006

17

Joint distribution

Why can we decompose? Markov Assumption!

A general Bayes net

- Set of random variables
- Directed acyclic graph
- CPTs
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathsf{Pa}_{X_i}\right)$$

- Local Markov Assumption:
 - □ A variable X is independent of its non-descendants given its parents (Xi ⊥ NonDescendantsXi | PaXi)

10-708 - @Carlos Guestrin 2006

Questions????

- What distributions can be represented by a BN?
- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
 - □ in addition to the local Markov assumption

8 - ©Carlos Guestrin 2006

23

Today: The Representation Theorem – Joint Distribution to BN

BN:

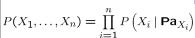
Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in P

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

10-708 = @Carlos Guestrin 2006


Today: The Representation Theorem – BN to Joint Distribution

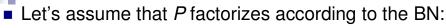
Encodes independence assumptions

If joint probability distribution:

Then conditional independencies in BN are subset of conditional independencies in P

10-708 - ©Carlos Guestrin 2006

25


Let's start proving it for naïve Bayes From joint distribution to BN

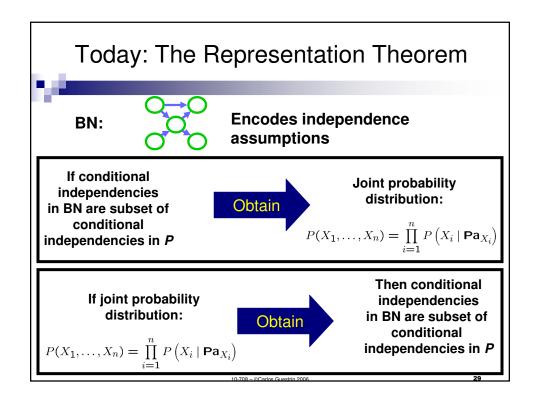
- Independence assumptions:
 - $\square X_i$ independent given C
- Let's assume that *P* satisfies independencies must prove that *P* factorizes according to BN:
 - $\square P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$
- Use chain rule!

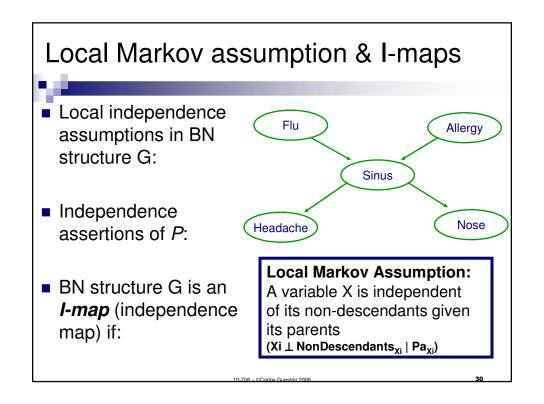
I0-708 – ©Carlos Guestrin 2006

Let's start proving it for naïve Bayes From BN to joint distribution 1

$$\square$$
 P(C,X₁,...,X_n) = P(C) \prod_i P(X_i|C)

- Prove the independence assumptions:
 - □ X_i independent given C
 - \square Actually, (**X** \perp **Y** | C), \forall **X**,**Y** subsets of {X₁,...,X_n}


10-708 - ©Carlos Guestrin 2006


27

Let's start proving it for naïve Bayes From BN to joint distribution 2

- Let's consider a simpler case
 - ☐ Grade and SAT score are determined by Intelligence
 - $\square \ P(I,G,S) = P(I)P(G|I)P(S|I)$
 - \square Prove that P(G,S|I) = P(G|I) P(S|I)

10-708 – ©Carlos Guestrin 2006

Factorized distributions

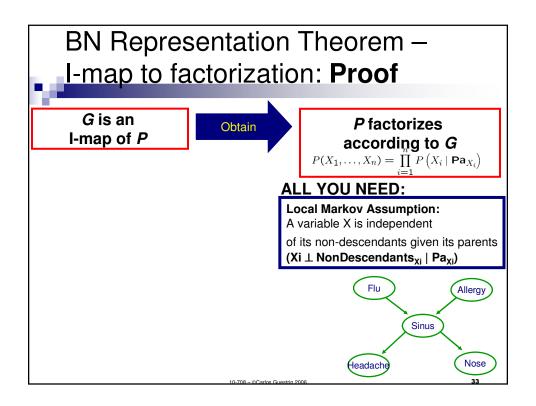
- Given
 - \square Random vars $X_1,...,X_n$
 - □ P distribution over vars
 - □ BN structure *G* over same vars
 - P factorizes according to G if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Allergy Sinus Nose Headache

BN Representation Theorem -I-map to factorization

If conditional independencies in BN are subset of conditional independencies in P

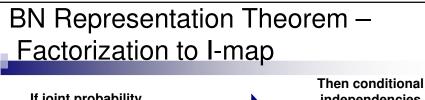

Obtain

Joint probability distribution:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

G is an I-map of P

P factorizes according to G



Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - \square Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}
 - \square Define/learn CPT P(X_i| \mathbf{Pa}_{X_i})

10-708 – ©Carlos Guestrin 2006

Obtain

If joint probability distribution:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

independencies
in BN are subset of
conditional
independencies in P

P factorizes according to G

G is an I-map of P

0-708 - ©Carlos Guestrin 2006

35

BN Representation Theorem – Factorization to I-map: **Proof**

If joint probability distribution:

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

P factorizes according to G

G is an I-map of P

Homework 1!!!! ©

0-708 – ©Carlos Guestrin 2006

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:

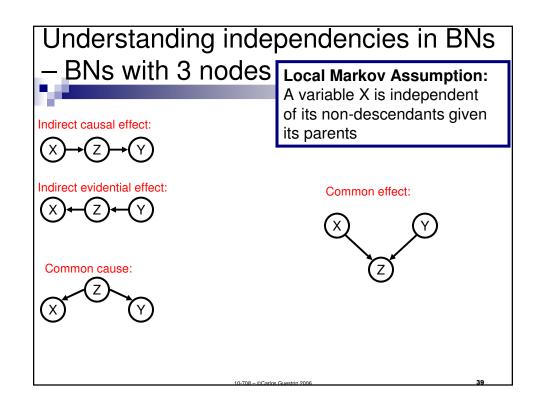
Obtain

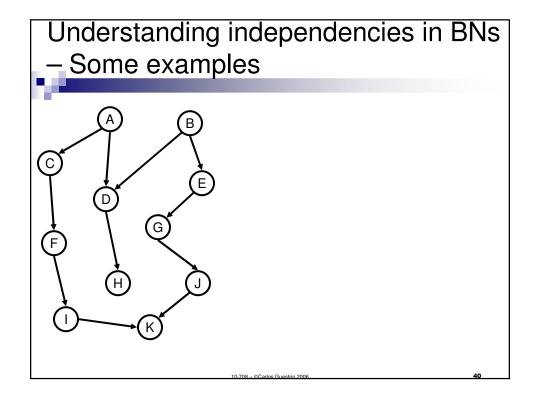
Then conditional independencies in BN are subset of conditional independencies in P

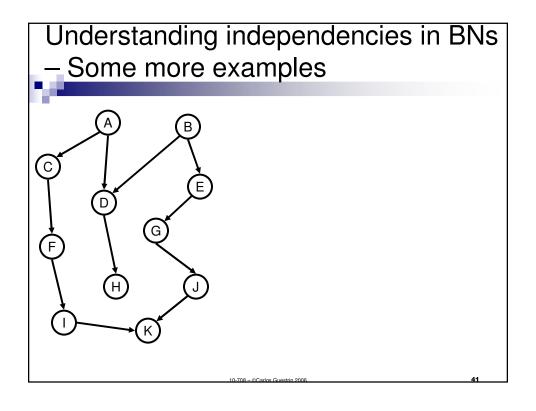
 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$

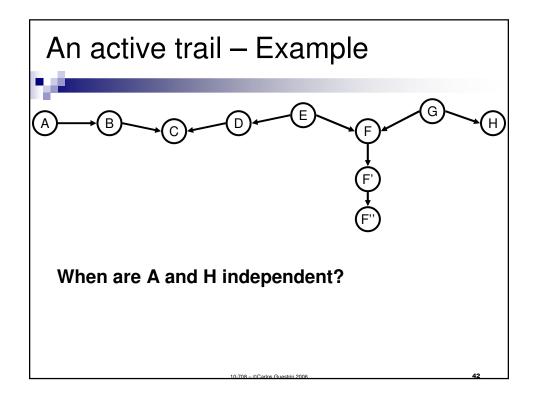
Important because:

Read independencies of P from BN structure G


37

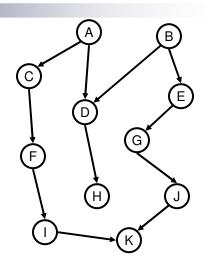

Independencies encoded in BN




- We said: All you need is the local Markov assumption
 - $\square (X_i \perp NonDescendants_{X_i} \mid \textbf{Pa}_{X_i})$
- But then we talked about other (in)dependencies
 - □ e.g., explaining away
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 - ©Carlos Guestrin 2006

Active trails formalized


- A trail $X_1 X_2 \cdots X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in \textbf{\textit{O}})$, or one of its descendents

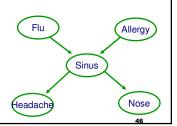
10-708 - ©Carlos Guestrin 2006

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed

10-708 = @Carlos Guestrin 2006

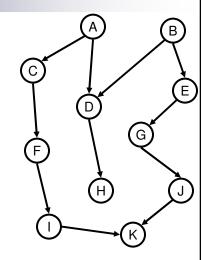
More generally: Soundness of d-separation


- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - $\square I(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G)\subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

10-708 - ©Carlos Guestrin 2006

45

Adding edges doesn't hurt


- **Theorem**: Let **G** be an I-map for **P**, any DAG **G**' that includes the same directed edges as **G** is also an I-map for **P**.
- Proof sketch:

10-708 = @Carlos Guestrin 2006

Existence of dependency when not d-separated

- Theorem: If X and Y are not d-separated given Z, then X and Y are dependent given Z under some P that factorizes over G
- Proof sketch:
 - Choose an active trail between X and Y given Z
 - ☐ Make this trail dependent
 - Make all else uniform (independent) to avoid "canceling" out influence

0-708 - ©Carlos Guestrin 2006

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Proof sketch:

10-708 - ©Carlos Guestrin 2006

Interpretation of completeness

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \models (X=x\perp Y=y \mid Z=z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\ \ \Box \ \exists \ x \in Val(X), \ y \in Val(Y), \ z \in Val(Z): P \models (X=x \perp Y=y \mid Z=z)$
 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

10-708 - ©Carlos Guestrin 2006

40

What you need to know

- Independence & conditional independence
- Definition of a BN
- The representation theorems
 - □ Statement
 - Interpretation
- d-separation and independence
 - □ soundness
 - □ existence
 - completeness

10-708 – ©Carlos Guestrin 2006

Acknowledgements

- JavaBayes applet
 - □ http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho me/index.html

0-708 - ©Carlos Guestrin 2006