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Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 15th, 2006

Readings:

K&F: 3.1, 3.2, 3.3
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Let’s start on BNs…

� Consider P(Xi)

� Assign probability to each xi ∈ Val(Xi)

� Independent parameters

� Consider P(X1,…,Xn)

� How many independent parameters if |Val(Xi)|=k?



2

10-708 – Carlos Guestrin 2006 3

What if variables are independent?

� What if variables are independent?

� (Xi ⊥ Xj), ∀ i,j

� Not enough!!! (See homework 1 ☺)

� Must assume that (X ⊥ Y), ∀ X,Y subsets of {X1,…,Xn}

� Can write

� P(X1,…,Xn) = ∏i=1…n P(Xi)

� How many independent parameters now?
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Conditional parameterization –
two nodes

� Grade is determined by Intelligence
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Conditional parameterization –
three nodes

� Grade and SAT score are determined by 
Intelligence

� (G ⊥ S | I)
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The naïve Bayes model –
Your first real Bayes Net

� Class variable: C

� Evidence variables: X1,…,Xn

� assume that (X ⊥ Y | C), ∀ X,Y subsets of {X1,…,Xn}
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What you need to know (From last class)

� Basic definitions of probabilities

� Independence

� Conditional independence

� The chain rule

� Bayes rule

� Naïve Bayes
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Announcements

� Homework 1:

� Out yesterday

� Due September 27th – beginning of class!

� It’s hard – start early, ask questions

� Collaboration policy

� OK to discuss in groups

� Tell us on your paper who you talked with

� Each person must write their own unique paper

� No searching the web, papers, etc. for answers, we trust you 

want to learn

� Upcoming recitation

� Monday 5:30-7pm in Wean 4615A – Matlab Tutorial

� Don’t forget to register to the mailing list at:
� https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce
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This class

� We’ve heard of Bayes nets, we’ve played with 
Bayes nets, we’ve even used them in your 
research

� This class, we’ll learn the semantics of BNs, 
relate them to independence assumptions 
encoded by the graph
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Causal structure

� Suppose we know the following:

� The flu causes sinus inflammation

� Allergies cause sinus inflammation

� Sinus inflammation causes a runny nose

� Sinus inflammation causes headaches

� How are these connected?
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Possible queries

Flu Allergy

Sinus

Headache Nose

� Inference

� Most probable 
explanation

� Active data 
collection
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Car starts BN

� 18 binary attributes

� Inference 

� P(BatteryAge|Starts=f)

� 218 terms, why so fast?

� Not impressed?

� HailFinder BN – more than 354 = 

58149737003040059690390169 terms
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Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose
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Number of parameters

Flu Allergy

Sinus

Headache Nose
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Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other
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(Marginal) Independence

� Flu and Allergy are (marginally) independent

� More Generally:

Allergy = f

Allergy = t

Flu = fFlu = t

Allergy = f

Allergy = t

Flu = f

Flu = t
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Conditional independence

� Flu and Headache are not (marginally) independent

� Flu and Headache are independent given Sinus 
infection

� More Generally:
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The independence assumption 

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 
(Xi ⊥⊥⊥⊥ NonDescendantsXi | PaXi)
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Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent

of its non-descendants given 

its parents 
(Xi ⊥⊥⊥⊥ NonDescendantsXi | PaXi)
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What about probabilities?
Conditional probability tables (CPTs)

Flu Allergy

Sinus

Headache Nose
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Joint distribution

Flu Allergy

Sinus

Headache Nose

Why can we decompose? Markov Assumption!
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A general Bayes net

� Set of random variables

� Directed acyclic graph 

� CPTs

� Joint distribution:

� Local Markov Assumption:

� A variable X is independent of its non-descendants given its 

parents – (Xi ⊥⊥⊥⊥ NonDescendantsXi | PaXi)
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Questions????

� What distributions can be represented by a BN?

� What BNs can represent a distribution?

� What are the independence assumptions 
encoded in a BN?

� in addition to the local Markov assumption
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Today: The Representation Theorem –

Joint Distribution to BN

Joint probability
distribution:Obtain

BN: Encodes independence
assumptions

If conditional
independencies

in BN are subset of 

conditional 
independencies in P
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Today: The Representation Theorem –

BN to Joint Distribution

If joint probability
distribution:

BN: Encodes independence
assumptions

Obtain

Then conditional
independencies

in BN are subset of 

conditional 
independencies in P
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Let’s start proving it for naïve Bayes –
From joint distribution to BN

� Independence assumptions:

� Xi independent given C

� Let’s assume that P satisfies independencies must 
prove that P factorizes according to BN:

� P(C,X1,…,Xn) = P(C) ∏i P(Xi|C)

� Use chain rule!
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Let’s start proving it for naïve Bayes –
From BN to joint distribution 1

� Let’s assume that P factorizes according to the BN:

� P(C,X1,…,Xn) = P(C) ∏i P(Xi|C)

� Prove the independence assumptions:

� Xi independent given C

� Actually, (X ⊥ Y | C), ∀ X,Y subsets of {X1,…,Xn}
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Let’s start proving it for naïve Bayes –
From BN to joint distribution 2

� Let’s consider a simpler case

� Grade and SAT score are determined by Intelligence

� P(I,G,S) = P(I)P(G|I)P(S|I)

� Prove that P(G,S|I) = P(G|I) P(S|I)
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Today: The Representation Theorem

BN: Encodes independence
assumptions

Joint probability

distribution:Obtain

If conditional

independencies

in BN are subset of 

conditional 

independencies in P

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P
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Local Markov assumption & I-maps

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent

of its non-descendants given 

its parents 
(Xi ⊥⊥⊥⊥ NonDescendantsXi | PaXi)

� Local independence 
assumptions in BN 
structure G:

� Independence 
assertions of P:

� BN structure G is an  

I-map (independence 
map) if: 
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Factorized distributions

� Given 

� Random vars X1,…,Xn

� P distribution over vars

� BN structure G over same vars

� P factorizes according to G if

Flu Allergy

Sinus

Headache Nose
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BN Representation Theorem –
I-map to factorization

Joint probability

distribution:Obtain

If conditional

independencies

in BN are subset of 

conditional 

independencies in P

G is an I-map of P 
P factorizes 

according to G
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BN Representation Theorem –
I-map to factorization: Proof

Local Markov Assumption:
A variable X is independent

of its non-descendants given its parents

(Xi ⊥⊥⊥⊥ NonDescendantsXi | PaXi)

ALL YOU NEED:

Flu Allergy

Sinus

Headache Nose

Obtain
G is an 

I-map of P 
P factorizes 

according to G

10-708 – Carlos Guestrin 2006 34

Defining a BN

� Given a set of variables and conditional 
independence assertions of P

� Choose an ordering on variables, e.g., X1, …, Xn

� For i = 1 to n

� Add Xi to the network

� Define parents of Xi, PaXi
, in graph as the minimal 

subset of {X1,…,Xi-1} such that local Markov 

assumption holds – Xi independent of rest of  

{X1,…,Xi-1}, given parents PaXi

� Define/learn CPT – P(Xi| PaXi)
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BN Representation Theorem –
Factorization to I-map

G is an I-map of P 
P factorizes 

according to G

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P
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BN Representation Theorem –
Factorization to I-map: Proof

G is an I-map of P 
P factorizes 

according to G

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P

Homework 1!!!! ☺☺☺☺
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The BN Representation Theorem

If joint probability

distribution: Obtain

Then conditional

independencies

in BN are subset of 

conditional 

independencies in P

Joint probability

distribution:Obtain

If conditional

independencies

in BN are subset of 

conditional 

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G
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Independencies encoded in BN

� We said: All you need is the local Markov 
assumption

� (Xi ⊥ NonDescendantsXi | PaXi)

� But then we talked about other (in)dependencies

� e.g., explaining away

� What are the independencies encoded by a BN?

� Only assumption is local Markov

� But many others can be derived using the algebra of 

conditional independencies!!!
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Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent

of its non-descendants given 

its parents 
Z YX

Z YX

Z

YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:
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Understanding independencies in BNs
– Some examples

A

H

C

E

G

D

B

F

K

J

I
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Understanding independencies in BNs
– Some more examples

A

H

C

E

G

D

B

F

K

J

I
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An active trail – Example

A H
C

E G
DB

F

F’’

F’

When are A and H independent?
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Active trails formalized

� A trail X1 – X2 – · · · –Xk is an active trail when 
variables O⊆{X1,…,Xn} are observed if for each 

consecutive triplet in the trail:

� Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

� Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

� Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

� Xi-1→Xi←Xi+1, and Xi is observed (Xi∈O), or one of 

its descendents 
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Active trails and independence?

� Theorem: Variables Xi

and Xj are independent 
given Z⊆{X1,…,Xn} if the 

is no active trail between 
Xi and Xj when variables 
Z⊆{X1,…,Xn} are observed

A

H

C

E

G

D

B

F

K

J

I
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More generally: 
Soundness of d-separation

� Given BN structure G

� Set of independence assertions obtained by   

d-separation:

� I(G) = {(X⊥Y|Z) : d-sepG(X;Y|Z)}

� Theorem: Soundness of d-separation

� If P factorizes over G then I(G)⊆I(P)

� Interpretation: d-separation only captures true 
independencies

� Proof discussed when we talk about undirected models
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Adding edges doesn’t hurt

� Theorem: Let G be an I-map for P, any DAG G’
that includes the same directed edges as G is 
also an I-map for P.

� Proof sketch: 

Flu Allergy

Sinus

Headache Nose
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Existence of dependency when not 
d-separated

� Theorem: If X and Y are 
not d-separated given Z, 
then X and Y are 
dependent given Z under 
some P that factorizes 
over G

� Proof sketch: 
� Choose an active trail 

between X and Y given Z

� Make this trail dependent 

� Make all else uniform 
(independent) to avoid 
“canceling” out influence

A

H

C

E

G

D

B

F

K

J

I
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More generally: 
Completeness of d-separation

� Theorem: Completeness of d-separation

� For “almost all” distributions that P factorize over to G, we 

have that I(G) = I(P)

� “almost all” distributions: except for a set of measure zero of 
parameterizations of the CPTs (assuming no finite set of 

parameterizations has positive measure)

� Proof sketch:
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Interpretation of completeness

� Theorem: Completeness of d-separation

� For “almost all” distributions that P factorize over to G, we 

have that I(G) = I(P)

� BN graph is usually sufficient to capture all 
independence properties of the distribution!!!!

� But only for complete independence:
� P �(X=x⊥Y=y | Z=z), ∀ x∈∈∈∈Val(X), y∈∈∈∈Val(Y), z∈∈∈∈Val(Z)

� Often we have context-specific independence (CSI)
� ∃ x∈∈∈∈Val(X), y∈∈∈∈Val(Y), z∈∈∈∈Val(Z): P �(X=x⊥Y=y | Z=z)

� Many factors may affect your grade

� But if you are a frequentist, all other factors are irrelevant ☺
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What you need to know

� Independence & conditional independence

� Definition of a BN

� The representation theorems 

� Statement

� Interpretation

� d-separation and independence

� soundness 

� existence

� completeness
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Acknowledgements

� JavaBayes applet

� http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho

me/index.html


