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Let’s start on BNs...
" JE
= Consider P(X) ¢ ' P=*
Assign probability to each x; € Val(X;)
ndependent parameters

m Consider P(Xy,...,X,)

How many independent parameters if |[Val(X;)|=k?
n
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What if variables are independent?

" JEE
m What if variables are independent?

(% LX), Vi, (3 1553 4,3 )
Not enough!!! (See homework 1 ©)
Must assume that (X J__l(), vV X,Y subsets of {X;

m Can write

@w many independent parameters now?

n. (K‘I) f‘)“’an\s

Conditional parameterization —
two nodes

m Grade is determined by Intelligence




Conditional parameterization —
three nodes
S

m Grade and SAT score are determined by
Intelligence

s (GLS|)

The naive Bayes model —
Your first real Bayes Net

" SN

m Class variable: C

m Evidence variables: Xy,...,X,
m assume that (X LY | C), V X,Y subsets of {X;,...,X.}




What you need to know (From last class)
" JE

m Basic definitions of probabilities

m Independence

m Conditional independence

m The chain rule

m Bayes rule

m Naive Bayes

Announcements
" 000

m Homework 1:
Out yesterday
Due September 27th — beginning of class!
It's hard — start early, ask questions
m Collaboration policy
OK to discuss in groups
Tell us on your paper who you talked with
Each person must write their own unique paper
No searching the web, papers, etc. for answers, we trust you
want to learn
m Upcoming recitation
Monday 5:30-7pm in Wean 4615A — Matlab Tutorial
m Don’t forget to register to the mailing list at:
https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce
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This class
" J
m We've heard of Bayes nets, we've played with

Bayes nets, we’ve even used them in your
research

m This class, we’'ll learn the semantics of BNs,
relate them to independence assumptions
encoded by the graph

Causal structure
" A
m Suppose we know the following:
The flu causes sinus inflammation
Allergies cause sinus inflammation

Sinus inflammation causes a runny nose
Sinus inflammation causes headaches

m How are these connected?




Possible queries
" JE
m Inference

m Most probable
@ explanation
m Active data

collection

Car starts BN
* JE
m 18 binary attributes

BafteryAge

. B Inference
P(BatteryAge|Starts=f)

m 28 terms, why so fast?

m Not impressed?
HailFinder BN — more than 3% =

022814973 7003040059690390169 terms,




Factored joint distribution -
Preview

Number of parameters
" JEE

(o




Key: Independence assumptions
" JE

Knowing sinus separates the variables from each other

(Marginal) Independence
" JEE
m Flu and Allergy are (marginally) independent

Flu =t

Flu =f

m More Generally: Allergy =t

Allergy = f

Flu =t Flu =f

Allergy =t

Allergy = f




Conditional independence

" JEE
m Flu and Headache are not (marginally) independent

m Flu and Headache are independent given Sinus
infection

m More Generally:

The independence assumption
" JEE

Local Markov Assumption:
A variable X is independent
of its non-descendants given
its parents

(X; L NonDescendantsy; | Pay;)




Local Markov Assumption:

EXplaining adWay |A variable X is independent

of its non-descendants given

o .
Its parents
Allerg

[ |
@ p(xi 1 NonDescendantsy; | Pay;)

What about probabilities?
__Conditional Erobability tables (CPTs)

s
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Joint distribution
= JEE

=

Why can we decompose? Markov Assumption!

ETow T e

A general Bayes net
" J

m Set of random variables

Directed acyclic graph

CPTs

Joint distribution:
n
P(X1,...,Xn) = [] P(X;| Pay,)
i=1
Local Markov Assumption:

A variable X is independent of its non-descendants given its
parents — (Xi L NonDescendantsXi | PaXi)
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Questions????
" JEE
m What distributions can be represented by a BN?

m What BNs can represent a distribution?

m What are the independence assumptions
encoded in a BN?

in addition to the local Markov assumption

Today: The Representation Theorem —
Joint Distribution to BN
" S

|

BN: Encodes independence
assumptions
_If conditional Joint probability
independencies distribution:
in BN are subset of
conditional PO, Xn) = TP (X Pax,)

independencies in P
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Today: The Representation Theorem —
BN to Joint Distribution
O

|

BN: Encodes independence
assumptions

o . Then conditional
If 10|_nt F_"’Ob_ab“lty independencies
distribution: in BN are subset of

P(Xq,..., Xn) = ﬁ P(X;|Pay,) conditional
= independencies in P

Let’s start proving it for naive Bayes

. WStribution to BN

m Independence assumptions:
X; independent given C
m Let’s assume that P satisfies independencies must
prove that P factorizes according to BN:
P(C,X,,....X,) = P(C) IT; P(X|C)
m Use chain rule!
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Let’s start proving it for naive Bayes —

_ From BN to joint distribution 1

m Let’'s assume that P factorizes according to the BN:
P(C,X,...,X,) = P(C) I, P(X|C)

m Prove the independence assumptions:
X; independent given C
Actually, (X LY | C), V X,Y subsets of {X;,....X.}

Let’s start proving it for naive Bayes

_ From BN to joint distribution 2

m Let’s consider a simpler case
Grade and SAT score are determined by Intelligence
P(I,G,S) = P()P(G|)P(S]I)
Prove that P(G,S|l) = P(G|l) P(S|I)
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Today: The Representation Theorem

BN: Encodes independence
assumptions

If conditional
independencies
in BN are subset of
conditional
independencies in P

Joint probability
distribution:

n
P(Xq,...,Xn) = H P(‘Xi | PaXi)
i=1

If joint probability
distribution:

n
P(Xy,...,Xn) = [[ P(X;| Pay,)
=1

Then conditional
independencies
in BN are subset of
conditional
independencies in P

Local Markov assumption & I-maps

" JE
m Local independence
assumptions in BN

structure G:

m Independence
assertions of P:

m BN structure G is an
I-map (independence
map) if:

&
"

Local Markov Assumption:
A variable X is independent
of its non-descendants given

its parents
(Xi L NonDescendantsy; | Pay;)
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Factorized distributions
= JEE

m Given @
Random vars Xi,...,X, :2 ’
P distribution over vars
BN structure G over same vars
. . . eadachg
m P factorizes according to G if

n
P(X1,...,Xn) = [] P(X;| Pay,)
=1

BN Representation Theorem —

. emap to factorization

It conditional Joint probability
independencies distribution:
in BN are subset of .
conditional

independencies in P P(X1,...,Xn) = il;llp (X;| Pax,)

P factorizes
according to G

Gis an I-map of P
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BN Representation Theorem —

. Zalnap to factorization: Proof

P factorizes
according to G

P(Xq,.... Xn) = H P(Xi ‘ PaX;)
i=1

Gisan
I-map of P

ALL YOU NEED:

Local Markov Assumption:
A variable X is independent

of its non-descendants given its parents
(Xi L NonDescendants,; | Pay;)

D=

eadachg
33

Defining a BN
" JEE
m Given a set of variables and conditional
independence assertions of P

m Choose an ordering on variables, e.g., X, ..., X,

mFori=1ton
Add X; to the network

Define parents of X;, Pay, in graph as the minimal
subset of {X;,...,X.{} such that local Markov
assumption holds — X; independent of rest of
{Xy,...,X4}, given parents Pay;

Define/learn CPT — P(Xi| Pay;)

34
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BN Representation Theorem —
Factorization to |-map
S

Then conditional

If joint probability independencies
distribution: in BN are subset of
conditional

n - - -
P(Xq,....Xpn)= ][ P (Xl- | Pay,) independencies in P
i=1

P factorizes

according to G Gis an |-map of P

BN Representation Theorem —
Factorization to |-map: Proof
" JEEEmNR

Then conditional

If joint probability independencies
distribution: in BN are subset of
conditional

7 - - -
P(X1,....,Xn)=[[ P (X,. | paxi) independencies in P
=1

P factorizes

Gis an I-map of P

according to G

Homework 111! ©
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The BN Representation Theorem

s
independencies Joint probabily
istribution:
in BN are subset of distributi
conditional N
independencies in P P(X1,...,Xn) = il;ll P (Xi | ani)

Important because:
Every P has at least one BN structure G

Then conditional

If joint probability independencies
distribution: in BN are subset of
n conditional
P(Xy,.., Xn) = T P (X | Pax,) independencies in P

=1

Important because:
Read independencies of P from BN structure G

Independencies encoded in BN
" JJEE
m We said: All you need is the local Markov
assumption
(X; L NonDescendantsy; | Pay;)
m But then we talked about other (in)dependencies
e.g., explaining away

m What are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!
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Understanding independencies in BNs

— BNs with 3 nodes[Local markov Assumption:
" JE A variable X is independent

: of its non-descendants given
Indirect causal effect: .
its parents

OnOn0)

Indirect evidential effect: Common effect:

QROR0 @\@/@
ORRC

Understanding independencies in BNs

— Some exam’oles
(A)
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Understanding independencies in BNs

— Some more examples
" I

An active trail — Example
" JEE

O—O—@—0— O~ ~C
(F)
)

When are A and H independent?

21



Active trails formalized
" JEE
m Atrail X;—X,—---=X,is an active trail when
variables OC{X,,...,X,} are observed if for each
consecutive triplet in the trail:
Xi.1—>X—X, 1, and X is not observed (X;z O)

Xi.1<Xi<X,,1, and X; is not observed (X;z O)
Xi.1<Xi—>X,,1, and X; is not observed (X, O)

Xi.i—>X«X,, 1, and X, is observed (X,c0), or one of
its descendents

43

Active trails and independence?
" JEE

m Theorem: Variables X;
and X; are independent
given ZC{X,,....X. } if the
is no active trail between
X; and X; when variables

44
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More generally:
Soundness of d-separation
S

m Given BN structure G
m Set of independence assertions obtained by
d-separation:
I(G) = {(XLY|Z) : d-sep4(X;Y|Z)}

m Theorem: Soundness of d-separation
If Pfactorizes over G then |(G)CI(P)

m Interpretation: d-separation only captures true
independencies

m Proof discussed when we talk about undirected models

45

Adding edges doesn't hurt
" JE
m Theorem: Let G be an I-map for P, any DAG G’

that includes the same directed edges as G is
also an I-map for P.

m Proof sketch:

D=

46




Existence of dependency when not

. d-segarated

m Theorem: If Xand Y are
not d-separated given Z,
then X and Y are
dependent given Z under
some P that factorizes
over G

m Proof sketch:

Choose an active trail
between X and Y given Z
Make this trail dependent
Make all else uniform
(independent) to avoid
“canceling” out influence

47

More generally:

Comgleteness of d-separation

m Theorem: Completeness of d-separation

For “almost all” distributions that P factorize over to G, we
have that I(G) = |(P)

“almost all” distributions: except for a set of measure zero of
parameterizations of the CPTs (assuming no finite set of
parameterizations has positive measure)

m Proof sketch:
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Interpretation of completeness
" JEE
m Theorem: Completeness of d-separation

For “almost all” distributions that P factorize over to G, we
have that I(G) = [(P)

m BN graph is usually sufficient to capture all
independence properties of the distribution!!!!
m But only for complete independence:
P E(X=xL1Y=y | Z=2), V¥ xeVal(X), yeVal(Y), zeVal(Z)
m Often we have context-specific independence (CSl)
3 xeVal(X), yeVal(Y), zeVal(2): PE(X=xLY=y | Z=2)
Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant ©

What you need to know
" JJEE
m Independence & conditional independence
m Definition of a BN
m The representation theorems
Statement
Interpretation
m d-separation and independence
soundness
existence
completeness
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Acknowledgements
" JEE
m JavaBayes applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho
me/index.html

51
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