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Chow-Liu

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• Find a maximum weight spanning tree (MST)

• Give directions to edges in MST

•

Algorithm



Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• e.g. (1) & (3)

•

Algorithm

P̂ (xi, xj) = Count(xi,xj)
m

“empirical distribution” # examples
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val = 0,1,2

I(X1, X3) =
∑1

x1=0

∑2
x2=0 P̂ (X1 = x1, X2 = x2) log P̂ (X1=x1,X2=x2)

P̂ (X1=x1)P̂ (X2=x2)

P̂ (X1 = 0, X2 = 1) = Count(X1=0,X2=1)
m

e.g.

I(Xi, Xj) =
∑

xi,xj
P̂ (xi, xj) log P̂ (xi,xj)

P̂ (xi)P̂ (xj)

Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• Find a maximum weight spanning tree (MST)

• tree with the greatest total weight

• greedily add edges, just make sure it’s a tree at every step

•  e.g. Kruskal, Prim

•

Algorithm

∑
(Xi,Xj)∈E I(Xi, Xj)

must reach all nodes

3

4

2

13
2

9
3.5

4 3



Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• Find a maximum weight spanning tree (MST)

• tree with the greatest total weight

• greedily add edges, just make sure it’s a tree at every step

•  e.g. Kruskal, Prim

•

Algorithm

∑
(Xi,Xj)∈E I(Xi, Xj)

3

4

2

13
2

9
3.5

4 3 3

4

2

13
2

9
3.5

4 3 3

4

2

13
2

9
3.5

4 3 3

4

2

13
2

9
3.5

4 3

Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood
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what if there were negative edges?

the algorithm still works

but do you want them?

*hint hint*

Chow-Liu: how-to

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• Find a maximum weight spanning tree (MST)

• Give directions to edges in MST

• pick your favorite node (e.g. sinus??)

• draw arrows going away from it (e.g. BFS, DFS)

•

Algorithm
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Chow-Liu: why it works

• Goal: find a tree that maximizes the data likelihood

• Compute weight I(Xi,Xj) of each (possible) edge (Xi,Xj)

• Find a maximum weight spanning tree (MST)

• Give directions to edges in MST

•

Algorithm

Just two questions:

 1. why can we represent data likelihood as 

sum of I(Xi,Xj) over edges?

 2. why can we pick any direction for edges in 

the tree?* *as long as it’s a tree

1. why can we represent data likelihood as sum of I(Xi,Xj) over edges?

   2. why can we pick any direction for edges in the tree?

• data likelihood given (directed) edges

• information theoretic quantity

• max only part that matters

• tree! (Pa_Xi = just one other node) => I(Xi,Pa_Xi) = I(Xi,Xj)

• directed edges? nah. I(Xi,Xj) = I(Xj,Xi)

logP (D|G, θG) =
∑m

j=1

∑n
i=1 logP (xi|paXi)

logP (D|G, θG) = m
∑n

i=1(I(Xi, PaXi)−H(Xi))

argmaxGlogP (D|G, θG) = argmaxG

∑n
i=1 I(Xi, PaXi)

argmaxGlogP (D|G, θG) = argmaxG

∑
(Xi,Xj)∈E I(Xi, Xj)

I(Xi, Xj) =
∑

xi,xj
P̂ (xi, xj) log P̂ (xi,xj)

P̂ (xi)P̂ (xj)



1. why can we represent data likelihood as sum of I(Xi,Xj) over edges?

   2. why can we pick any direction for edges in the tree?

• data likelihood given (directed) edges

• information theoretic quantity

• max only part that matters

• tree! (Pa_Xi = just one other node) => I(Xi,Pa_Xi) = I(Xi,Xj)

• directed edges? nah. I(Xi,Xj) = I(Xj,Xi)

• so directions don’t matter 

• as long as no v-structures

logP (D|G, θG) =
∑m

j=1

∑n
i=1 logP (xi|paXi)

logP (D|G, θG) = m
∑n

i=1(I(Xi, PaXi)−H(Xi))

argmaxGlogP (D|G, θG) = argmaxG

∑n
i=1 I(Xi, PaXi)

argmaxGlogP (D|G, θG) = argmaxG

∑
(Xi,Xj)∈E I(Xi, Xj)

break

I(Xi, Xj) =
∑

xi,xj
P̂ (xi, xj) log P̂ (xi,xj)

P̂ (xi)P̂ (xj)

TAN::Tree-Augmented Naive Bayes

• NB + Chow-Liu

• Same old Chow-Liu on features, but with I(Xi,Xj|c) instead of I(Xi,Xj)

• Then learn P(Xi | Pa(Xi), c) as before

• Remember this algorithm for the future

c

X2X1 X3 X4



the usual difficulties

• In general, NP-hard to learn structure with #parents > 1

• BIC score: approximation of Bayesian score 

• Trees - “easy” to learn: 

• one parent - no v-structures 

• can do this greedy search with completely uncoupled scores

“regularization”

maximizing still NP-hard

try e.g.

Announcing

• no recitation next week - happy thanksgiving!

• better sleep...!


