Basics on Probability

Jingrui He
09/11/2007

Coin Flips

\square You flip a coin

- Head with probability 0.5
- You flip 100 coins
- How many heads would you expect

Coin Flips cont.

\square You flip a coin

- Head with probability p
- Binary random variable
- Bernoulli trial with success probability p
- You flip k coins
- How many heads would you expect
- Number of heads X: discrete random variable
- Binomial distribution with parameters k and p

Discrete Random Variables

- Random variables (RVs) which may take on only a countable number of distinct values
- E.g. the total number of heads X you get if you flip 100 coins
$\square X$ is a RV with arity k if it can take on exactly one value out of $\left\{x_{1}, \ldots, x_{k}\right\}$
- E.g. the possible values that X can take on are 0 , $1,2, \ldots, 100$

Probability of Discrete RV

\square Probability mass function (pmf): $\mathrm{P}\left(\mathrm{X}=x_{i}\right)$
\square Easy facts about pmf

- $\sum_{i} \mathrm{P}\left(\mathrm{X}=x_{i}\right)=1$
- $\mathrm{P}\left(\mathrm{X}=x_{i} \cap \mathrm{X}=x_{j}\right)=0$ if $i \neq j$
- $\mathrm{P}\left(\mathrm{X}=x_{i} \cup \mathrm{X}=x_{j}\right)=\mathrm{P}\left(\mathrm{X}=x_{i}\right)+\mathrm{P}\left(\mathrm{X}=x_{j}\right)$ if $i \neq j$
- $\mathrm{P}\left(\mathrm{X}=x_{1} \cup \mathrm{X}=x_{2} \cup \ldots \cup \mathrm{X}=x_{k}\right)=1$

Common Distributions

- Uniform $\mathrm{X} \square U[1, \ldots, N]$
- X takes values $1,2, \ldots, N$
- $\mathrm{P}(\mathrm{X}=i)=1 / N$
- E.g. picking balls of different colors from a box
$\square \operatorname{Binomial} \mathrm{X} \square \operatorname{Bin}(n, p)$
- X takes values $0,1, \ldots, n$
- $\mathrm{P}(\mathrm{X}=i)=\binom{n}{i} p^{i}(1-p)^{n-i}$
- E.g. coin flips

Coin Flips of Two Persons

\square Your friend and you both flip coins

- Head with probability 0.5
- You flip 50 times; your friend flip 100 times
- How many heads will both of you get

Joint Distribution

\square Given two discrete RVs X and Y, their joint distribution is the distribution of X and Y together

- E.g. P(You get 21 heads AND you friend get 70 heads)
$\square \sum_{x} \sum_{y} \mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)=1$
- E.g.
$\sum_{i=0}^{50} \sum_{j=0}^{100} \mathrm{P}($ You get i heads AND your friend get j heads $)=1$

Conditional Probability

$\square \mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y)$ is the probability of $\mathrm{X}=x$, given the occurrence of $\mathrm{Y}=y$

- E.g. you get 0 heads, given that your friend gets 61 heads
$\square \mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y)=\frac{\mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)}{\mathrm{P}(\mathrm{Y}=y)}$

Law of Total Probability

\square Given two discrete RVs X and Y , which take values in $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$, We have

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{X}=x_{i}\right) & =\sum_{j} \mathrm{P}\left(\mathrm{X}=x_{i} \cap \mathrm{Y}=y_{j}\right) \\
& =\sum_{j} \mathrm{P}\left(\mathrm{X}=x_{i} \mid \mathrm{Y}=y_{j}\right) \mathrm{P}\left(\mathrm{Y}=y_{j}\right)
\end{aligned}
$$

Marginalization

Marginal Probability

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{X}=x_{i}\right) & =\sum_{j} \mathrm{P}\left(\mathrm{X}=x_{i} \cap \mathrm{Y}=y_{j}\right) \\
& =\sum_{j} \mathrm{P}\left(\mathrm{X}=x_{i} \mid \mathrm{Y}=y_{j}\right) \mathrm{P}\left(\mathrm{Y}=y_{j}\right)
\end{aligned}
$$

Conditional Probability Marginal Probability

Bayes Rule

$\square \mathrm{X}$ and Y are discrete RVs...

$$
\begin{gathered}
\mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y)=\frac{\mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)}{\mathrm{P}(\mathrm{Y}=y)} \\
\mathrm{P}\left(\mathrm{X}=x_{i} \mid \mathrm{Y}=y_{j}\right)=\frac{\mathrm{P}\left(\mathrm{Y}=y_{j} \mid \mathrm{X}=x_{i}\right) \mathrm{P}\left(\mathrm{X}=x_{i}\right)}{\sum_{k} \mathrm{P}\left(\mathrm{Y}=y_{j} \mid \mathrm{X}=x_{k}\right) \mathrm{P}\left(\mathrm{X}=x_{k}\right)}
\end{gathered}
$$

Independent RVs

\square Intuition: X and Y are independent means that $\mathrm{X}=x$ neither makes it more or less probable that $\mathrm{Y}=y$
\square Definition: X and Y are independent iff $\mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)=\mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y)$

More on Independence

- $\quad \mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y)=\mathrm{P}(\mathrm{X}=x) \mathrm{P}(\mathrm{Y}=y)$
$\mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y)=\mathrm{P}(\mathrm{X}=x) \quad \mathrm{P}(\mathrm{Y}=y \mid \mathrm{X}=x)=\mathrm{P}(\mathrm{Y}=y)$
\square E.g. no matter how many heads you get, your friend will not be affected, and vice versa

Conditionally Independent RVs

\square Intuition: X and Y are conditionally independent given Z means that once Z is known, the value of X does not add any additional information about Y
\square Definition: X and Y are conditionally independent given Z iff

$$
\mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y \mid \mathrm{Z}=z)=\mathrm{P}(\mathrm{X}=x \mid \mathrm{Z}=z) \mathrm{P}(\mathrm{Y}=y \mid \mathrm{Z}=z)
$$

More on Conditional Independence

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=x \cap \mathrm{Y}=y \mid \mathrm{Z}=z)=\mathrm{P}(\mathrm{X}=x \mid \mathrm{Z}=z) \mathrm{P}(\mathrm{Y}=y \mid \mathrm{Z}=z) \\
& \mathrm{P}(\mathrm{X}=x \mid \mathrm{Y}=y, \mathrm{Z}=z)=\mathrm{P}(\mathrm{X}=x \mid \mathrm{Z}=z) \\
& \mathrm{P}(\mathrm{Y}=y \mid \mathrm{X}=x, \mathrm{Z}=z)=\mathrm{P}(\mathrm{Y}=y \mid \mathrm{Z}=z)
\end{aligned}
$$

Monty Hall Problem

- You're given the choice of three doors: Behind one door is a car; behind the others, goats.
- You pick a door, say No. 1
\square The host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- Do you want to pick door No. 2 instead?

Monty Hall Problem: Bayes Rule

$\square C_{i}$: the car is behind door $i, i=1,2,3$
ロ $P\left(C_{i}\right)=1 / 3$
$\square H_{i j}$: the host opens door j after you pick door i
$\square P\left(H_{i j} \mid C_{k}\right)=\left\{\begin{array}{cc}0 & i=j \\ 0 & j=k \\ 1 / 2 & i=k \\ 1 & i \neq k, j \neq k\end{array}\right.$

Monty Hall Problem: Bayes Rule cont.

- WLOG, $i=1, j=3$
$\square P\left(C_{1} \mid H_{13}\right)=\frac{P\left(H_{13} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(H_{13}\right)}$
$\square P\left(H_{13} \mid C_{1}\right) P\left(C_{1}\right)=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$

Monty Hall Problem: Bayes Rule cont.

$$
\begin{aligned}
\square P\left(H_{13}\right) & =P\left(H_{13}, C_{1}\right)+P\left(H_{13}, C_{2}\right)+P\left(H_{13}, C_{3}\right) \\
& =P\left(H_{13} \mid C_{1}\right) P\left(C_{1}\right)+P\left(H_{13} \mid C_{2}\right) P\left(C_{2}\right) \\
& =\frac{1}{6}+1 \cdot \frac{1}{3} \\
& =\frac{1}{2}
\end{aligned}
$$

- $P\left(C_{1} \mid H_{13}\right)=\frac{1 / 6}{1 / 2}=\frac{1}{3}$

Monty Hall Problem: Bayes Rule cont.

व $P\left(C_{1} \mid H_{13}\right)=\frac{1 / 6}{1 / 2}=\frac{1}{3}$

- $P\left(C_{2} \mid H_{13}\right)=1-\frac{1}{3}=\frac{2}{3}>P\left(C_{1} \mid H_{13}\right)$
\square You should switch!

Continuous Random Variables

\square What if X is continuous?
\square Probability density function (pdf) instead of probability mass function (pmf)

- A pdf is any function $f(x)$ that describes the probability density in terms of the input variable x.

PDF

- Properties of pdf
- $f(x) \geq 0, \forall x$
- $\int_{-\infty}^{+\infty} f(x)=1$
- $f(x) \leq 1$???
\square Actual probability can be obtained by taking the integral of pdf
- E.g. the probability of X being between 0 and 1 is

$$
\mathrm{P}(0 \leq X \leq 1)=\int_{0}^{1} f(x) d x
$$

Cumulative Distribution Function

- $F_{\mathrm{X}}(v)=\mathrm{P}(\mathrm{X} \leq v)$
\square Discrete RVs
- $F_{\mathrm{X}}(v)=\sum_{v_{i}} \mathrm{P}\left(\mathrm{X}=v_{i}\right)$
- Continuous RVs
- $F_{\mathrm{X}}(v)=\int_{-\infty}^{v} f(x) d x$
- $\frac{d}{d x} F_{\mathrm{X}}(x)=f(x)$

Common Distributions

$\square \operatorname{Normal} \mathrm{X} \square N\left(\mu, \sigma^{2}\right)$

- $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, x \in \square$
- E.g. the height of the entire population

Common Distributions cont.

$\square \operatorname{Beta} \mathrm{X} \square \operatorname{Beta}(\alpha, \beta)$

- $f(x ; \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, x \in[0,1]$
- $\alpha=\beta=1$: uniform distribution between 0 and 1
- E.g. the conjugate prior for the parameter p in Binomial distribution

Joint Distribution

\square Given two continuous RVs X and Y , the joint pdf can be written as $f_{\mathrm{X}, \mathrm{Y}}(x, y)$
$\square \int_{x} \int_{y} f_{\mathrm{X}, \mathrm{Y}}(x, y) d x d y=1$

Multivariate Normal

\square Generalization to higher dimensions of the one-dimensional normal

Moments

\square Mean (Expectation): $\mu=E(\mathrm{X})$

- Discrete RVs: $E(\mathrm{X})=\sum_{v_{i}} v_{i} \mathrm{P}\left(\mathrm{X}=v_{i}\right)$
- Continuous RVs: $E(\mathrm{X})=\int_{-\infty}^{+\infty} x f(x) d x$
\square Variance: $V(\mathrm{X})=E(\mathrm{X}-\mu)^{2}$
- Discrete RVs: $V(\mathrm{X})=\sum_{v_{i}}\left(v_{i}-\mu\right)^{2} \mathrm{P}\left(\mathrm{X}=v_{i}\right)$
- Continuous RVs: $V(\mathrm{X})=\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x$

Properties of Moments

- Mean
- $E(\mathrm{X}+\mathrm{Y})=E(\mathrm{X})+E(\mathrm{Y})$
- $E(a \mathrm{X})=a E(\mathrm{X})$
- If X and Y are independent, $E(\mathrm{XY})=E(\mathrm{X}) \cdot E(\mathrm{Y})$
- Variance
- $V(a \mathrm{X}+b)=a^{2} V(\mathrm{X})$
- If X and Y are independent, $V(\mathrm{X}+\mathrm{Y})=V(\mathrm{X})+V(\mathrm{Y})$

Moments of Common Distributions

- Uniform $\mathrm{X} \square U[1, \ldots, N]$
- Mean $(1+N) / 2$; variance $\left(N^{2}-1\right) / 12$
$\square \operatorname{Binomial} \mathrm{X} \square \operatorname{Bin}(n, p)$
- Mean $n p$; variance $n p^{2}$
\square Normal X $\square N\left(\mu, \sigma^{2}\right)$
- Mean μ; variance σ^{2}
$\square \operatorname{Beta} \mathrm{X} \square \operatorname{Beta}(\alpha, \beta)$
- Mean $\alpha /(\alpha+\beta)$; variance $\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$

Probability of Events

$\square \mathrm{X}$ denotes an event that could possibly happen

- E.g. X="you will fail in this course"
$\square \mathrm{P}(\mathrm{X})$ denotes the likelihood that X happens, or $\mathrm{X}=$ true
- What's the probability that you will fail in this course?
$\square \Omega$ denotes the entire event set
- $\Omega=\{\mathrm{X}, \overline{\mathrm{X}}\}$

The Axioms of Probabilities

ㅁ $0<=\mathrm{P}(\mathrm{X})<=1$

- $\mathrm{P}(\Omega)=1$
$\square \mathrm{P}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2} \cup \ldots\right)=\sum_{i} \mathrm{P}\left(\mathrm{X}_{i}\right)$, where X_{i} are disjoint events
\square Useful rules
- $\mathrm{P}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}\right)=\mathrm{P}\left(\mathrm{X}_{1}\right)+\mathrm{P}\left(\mathrm{X}_{2}\right)-\mathrm{P}\left(\mathrm{X}_{1} \cap \mathrm{X}_{2}\right)$
- $\mathrm{P}(\overline{\mathrm{X}})=1-\mathrm{P}(\mathrm{X})$

Interpreting the Axioms

