Fast State Discovery for HMM Model Selection and Learning

Sajid M. Siddiqi
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Choosing the number of hidden states and
their topology (model selection) and esti-
mating model parameters (learning) are im-
portant problems for Hidden Markov Mod-
els. This paper presents a new state-splitting
algorithm that addresses both these prob-
lems. The algorithm models more informa-
tion about the dynamic context of a state
during a split, enabling it to discover under-
lying states more effectively. Compared to
previous top-down methods, the algorithm
also touches a smaller fraction of the data
per split, leading to faster model search and
selection. Because of its efficiency and ability
to avoid local minima, the state-splitting ap-
proach is a good way to learn HMMs even if
the desired number of states is known before-
hand. We compare our approach to previ-
ous work on synthetic data as well as several
real-world data sets from the literature, re-
vealing significant improvements in efficiency
and test-set likelihoods. We also compare to
previous algorithms on a sign-language recog-
nition task, with positive results.

1 Introduction

Consider an observation sequence where the observa-
tion is correlated to the dynamics of an unobserved
state variable, as in Figure 1(A). Hidden Markov Mod-
els (HMMs) are a popular tool for modeling the sta-
tistical properties of such sequences, which are ubig-
uitous in the real world. HMMs have been used ex-
tensively in speech recognition (Rabiner, 1989), bioin-
formatics (Krogh et al., 1994), information extrac-
tion (Seymore et al., 1999) and other areas.

There has been extensive work on learning the para-
meters of a fixed-topology HMM. Several algorithms

Geoffrey J. Gordon
Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213

Andrew W. Moore
Google, Inc.
Pittsburgh, PA 15213

Figure 1: A. A time series from a 4-state HMM. Obser-
vations from the two states down-middle-up and up-
middle-down overlap and are indistinguishable with-
out temporal information. B. The HMM topology
learned by ML-SSS and Li-Biswas on the data in A.
C. The correct HMM topology, successfully learned by
the STACS algorithm.

for finding a good number of states and correspond-
ing topology have been investigated as well, but none
of these are used in standard practice. Normally, the
topology of an HMM is chosen a priori and a hill-
climbing method is used to determine parameter set-
tings. For model selection, several HMMs are typically
trained with different numbers of states and the best
of these is chosen. There are two problems with this
approach: firstly, training an HMM from scratch for
each feasible topology may be computationally expen-
sive. Secondly, since parameter learning is prone to
local minima, we may inadvertently end up compar-
ing a ‘good’ N7 state HMM to a ‘bad’ Ny state HMM.
The standard solution to this is to train several HMMs
for each topology with different parameter initializa-
tions in order to overcome local minima, which how-
ever compounds the computational cost.

Because of these issues, many researchers have pre-
viously investigated top-down state-splitting methods
as an appealing choice for topology learning in HMMs
with continuous observation densities. This paper pro-
poses Simultaneous Temporal and Contextual Splitting
(STACS), a new top-down model selection and learn-
ing algorithm that constructs an HMM by alternat-

ing between parameter learning and model selection
while incrementally increasing the number of states.
Candidate models are generated by splitting existing
states and optimizing relevant parameters, and are
then evaluated for possible selection. Unlike previ-
ous methods, however, the splitting is carried out in
a way that accounts for both contextual (observation
density) and temporal (transition model) structure in
the underlying data in a more general manner than
the state-splitting methods mentioned above, which
fail on the simple example in Figure 1(A). In this re-
search, we closely examine these competing methods
and illustrate the key differences between them and
STACS, followed by an extensive empirical compari-
son. Since hard-updates training is a widely used al-
ternative to soft-updates methods in HMMs because
of its efficiency, we also examine a hard-updates ver-
sion of our algorithm, Viterbi STACS (V-STACS), and
explore its pros and cons for model selection and learn-
ing with respect to the soft-updates method. We also
evaluate STACS as an alternative learning algorithm
for models of predetermined size.

It should also be noted that STACS can be gener-
alized to model selection in Dynamic Bayesian Net-
works or other directed graphical models that have
hidden states of undetermined cardinality, since the
sum-product and max-product algorithms for infer-
ence and learning in these models are generalizations
of the Baum-Welch and Viterbi algorithms for HMMs.

2 Preliminaries

In defining HMMs, we will use the notation and ter-
minology of Rabiner (1989). Let Oq,...,Or be a se-
quence of M-dimensional observations of size T. An
N-state HMM) is characterized by its N x N transi-
tion matrix, observation model and N x 1 prior distri-
bution vector. Let ¢; denote the state the HMM is in
at time ¢, which can hold values from sq,...,sy.The
transition matrix is represented as A = {a;;}, where
a;j = P(qi41 = s; | ¢ = s;). The observation model
is B = {bj(x)} where bj(zx) = P(O;y = = | ¢ =
sj), the observation probability distribution in state
j. m™ = {m;} is the initial state probability distrib-
ution, where m; = P(q1 = s;). The posterior dis-
tributions over state occupancy and transitions are
typically denoted by v:(s) = P(¢: = s | O1.7) and
&(s,8") = P(gt = 8,qe41 = 8’ | O1.7), respectively.

Standard HMM algorithms for path inference and pa-
rameter learning are all O(T'N?), though faster HMM
algorithms for large state-spaces have been explored
in Felzenszwalb et al. (2003) and Siddigi and Moore
(2005). The Viterbi algorithm (Viterbi, 1967) is a dy-
namic programming algorithm for finding the optimal

Figure 2: An illustration of the overly restrictive splits
in ML-SSS. A. Original un-split state s*. B. A contez-
tual split of s* in the ML-SSS algorithm. States sy and
s1 must have the same transition structures and dif-
ferent observation models. C. A temporal split. State
so has the incoming transition model of s* and s; has
its outgoing ones.

hidden state sequence. Baum-Welch (Rabiner, 1989)
is an Expectation-Maximization (EM) algorithm for
finding parameters that locally maximize P(O | \),
and Viterbi Training is the equivalent hard-updates
learning algorithm which is faster by a large constant
factor but also less precise since it assumes the data
at each timestep is from a single hidden state. Viterbi
training yields parameters that maximize the complete
likelihood P(O, @ | A), where @ is a sequence of hidden
states that corresponds to the observed data sequence.

To determine the stopping point for state-splitting,
we use the Bayesian Information Criterion (Schwarz,
1978), or BIC score, which asymptotically converges to
the true posterior probability of the model assuming
an uninformative prior.

3 Related Work

There has been extensive work on HMM model selec-
tion. However, most of this work is either tailored
to a specific application or is not scalable to learn-
ing topologies with more than a few states. The most
successful approaches are greedy algorithms that are
either bottom-up (i.e., starting with an overly large
number of states) or top-down (i.e., starting with a
small or single-state model). One disadvantage of
bottom-up approaches is having to know an upper
bound on the number of states beforehand. In some
cases, one also faces the problem of deciding which
of N? pairs of states to merge. We therefore favor
top-down methods for HMM model selection, espe-
cially when the number of states may be large. We
define some terminology first: split design refers to
the process of splitting an HMM state, optimizing pa-
rameters and creating an HMM for possible selection.
HMMSs created by designing different splits are called
candidates. The two major alternative top-down ap-
proaches can be summarized as follows:

Li-Biswas: Li and Biswas (1999) decrease the num-

ber of model selection candidates to two: splitting the
state with largest observation density variance, and
merging the two states with closest means. These
candidates are then optimized with EM on the entire
HMM. The candidate with better likelihood is cho-
sen at each step, terminating when the candidates are
worse than the original model. The primary drawback
with this heuristic is that it ignores dynamic struc-
ture while deciding which states to split: a single low-
variance state might actually be masking two Markov
states with overlapping densities, making it a better
split candidate. Training two candidates with full EM
is also inefficient especially when they may not be the
best candidates, as our empirical evaluations will show.

ML-SSS: Mazimum-Likelihood — Successive-State-
Splitting (Ostendorf & Singer, 1997) is designed
to learn HMMs that model contextual (observation
density) and temporal (transition model) variation
in phones for continuous speech recognition systems.
ML-SSS incrementally builds an HMM by splitting
one state at a time, considering all N possible splits as
candidates in each timestep. However, instead of full
EM for each candidate, the split on state s* into sg
and s; (figure 2) is trained by a constrained iterative
optimization of the expected likelihood gain from per-
forming the split, while holding all v;(s) and &(s, s)
constant for s,s’ # s*. The iterations are performed
over all data points ¢ with non-zero posterior occu-
pancy probability. Each state is considered for two
kinds of splits, a conteztual split (Figure 2(B)) that
optimizes only observation densities, and a temporal
split (figure 2(C)) that also optimizes self-transition
and inter-split-state transition probabilities.

Though more efficient than brute-force and Li-Biswas,
the fact that ML-SSS does not model transitions to
and from other states while splitting makes it fail to de-
tect underlying Markov states with overlapping densi-
ties. For example, ML-SSS with BIC converges on the
HMM in figure 1(B) while the true underlying HMM,
successfully found by STACS, is shown in figure 1(C).
Also, having to consider all data points with non-zero
posterior probability ~;(s*) per split is expensive in
dense data with overlapping densities.

4 Simultaneous Temporal and
Contextual Splits

The primary idea behind STACS is to trade off the
amount of contextual information considered per split
in return for increased modeling of temporal informa-
tion. Here, contextual information is quantified by the
number of data points considered during split design,
and temporal information by the number of transition
parameters optimized.

Specifically, we model the posterior belief at each

timestep by a delta function at the Viterbi-optimal
state. Each split is optimized over data points with
non-zero belief in this approximated posterior, which
number T//N on average. This is in contrast to ML-
SSS where each split could consider O(T) timesteps.
Let T'* denote the set of timesteps owned by state s in
the Viterbi path. We choose the split that maximizes
the partially observed likelihood P(O, QiT‘q A) at each
model selection step, with all timesteps fixed at their
optimal path states except those in T%.

The increase in efficiency afforded by this simplifica-
tion allows us to model more dynamic structure during
splitting in two ways that are distinct from ML-SSS.
Firstly, our split design operation updates all tran-
sition parameters related to a state, both incoming
and outgoing, rather than just the inter-split-state and
self-transition parameters. Secondly, we can afford to
run our split design operation until convergence rather
than for a fixed number of iterations as in ML-SSS.
We experimentally found both these enhancements to
be essential in achieving good splits on states with
overlapping densities, such as in Figure 1. We also
eliminate the distinction between temporal and con-
textual splits, performing a single split operation per
state and allowing it to model both contextual and
temporal HMM parameters.

4.1 Splitting Algorithms

We now describe the hard-updates and soft-updates
splitting techniques used by V-STACS and STACS.
First, some notation: when considering a split of state
s, HMM parameters related to state s (denoted by Ay),
including incoming and outgoing transition probabili-
ties, are replaced by parameters for two offspring states
s1 and sz (denoted by As, s,). The set of observation
indices assigned to state s, denoted by T, are now as-
sumed to have unknown hidden state values, but only
in the restricted state space {s1,s2}. Therefore when
searching for a locally optimal candidate, only the pa-
rameters As, s, change, and the only observations that
will affect them are those at timesteps 1%, i.e., Ors.
Let A\, denote parameters not related to state s.

4.1.1 Method 1: Split-State Viterbi Training

For split design, V-STACS uses Split-State Viterbi
Training, which learns locally optimal values for the
parameters Ay, 5, by alternating the following two
steps until convergence:

1. E-step:
QY. «— argmaxq P(OTS7Q’\‘TS,Q | Ao AL, s,)

2. M-step:
)\v+1 < arg maxy P(OTS y QtTS) Qii)“

81,82

A\sv >‘)

Here, Q(TS denotes the base model Viterbi path ex-
cluding timesteps belonging to state s. The first step
above computes an optimal path through the split-
state space. The second step updates the relevant
HMM parameters with their MLE estimates for a fully
observed path, which are simply ratios of counts for
transition parameters, and averages of subsets of Ors
for the observation parameters. Convergence occurs
when the state assignments on 7 stop changing. The
E-step of Split-State Viterbi Training is carried out us-
ing an adaptation of Viterbi (called Split-State Viterbi,
pseudocode in appendix) to the task of finding an opti-
mal path over a binary state space through a subset of
the data while constraining the rest to specific states.

The running time is clearly linear in the number of
non-determined timesteps |T°| since each maximiza-
tion in the algorithm is always over 2 elements no
matter how large the actual HMM gets. Note that
we allow the incoming and outgoing transition para-
meters of s1,$2 to be updated as well, which allows
better modeling of dynamic structure during split de-
sign.

4.1.2 Method 2: Split-State Baum-Welch

Split-State Baum-Welch also learns locally optimal
values for the state-split parameters A, s,, and like
Baum-Welch it does so by modeling the posterior over
the hidden state space which in this case consists of
{51, s2}. The following two steps are iterated:

1. E-step: Calculate stepwise occupancy and transi-
tion probabilities {v*, &%} from
{75 AY, 6y 01 ,QiTS }, compute expectations.

2. M-step:
{>‘51752}U+1 < arginaxy P(OTS) QiTS

As> A)

The E-step step is carried out using a specialized
two-state partially-constrained-path version of the
Forward-Backward algorithm to first calculate the for-
ward and backward variables, which then give the re-
quired v° and £° values for s; and so. The idea is the
same as Split-State Viterbi but with soft counts and
updates. The entire algorithm is O(N | T |), since the
update step requires summations over all observations
in T for at least IV transition parameters.

It is important to note that, though slower, Split-
State Baum-Welch searches a larger space of candi-
date models than Split-State Viterbi Training, per-
forming better on ‘difficult’ splits with high hidden
variable entropy just as Baum-Welch performs better
than Viterbi Training in such situations. Like the tem-
poral split in ML-SSS, it is not possible to compute the
updated overall likelihood from this split algorithm, so

convergence is heuristically based on differences in the
split-state « variables in successive timesteps.

4.2 Efficient Design and Scoring of
Candidates

So far we have been successful in keeping the candidate
search process an efficient O(NT) procedure, since
each split design operation is at most O(N | T® |),
| T¢ | is O(T/N) amortized, and we perform N split
design operations per timestep. Note that ML-SSS
also achieves O(NT) splits but via a different route:
each of N split-designs is O(T') because incoming and
outgoing transitions are not learned, and each state
can have O(T) data points with non-zero posterior
probability.

To keep the overall algorithm efficient, we first choose
the best candidate according to a fast-to-compute cri-
terion, the updated Viterbi likelihood after optimiz-
ing the split parameters. We then compare this single
candidate to the base model using BIC. Other approx-
imations to the Bayes factor would also work. Com-
puting the likelihood for BIC is an O(T'N?) task, but
we can afford this expense since we only have to do
it for one candidate model. In V-STACS , the likeli-
hood is approximated by the Viterbi path likelihood as
in the Viterbi approxzimation (Ney, 1990). This avoids
O(TN?) operations in V-STACS since the Viterbi path
can be updated efficiently after split design.

5 Experiments

In our experiments we seek to compare STACS and
V-STACS to Li-Biswas, ML-SSS, and multi-restart
Baum-Welch, in these areas:

e Learning models of predetermined size
e Model selection capability

e Classification accuracy

We are concerned both with the quality of models
learned, as indicated by test-set likelihoods and BIC
scores, as well as running-time efficiency.

5.1 Algorithms and Data Sets

As described earlier, STACS uses Baum-Welch for pa-
rameter learning and Split-State Baum-Welch for split
design. V-STACS uses Viterbi Training and Split-
State Viterbi Training, followed by Baum-Welch on
the final model. ML-SSS (with a tweak for general-
izing to non-chain topologies) and Li-Biswas were im-
plemented for comparison.

running time(s)

x10*

—e—STACS
—=—V-STACS 1.8}
—o— Li-Biswas !
——ML-SSS -1.90
o b
o
@ -2
Q
s3]
-2.1
- ifé%? s 22 —— STACS(stops at N=36)
. Li-Bi 1 = =VV-STACS (stops at N=33)
I N:L_'Ss;’;s -2.3 Li-Biswas (stops at N=20) [
vy = : . - = = =ML-SSS (stops at N=10)
20 40 60 2 3 4 24 1000 2000 3000 4000 5000
number of states running time (s) x 10* running time (s)

Figure 3: A. Running time vs. number of final states on the ROBOT data set. B. Log-Likelihood vs. running
time for learning a 40-state model on the ROBOT data. C. BIC score vs. running time on the MOCAP data when
allowed to stop splitting autonomously. The plots are representative.

Table 1: Test-set log-likelihoods (scaled by dataset size) and training times of HMMs learned using STACS,V-
STACS, ML-SSS and regular Baum-Welch with 5 random restarts. The best score and fastest time in each
row are highlighted. Li-Biswas had similar results as ML-SSS, and slower running times, for those N where it

completed successfully.

Data STACS V-STACS ML-SSS Baum-Welch | STACS V-STACS ML-SSS Baum-Welch
N=5 N =40

ROBOT -2.41 -2.41 -2.44 -2.47 -1.75 -1.76 -1.80 -1.78
40s 13s 70s 99s 11790s 1875s 16048s 18460s

MOCAP -4.46 -4.46 -4.49 -4.46 -4.32 -4.29 -4.30 -4.37
34s 14s 49s 65s 5474 1053s 6430s 7315s

MLOG -8.78 -8.78 -10.49 -8.78 -8.25 -8.26 -10.49 -8.38
67s 15s 9s 750s 29965s 81465 1818s 42250s

AUSL -3.60 -3.60 -3.60 -3.43 -2.89 -2.77 -3.08 -2.99
39s 14s 33s 110s 7923s 1550s 8465s 221455
VOWEL -4.69 -4.69 -4.68 -4.67 -4.34 -4.32 -4.44 -4.33
13s 8s 37s 95s 2710s 1011s 2874s 6800s
N =20 N =60

ROBOT | -1.93 -1.93 -1.98 -1.96 -1.65 -1.64 -1.69 -1.75
2368s 512s 2804s 4890s 38696s 6086s 51527s 35265s

MOCAP -4.38 -4.37 -4.33 -4.33 -4.23 -4.26 -4.23 -4.46
899s 203s 800s 30855 16889s 3470s 18498s 209505

MLOG -8.34 -8.34 -10.49 -8.40 -8.25 -8.23 -8.29 -8.39
3209s 1173s 28/s 12350s 116891s 29379s 108358s 87150s

AUSL -3.16 -3.18 -3.21 -3.13 -2.71 -2.71 -2.86 -2.89
1128s 284s 1410s 36555 23699s 4613s 251565 60035s

VOWEL | -4.40 -4.41 -4.44 -4.41 -4.30 -4.31 -4.44 -4.31
548s 189s 1009s 12855 8296 2714s 4407s 15360s

We choose a range of real-world data that has ap-
peared in previous work on sequential data mod-
els. These are RoBoT, Mocapr, MLoG, AUSL and
VowEL. RoBOT (Howard & Roy, 2003) contains laser
readings from a Pioneer robot moving indoors. Mo-
CAP(Ren et al., 2005) contains motion capture data
from people performing various actions. AUSL and
VOWEL are from the UCI KDD archive (D.J. New-

man & Merz, 1998). We also use AUSL for measuring
classification accuracy. MLOG was previously used in
a paper on large HMMs (Siddiqi & Moore, 2005).

5.2 Learning HMMs of Predetermined Size

We first evaluate performance in learning models of
predetermined size. In Table 1 we show test-set log-

likelihoods normalized by data set size along with
running times for experiments using STACS and V-
STACS along with ML-SSS and regular Baum-Welch
with 5 restarts. Here we ignore the stopping criterion
and perform the best split at each model selection step
until N is reached. For Baum-Welch, the best score
from its five runs is given along with the total time.
Li-Biswas results are not shown because most desired
model sizes were not reached. However, the instances
that did successfully complete indicate that Li-Biswas
is much slower than any other method considered, even
Baum-Welch, while learning models with similar scores
as ML-SSS.

We note that STACS and V-STACS have the fastest
running times for any given HMM size and data set,
except for cases when a competing algorithm got stuck
and terminated prematurely. Figure 3(A) shows a typ-
ical example of STACS and V-STACS running times
compared to previous methods for different N values.

As N grows larger and the possibility of local minima
increases, STACS and V-STACS consistently return
models with better test-set scores. Figure 3(B) shows
training-set score against running time for the RoBoT
data for N = 40. This is especially remarkable for
V-STACS which is a purely hard-updates algorithm.
One possible explanation is that V-STACS’ coarseness
helps it avoid overfitting when splitting states.

5.3 Model Selection Accuracy
5.3.1 BIC score

The final BIC scores and N values of STACS, V-
STACS, Li-Biswas and ML-SSS are shown in Table 2
when allowed to stop splitting autonomously. Note
that the exact BIC score was not used by V-STACS,
just calculated for comparison. In all cases, STACS
converges on models with the highest BIC score. For
the MvroG data, STACS achieves a better BIC score
even with a smaller model than V-STACS, indicat-
ing that the soft-updates method found a particularly
good local optimum.

The consistent superiority of STACS here may seem
to contradict results from the previous section where
STACS and V-STACS were seen to be more com-
parable. A possible reason is that V-STACS uses
the Viterbi path likelihood (which is computed dur-
ing hard-updates training anyway) in place of the true
likelihood in BIC. This is done to keep V-STACS as
efficient as possible. However the resulting approxi-
mate BIC seems to undervalue good splits, resulting
in early stoppage as seen here. We can conclude that,
though the Viterbi approximation works well for state-
splitting, the true likelihood is preferable for model

Table 3: Australian sign-language word recognition ac-
curacy on a 95-word classification task, and average
HMM sizes, on AUSL data.

STACS V-STACS Li-Biswas ML-SSS
90.9% 95.8% 78.6% 89.5%
12.5 55 8.3 8.5

selection purposes when using BIC.

5.3.2 Discovering the Correct Topology

We already saw that STACS is able to learn the correct
number of states in the simple example of Figure 1,
while Li-Biswas and ML-SSS are not. We generalized
this example to a larger, more difficult instance by
generating a 10,000 point synthetic data set similar
to the one in Figure 1 but with 10 hidden states with
overlapping Gaussian observations.

Even on this data, both STACS and V-STACS con-
sistently found the true underlying 10-state model
whereas Li-Biswas and ML-SSS could not do so. In-
terestingly, regular Baum-Welch on a 10-state HMM
also failed to find the best configuration of these 10
states even after 50 restarts. This reinforces a notion
suggested by results in Section 5.2: even in fixed-size
HMM learning, STACS is more effective in avoiding
local minima than multi-restart Baum-Welch.

5.4 Australian Sign-Language Recognition

Though improved test-set likelihood is strong evidence
of good models, it is also important to see whether
these model improvements translate into superior per-
formance on classification tasks. HMMs play their
most important roles in the context of supervised clas-
sification and recognition systems, where one HMM is
trained for each distinct sequence class. Classification
is carried out by scoring a test sequence with each
HMM, and the sequence is labeled with the class of
the highest-scoring HMM.

One such classification problem is automatic sign-
language recognition (Starner & Pentland, 1995). We
test the effectiveness of our automatically learned
HMMs at classification of Australian sign language
using the AUSL dataset (Kadous, 2002). The data
consists of sensor readings from a pair of Flock in-
strumented gloves, for 27 instances each of 95 distinct
words. Each instance is roughly 55 timesteps. We
retained the (z,y, z, roll, pitch, yaw) signals from each
hand and trained HMMs on an 8:1 split of the data, us-
ing STACS, V-STACS, Li-Biswas and ML-SSS. Table 3
shows classification results along with average HMM
sizes. V-STACS yields the highest accuracy along with

Table 2: BIC scores scaled by dataset size, and (number of states), of final models chosen by STACS, V-STACS,
Li-Biswas and ML-SSS. STACS and V-STACS consistently find larger models with better BIC scores, indicating

more effective split design.

Dataset STACS V-STACS Li-Biswas ML-SSS
ROBOT | -1.79(39) -181(3/) -1.98(18) -2.01(15)
MOCAP | -3.54(36) -3.55(33) -3.69(20) -3.92(10)
MLOG -8.44(14) -8.45(20) -8.59(11) -10.51(1)
AUSL -2.77(44) -2.719(42) -2.92(31) -3.04(28)
VOWEL | -4.47(17) -4.49(16) -4.48(17) -4.94(1)

much larger HMMs than the other algorithms.

6 Discussion

Part of the contribution of this work is empirical evi-
dence for the conjecture that better modeling of state
context compensates more than adequately for consid-
ering fewer data points per split in hidden state dis-
covery. In addition, we investigated whether improved
dynamic modeling in split design can also compensate
for approximating hidden state beliefs by less precise,
more efficient hard-updates methods via the V-STACS
algorithm. Evaluations show that even V-STACS pro-
duces models with higher test-set scores than soft-
updates methods like ML-SSS, Li-Biswas and Multi-
restart Baum-Welch.

An interesting phenomenon observed is that STACS
and V-STACS consistently return larger HMMs (with
better BIC scores) than ML-SSS and Li-Biswas when
stopping autonomously. One possible interpretation
is that the split design mechanism continues to find
‘good’ splits even after the ‘easy’ splits are exhausted.
An illustration of this for the Mocap data is in Fig-
ure 3.C. This makes sense considering that model se-
lection and parameter optimization are closely related;
since parameter search is prone to local minima, deter-
mining the best size of a model depends on being able
to find regions of parameter space where good can-
didate models reside. Similarly, it is surprising that
that V-STACS yielded by far the highest classification
accuracy in the sign-language recognition task (Sec-
tion 5.4), that too with much larger final HMMSs than
any other algorithm. More investigation is needed in
this area to see if these two things hold true in other
sequence classification domains.

Previous work for finding the dimensionality of
discrete-valued hidden variables in HMMs (Stolcke &
Omohundro, 1994) and other Bayesian Networks (El-
idan & Friedman, 2001) has demonstrated that hard-
updates model selection algorithms can yield much
greater efficiency than soft-updates methods without
a large loss of accuracy. To our knowledge, however,

this is the first work that demonstrates hard-updates
model selection to be competitive for real-valued hid-
den variables (Sections 5.2, 5.4). One possible expla-
nation is that the coarseness of hard-updates splitting
helps avoid overfitting early on which might otherwise
trap the algorithm in a local optimum.

Results from Sections 5.2 and 5.3.2 indicate that
STACS is a competitive fized-size HMM learning al-
gorithm compared to previous approaches in terms of
test-set scores and efficiency. To our knowledge, this
is the first HMM model selection algorithm that can
make this claim. Consequently, there is great poten-
tial for applying STACS to domains where continuous-
density HMMs of fixed size are used, such as speech
recognition, handwriting recognition, financial mod-
eling, bioinformatics and even domains where real-
valued hidden-variable models are currently the norm,
such as mobile robot localization (Sharma et al., 2005).

There are several possibilities for building on this work,
both in HMMs as well as in general Bayesian Net-
works. As massive data streams become increasingly
common, one emerging goal is to be able to work with
large HMMs with hundreds or thousands of states, as
in Felzenszwalb et al. (2003). Several heuristics, such
as lazy evaluation of split candidates, could be applied
to accelerate STACS for learning such large HMMs
more efficiently. Due to greedy splitting on subsets of
data, some states may end up being redundant: these
could be merged back in the final model. Recent work
by Siddigi and Moore (2005) investigates constraining
the transition model to allow fast inference and learn-
ing in large non-sparse HMMs. It would be useful to
investigate how the behavior of model selection algo-
rithms differs under such model constraints. Finally,
STACS can also be generalized to the task of finding
the dimensionality of real-valued hidden variables in
Bayesian Networks. Such a generalization for discrete-
valued hidden variables was carried out in Elidan and
Friedman (2001) with positive results.

Acknowledgements

Sajid Siddiqi was supported by a CDC award on “Effi-
cient, scalable multisource surveillance algorithms for
Biosense” (8-R01-HK000020-02) and DARPA’s CS2P
program (HR0011-06-1-0023).

References

D.J. Newman, S. Hettich, C. B., & Merz, C. (1998). UCI
repository of machine learning databases.

Elidan, G., & Friedman, N. (2001). Learning the dimen-
sionality of hidden variables. Proc. UAL

Felzenszwalb, P., Huttenlocher, D., & Kleinberg, J. (2003).
Fast Algorithms for Large State Space HMMs with Ap-
plications to Web Usage Analysis. Advances in Neural
Information Processing Systems (NIPS).

Howard, A., & Roy, N. (2003). The robotics data set repos-
itory (radish).

Kadous, M. W. (2002). Temporal classification: Extending
the classification paradigm to multivariate time series.
Doctoral dissertation, University of New South Wales.

Krogh, A., Mian, 1., & Haussler, D. (1994). A hidden
Markov model that finds genes in E. coli DNA. Nucleic
Acids Research, 22, 4AT68-4778.

Li, C., & Biswas, G. (1999). Temporal pattern generation
using hidden markov model based unsupervised classifi-
cation (pp. 245-256.).

Ney, H. (1990). Acoustic modeling of phoneme units for
continuous speech recognition. Proc. 5% Europ. Signal
Processing Conference.

Ostendorf, M., & Singer, H. (1997). Hmm topology de-
sign using maximum likelihood successive state splitting.
Computer Speech and Language, 11, 17-41.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Proc. IEEE, 77, 257-285.

Ren, L., Patrick, A., Efros, A. A., Hodgins, J. K., & Rehg,

J. M. (2005). A data-driven approach to quantifying
natural human motion. SIGGRAPH 2005, 24, 1090—
1097.

Schwarz, G. (1978). Estimating the dimension of a model.
Annals of Statistics.

Seymore, K., McCallum, A., & Rosenfeld, R. (1999).
Learning hidden Markov model structure for informa-
tion extraction. AAAI’99 Wkshp Machine Learning for
Information Extraction.

Sharma, A., Morales, D., Kantor, G., & Choset, H. (2005).
Towards removing artificial landmarks for autonomous
exploration in structured environments. Master’s thesis,
Carnegie Mellon University.

Siddiqi, S. M., & Moore, A. W. (2005). Fast inference and
learning in large-state-space HMMs. Proc. ICML.

Starner, T., & Pentland, A. (1995). Visual Recognition of
American Sign Language Using Hidden Markov Models.

Proc., Intl. Workshop on Automatic Face and Gesture
Recognition (IWAFGR).

Stolcke, A., & Omohundro, S. (1994). Best-first Model
Merging for Hidden Markov Model Induction Technical
Report TR-94-003). Intl. Computer Science Institute.

Viterbi, A. J. (1967). Error bounds for convolutional
codes and an asymptotically optimum decoding algo-
rithm. IEEFE Transactions on Information Theory, IT-
13, 260-267.

Appendix

Given below is pseudocode for the Split-State Viterbi
algorithm used to compute the E-step of V-STACS.
Intuitively the algorithm performs dynamic program-
ming on a constrained subset of timesteps and a bi-
nary state space consisting of the two states produced
by the split.

Split-State Viterbi(\,Q*,T°, Or:)

Initialization: For 7 € {1,2}
s, < %7('5
1
Qgls; < Eas’s
Ag; 5! < Qgg’
1
asisj- — §ass

bs, < initialize to MLE using O plus noise

Loop: forl=1...|T%|
t— T4[l]
ift==1
then for ¢ € {1,2}
51(1) — To,bu (O1)
03 i) — -1
else if (t — 1) ==T*[— 1]
then for 7 € {1,2}
07 (i) — [max;je(1,2) 05_1(j)as,s,bs, (Or)
Vi(i) « arg maX;e{1,2} 65—1(.j)asjsz:
else for ¢ € {1,2}
5263(7’) o aq:,lsz‘bsi (Ot)

Termination:
For all subsequences of T that are contiguous
in {1...T}, backtrack through v¥*® from the
end of the subsequence to its beginning to
retrieve the corresponding portion of Q%.

return Q5.

