
AUTOMATIC STATE DISCOVERY FOR
UNSTRUCTURED AUDIO SCENE CLASSIFICATION

Julian Ramos, Sajid Siddiqi, Artur Dubrawski, Geoffrey Gordon

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abhishek Sharma

MobileFusion, Inc.
Pittsburgh, PA 15203 USA

ABSTRACT

In this paper we present a novel scheme for unstructured au-
dio scene classification that possesses three highly desirable
and powerful features:autonomy, scalability, androbustness.
Our scheme is based on our recently introduced machine
learning algorithm called Simultaneous Temporal And Con-
textual Splitting (STACS) that discovers the appropriate num-
ber of states and efficiently learns accurate Hidden Markov
Model (HMM) parameters for the given data. STACS-based
algorithms train HMMs up to five times faster than Baum-
Welch, avoid the overfitting problem commonly encountered
in learning large state-space HMMs using Expectation Max-
imization (EM) methods such as Baum-Welch, and achieve
superior classification results on a very diverse dataset with
minimal pre-processing. Furthermore, our scheme has proven
to be highly effective for building real-world applications and
has been integrated into a commercial surveillance system as
an event detection component.

Index Terms— Hidden Markov Models, audio classifica-
tion, topology learning

1. INTRODUCTION

Classification of unstructured audio scene data has a variety
of applications such as:ethnomusicology, i.e., music classifi-
cation based on cultural style [1];audio diarization, i.e., ex-
traction of speech segments in long audio signals from back-
ground sounds [2];audio event detection[3] for audio min-
ing; acoustic surveillance[4], especially for military and pub-
lic safety applications, e.g, in urban search and rescue scenar-
ios; andhuman robot interaction[5], for voice activated robot
actuation and control.

For all these applications the fundamental task is to ac-
curately classify temporal audio signals of interest despite
background noise. One very popular and effective classifica-
tion scheme [6] is based on Hidden Markov Models (HMMs).
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These algorithms can capture the underlyinghiddendistribu-
tions orstatesin the time-series audio data and also discover
the transitions in these states to learn dynamical models of
the complex underlying phenomenon and can be learned by
using iterative parameter learning approaches such as Baum-
Welch [7].

While EM-based HMM learning approaches have had
some success in learning HMMs of predetermined size and
topology, thediscoveryof an appropriate number of states
(and their parameters) has largely been an unsolved problem.
This problem is typically overcome heuristically in practice,
e.g. by choosing the number of states manually and then
performing EM with random restarts.

To overcome these fundamental challenges with HMM
learning, we improved upon previous HMM topology learn-
ing efforts such as [8, 9, 10] to create anautomaticstate
discovery algorithm calledSimultaneous Temporal and Con-
textual Splitting(STACS) [11] and a more efficient variant
called Viterbi-STACS (V-STACS). Traditional HMM learn-
ing methodology decouples topology selection from para-
meter search by requiring the number of states to be spec-
ified beforehand. Even if topology search is addressed by
the learning algorithm, it is done without fully considering
temporal correlations in the data. In contrast, STACS state
discovery algorithms reformulate the search space of HMMs
by interlacingparameter-optimization stepsto increase ob-
served data likelihood withstate-space-expansion stepsthat
consider both temporal and geometric properties of the train-
ing data to change the HMM topology in order to escape
local minima and fit the data better. Overfitting of the state
space size is avoided by using theBayesian Information Cri-
terion (BIC) [12] at each state-space-expansion step. Since
state discovery, transition topology design and parameter op-
timization are all carried out in a data-driven manner, we
find that our algorithm requires minimal data preprocessing
or pre-partitioning, and can be run on simple Mel-cepstral
coefficients extracted from audio scene data with good re-
sults. The overall algorithm as well as the state-addition
method are described in more detail in Section 2. The biggest
difference between STACS-based algorithms and previous



state-splitting methods is that they jointly model transitions
as well as observations when performing a split, whereas pre-
vious methods were unable to do both simultaneously. This
makes our algorithms much more accurate. We also consider
fewer datapoints per split to greatly increase efficiency, while
ensuring that the most relevant datapoints are considered.

The key contributions of this paper are the successful
application of our learning method to audio classification
from unstructured data, as well as the introduction of STACS
to audio-processing applications. We applied our scheme
to automatically discover states and learn separate HMMs
for six different classes of data consisting of audio from
human speech, animal sounds, ground vehicle operation, aer-
ial vehicle flight, explosions and miscellaneous background
noise. We also conducted experiments with these models
by integrating them with a real-time surveillance system
(http://www.mobilefusioninc.com).

2. PARAMETER AND TOPOLOGY LEARNING
Topology selection and parameter optimization are typically
decoupled in audio processing applications. The state space
size is selected heuristically or with cross-validation, and
transition topology is hand-designed based on domain knowl-
edge. For domains where the data is of a predictable form
(e.g. human speech in a particular language obtained using
a telephone or microphone from close range in a quiet envi-
ronment), this can often work. If the diversity in the data is
from known sources (e.g. voice differences due to speaker,
gender and age variations) it can be compensated by gather-
ing more training data. However, this approach is unsuitable
for domains such as audio scene classification, where the data
source and its environment are unstructured and uncontrolled.

STACS is based on the insight that EM for sequential data
is more robust to local minima for small state spaces (e.g.
two states) but less so for large state spaces. STACS uses this
insight to use a constrained two-state EM algorithm to break
out of local minima and increase state space size. STACS al-
gorithms perform parameter learning for Continuous-Density
HMMs (CD-HMMs) with Gaussian observation models,
while simultaneously optimizing state space size and transi-
tion topology in a data-driven fashion. Comparing to previous
related work: Unlike [10], our method accounts for both tem-
poral and contextual variations in the training observations
while splitting states (i.e. increasing the state space size).
Unlike [9], our method evaluates every existing state as a
possible candidate for splitting. Since naively evaluating all
possible ways to increase state space size would be very ex-
pensive computationally, STACS algorithms make selective
use ofViterbi approximations[8] for efficient approximation
of the data log-likelihood, as well as some other assumptions
detailed below. These approximations keep the complexity of
each iteration of STACS and V-STACS to beO(TN2), where
T is the length of the training sequence andN is the number
of states currently in the HMM. [11] showed that STACS

outperforms alternative topology learning methods [10, 9]
in terms of running time, test-set likelihood and BIC score
on a variety of real-world data, and outperforms regular EM
even on learning models of predetermined size. This top-
down approach proved to be highly effective at avoiding local
minima as well, allowing STACS to discover the true under-
lying HMM in difficult synthetic data where EM failed to
find the correct answer even with50 restarts. This highlights
another problem with using cross-validation for determining
the number of states: due to the local minima problems rife
in EM-based HMM learning, there is no way to ensure dur-
ing cross-validation that the best possible HMMs of different
sizes are being compared. STACS avoids this problem by
guaranteeing a consistent increase in data likelihood as it
searches the space of HMMs of varying state space sizes.

We summarize details of STACS and V-STACS below.
V-STACS is a less precise, more efficient variant of STACS
that usesViterbi Training [7] instead of soft-updates Baum-
Welch for the parameter optimization step. Details can be
found in [11].

For HMMs we follow the notation of Rabiner [7].O =
[o1 . . . oT ] denotes the training sequence of lengthT , Q =
[q1 . . . qT ] denotes the corresponding hidden state sequence,
λ = [A,B, π] denotes the parameters of anN -state Gaussian
HMM whereA = {aij}Ni,j=1 is the transition matrix,B is a
set ofN mean vectorsµ and covariance matricesΣ, andπ
is the prior. Letλs denote the HMM parameters related to
states (i.e.µs,Σs, πs, a·s, as·). LetT (s) denote the timesteps
assigned to states by the Viterbi path. LetQU denote the
subset of the Viterbi path belonging to timesteps in setU , and
OU denote observations inU . \U denotes the complement of
U .

2.1. The Algorithm
STACS and V-STACS both have the following overall pro-
cedure. For each step that is not constant-time, we list the
asymptotic complexities as[·] or as[·, ·] respectively if they
differ. Details on candidate generation and candidate selec-
tion are given below.
1. Initialization: Initialize λ to a single-state HMM (N = 1)
based onO. [O(T )]
2. Learning: Use Baum-Welch or Viterbi Training until con-
vergence ofP (O|λ). [O(TN2)]
3. Candidate Generation: Split each state, to generateN can-
didate HMMs each withN + 1 states.[O(TN2),O(TN)]
4. Candidate Selection: Score the original HMM and each
candidate, and pick the highest scoring one asλ′.
[O(TN2),O(TN)]
5. Repeat or Terminate: If a split candidate was picked,λ ←
λ′, N ← N + 1 and go to step 2. Else if original HMM was
picked, terminate and returnλ′.

2.2. Generating Candidates
To generate a candidate based on states resulting in new
statess1 and s2, we use two variants of EM to efficiently



compute optimal means, variances and transition parameters
of the resulting2 states. We first perform Viterbi to find the
most probable state sequenceQ∗ by maximizingP (O,Q|λ).
We then constrain the parameters for all other states (λ\s) and
assume all timesteps belonging to other states inQ∗ are asso-
ciated with those states exclusively. Then, we performSplit-
State Baum-Welch(for STACS) orSplit-State Viterbi Training
(for V-STACS) to optimizeλs1,s2 on the timesteps associated
with states i.e. OT (s) . This optimizes apartially observed
likelihood P (O,Q∗

\T (s) |λ). The update equations for Split-
State Viterbi Training are as follows, for each iterationi:

1. E-step:
Qi

T (s) ← arg maxQ P (OT (s) , Q∗
\T (s) , Q | λ\s, λ

i
s1,s2

)

2. M-step:
λi+1

s1,s2
← arg maxλ P (OT (s) , Q∗

\T (s) , Q
i
T (s) | λ\s, λ)

The M-step is carried out using simple closed-form updates
as in the M-step of Viterbi Training. The E-step is carried
out usingSplit-State Viterbi, a variant of the Viterbi algo-
rithm whose pseudocode is given in [11]. Note that candidate
generation is highly efficient: Split-State Viterbi Training is
O(|T (s)|) and Split-State Baum-Welch isO(|T (s)|N) where
|T (s)| isO(T/N) on average. There areN candidates to be
generated, totalingO(TN) andO(TN2) respectively.

2.3. Candidate Selection Criteria
The candidates are compared amongst each other using the
fast-to-compute Viterbi likelihood after optimizing the split
parameters. This best candidate is then compared to the orig-
inal model usingBayesian Information Criterion(BIC) [12]
which is a unimodal approximation of the true posterior prob-
ability, which is itself intractable to compute and where the
approximation is assumed to be a single gaussian. The BIC
score effectively punishes complexity by penalizing the num-
ber of free parameters and rewards goodness-of-fit via the
data loglikelihood, thus safeguarding against overfitting. Let
#λ denote the number of free parameters in HMMλ. Then,

BIC(λ, O) = log P (O|λ)− (log T/2)#λ

For V-STACS, the likelihood is approximated using the
Viterbi approximation [8] to keep the complexity of V-
STACS’ candidate generation and splitting atO(TN).

3. AUDIO SCENE CLASSIFICATION DATA

We applied minimal preprocessing of the available raw sound
recordings in order to prepare data for audio scene experi-
ments. It involved extraction of a set of 13 Mel-frequency
cepstral coefficients followed by manually assigning ground-
truth class labels to each of the examples. The cepstral fea-
tures were then averaged every 5 subsequent datapoints to
reduce noise. Each timestep in the resulting data represents
50ms. The resulting values were scaled 10-fold to avoid nu-
merical underflow issues. The target platform for this algo-
rithm in practice is the portable sensor device shown in Fig-
ure 1(A). The audio examples were collected using the device
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Fig. 1. (A) A mobile tactical device and (B) a fixed device on
which our algorithms were deployed

in Figure 1(B), and were selected with the intent to cover a
wide variety of sounds representative of the respective classes
of audio events. For instance, the examples produced to sup-
port Human class models included instances of male, female
and children voices speaking in various languages and envi-
ronments including offices, coffee shops and urban outdoors.
The Animal class examples included sounds of dogs, owls,
wolves, coyotes, roosters and birds. The class of Ground
Vehicles included sample sounds of motorcycles, cars and
trucks passing by. The Aerial Vehicles included sounds of
jets and helicopters. The Explosions class included sounds
of machine-gun fire, grenade blasts and gunshots. The Back-
ground class covers other sounds such as ocean waves, city
traffic, rain, thunder, crowds plus some silence samples. De-
tails of the data are given in Table 1.

Table 1. Data Specifications. The last row shows the total
number of samples, overall average number of timesteps per
sample, and total duration in minutes and seconds.

Class % # samples Av. len. (T) Duration
Human 27 128 209 40:11
Animal 17 78 37 4:58

Ground V. 17 79 47 6:57
Aerial V. 4 20 54 2:16
Explosion 18 87 11 1:34
Backgrnd. 17 83 21 12:58

100% 475 78 68:54

4. RESULTS

The classifier was tested using 4-fold cross-validation on the
dataset described above. Figure 2 and Table 2 summarize
the results. We trained HMMs on the data using STACS, V-
STACS and EM (Baum-Welch). We used the number of states
discovered by V-STACS for EM, which were 56, 26, 26, 18,
14 and 34 on average for the 6 classes respectively. To help
EM escape local minima, we re-initialized it 5 times from dif-
ferent random starting points. Training was carried out on a
1.8GHz CPU with 4GB RAM. In Figure 2(A), the training
times are plottedin log scaleof minutes, since the dispar-
ity between EM and our algorithms was so large. For exam-
ple, for the Background class, V-STACS took 166 minutes,
STACS took 243 minutes, and EM took 1023 minutes, de-
spite having to only learn parameters for a fixed HMM size.
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Fig. 2. (A) Training timesin log(minutes). V-STACS and
STACS are at least an order of magnitude faster than 5-restart
EM. (B) Classification accuracies. VSTACS is better than
EM in nearly all cases.

We now look at classification accuracy. For brevity, we
focus on the classification accuracy results of V-STACS ver-
sus EM. STACS results were similar to V-STACS though
slightly poorer in some cases (a phenomenon noted and dis-
cussed earlier in [11]). Figure 2(B) shows these results for
each of the 6 classes, which shows that V-STACS is consis-
tently more accurate than EM, except for labels such as Ex-
plosions and Background. We believe this is partly due to lack
of sufficient training data (note in Table 1 that these classes
had the shortest average sample lengths). Table 2 shows the
confusion matrices for models trained using EM (top) and
V-STACS (bottom) respectively. Despite the highly unstruc-
tured, diverse and in some cases insufficient data, V-STACS
is able to learn fairly accurate models.

Table 2. Average Confusion Matrix for EM (top) and V-
STACS (bottom). Actual (rows) vs Predicted (columns).
Each entry is a percentage of test data averaged over the cross-
validation runs, and each row sums to 100. For each entry, the
better entry of the two tables is inbold. Ties are initalics.

H A G.V. A.V. E B
H. 92.69 4.68 0 0 0 2.34
A. 17.10 73.68 0 1.31 0 7.89

G.V. 9.21 3.94 69.73 2.63 2.63 11.84
A.V. 5 0 15.00 75 5 0
E. 9.52 1.19 8.33 0 75 5.95
B. 15 8.75 5 0 3.75 67.5
H. 96.09 2.43 0.78 0 0.78 0
A. 17.10 81.57 0 0 1.31 0

G.V. 9.21 3.94 72.36 0 3.94 10.52
A.V. 5 0 5.00 80 10 0
E. 14.28 2.38 4.76 2.38 72.61 3.57
B. 13.75 11.25 7.5 0 3.75 63.75

5. CONCLUSION

We presented a novel, scalable approach to sound classifica-
tion for interpretation of unstructured audio scenes. It is able
to autonomously learn the optimal topology and parameters
of the HMM-based classification models from minimally pre-
processed training data consisting of small number of diverse
sound examples. The learning algorithm converges up to five
times as fast as popular alternatives, retaining practical utility
even if the composition of target audio scenes is subjected to
changes. The results of empirical tests reveal good accuracy
when trained on small collection of field data, and low re-
quirements on processing power and working memory. Those
characteristics make the proposed approach an attractive solu-
tion for practical applications which require compactness and
portability. As a result it has been successfully integrated on
a commercial surveillance system.
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