Stable Function Approximation in Dynamic Programming

Geoffrey J. Gordon
Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213

ggordon@cs.cmu.edu

Abstract

The success of reinforcement learning in prac-
tical problems depends on the ability to
combine function approximation with tem-
poral difference methods such as value itera-
tion. Experiments in this area have produced
mixed results; there have been both notable
successes and notable disappointments. The-
ory has been scarce, mostly due to the dif-
ficulty of reasoning about function approxi-
mators that generalize beyond the observed
data. We provide a proof of convergence
for a wide class of temporal difference meth-
ods involving function approximators such as
k-nearest-neighbor, and show experimentally
that these methods can be useful. The proof
is based on a view of function approximators
as expansion or contraction mappings. In ad-
dition, we present a novel view of fitted value
iteration: an approximate algorithm for one
environment turns out to be an exact algo-
rithm for a different environment.

1 INTRODUCTION AND
BACKGROUND

The problem of temporal credit assignment — decid-
ing which of a series of actions is responsible for a
delayed reward or penalty — is an integral part of ma-
chine learning. The methods of temporal differences
are one approach to this problem. In order to learn
how to select actions, they learn how easily the agent
can achieve a reward from various states of its envi-
ronment. Then, they weigh the immediate rewards
for an action against its long-term consequences — a
small immediate reward may be better than a large
one, if the small reward allows the agent to reach a
high-payoff state. If a temporal difference method dis-
covers a low-cost path from one state to another, it will
remember that the first state can’t be much harder to
get rewards from than the second. In this way, infor-

mation propagates backwards from states in which an
immediate reward is possible to those from which the
agent can only achieve a delayed reward.

One of the first temporal difference methods was the
Bellman-Ford single-destination shortest paths algo-
rithm (Bellman, 1958, Ford and Fulkerson, 1962),
which learns paths in a graph by repeatedly updat-
ing the estimated distance-to-goal for each node based
on the distances for its neighbors. At around the same
time, research on optimal control led to the solution
of Markov processes and Markov decision processes
(see below) by temporal difference methods (Bellman,
1961, Blackwell, 1965). More recently (Witten, 1977,
Sutton, 1988, Watkins, 1989), researchers have at-
tacked the problem of solving an unknown Markov
process or Markov decision process by experimenting
with it.

Many of the above methods have proofs of conver-
gence (Bertsekas and Tsitsiklis, 1989, Watkins and
Dayan, 1992, Dayan, 1992, Jaakkola et al, 1994,
Tsitsiklis, 1994). Unfortunately, most of these proofs
assume that we represent our solution exactly and
therefore expensively, so that solving a Markov de-
cision problem with n states requires O(n) storage.
On the other hand, it is perfectly possible to perform
temporal differencing on an approximate representa-
tion of the solution to a decision problem — Bellman
discusses quantization and low-order polynomial in-
terpolation in (Bellman, 1961), and decomposition by
orthogonal functions in (Bellman and Dreyfus, 1959,
Bellman et al.,, 1963). These fitted temporal differ-
ence methods are not covered by the above conver-
gence proofs. But, if they do converge, they can allow
us to find numerical solutions to problems which would
otherwise be too large to solve.

Researchers have experimented with a number of fit-
ted temporal difference methods. Results have been
mixed: there have been notable successes, includ-
ing Samuels’ (1959) checkers player, Tesauro’s (1990)
backgammon player, and Lin’s (1992) robot naviga-
tion. But these algorithms are notoriously unstable;

Boyan and Moore (1995) list several embarrassingly
simple situations where popular algorithms fail miser-
ably. Some possible reasons for these failures are given

in (Thrun and Schwartz, 1993, Sabes, 1993).

We will prove convergence for a significant class of
fitted temporal difference algorithms, including algo-
rithms based on k-nearest-neighbor, linear interpola-
tion, some types of splines, and local weighted aver-
aging. These algorithms will converge when applied
either to discounted decision processes or to an impor-
tant subset of nondiscounted decision processes. We
will give sufficient conditions for convergence to the
exact value function, and for discounted processes we
will bound the maximum error between the estimated
and true value functions.

2 DEFINITIONS AND BASIC
THEOREMS

Our theorems in the following sections will be based
on two views of function approximators. First, we will
cast function approximators as expansion or contrac-
tion mappings; this distinction captures the essential
difference between approximators that can exagger-
ate changes in their training values, like linear regres-
sion and neural nets, and those like k-nearest-neighbor
that respond conservatively to changes in their in-
puts. Second, we will interpret some function approx-
imators as Markov processes; this view will allow us
to show that fitted temporal difference learning with
these approximators is equivalent to exact temporal
difference learning on a modified decision process. To
aid the statement of these theorems, we will need sev-
eral definitions. (See (Kolmogorov and Fomin, 1970)
for more information on norms and contraction map-
pings; see (Bertsekas and Tsitsiklis, 1989) for a treat-
ment of Markov decision processes.)

DEeFINITION: Let S be a complete vector space with
norm ||-||. A function f from S to itself is a contraction
mapping if, for all points @ and b in S,

[f(a) = FO) I < ella = b]|

Here «, the contraction factor or modulus, is any real
number in [0,1). If we merely have

[f(a) = FOI < lla— bl

we call f a nonexpansion.

For example, the function f(z) = 547 is a contraction
with contraction factor % It is also a contraction with
factor %. The identity function is a nonexpansion. All
contractions are nonexpansions.

DEFINITION: A point z is a fized point of the function

fif f(z) = =.

A function may have any number of fixed points. For
example, the function 2 on the real line has two fixed

points, 0 and 1; any number is a fixed point of the
identity function; and x 4 1 has no fixed points.

Theorem 2.1 (Contraction Mapping) Let S be «
complete vector space with norm || - ||. Suppose f
1s a contraction mapping on S with contraction fac-
tor . Then f has exactly one fizred point z* in
S. For any initial point zy n S, the sequence
zo, f(xo), fF(f(x0)), ... converges to x*; the rate of con-
vergence of the above sequence in the norm || - || is at
least a.

For example, 5+ 3 has a unique fixed point at z = 10.
If we iterate this function starting from 0, we get the
sequence 0,5,7.5,8.75,...,— 10.

Next we define a formalism which describes the expe-
riences of an agent sensing its environment and acting
to achieve its goals.

DErFINITION: A Markov decision process is a tuple
(S,A,6,¢,7,S0). S is the state space; A is the ac-
tion space. At any time t, the environment is in some
state z; € S. The agent perceives z;, and is allowed
to choose an action a; € A. The transition function, 6
(which may be probabilistic), then acts on #; and a;
to produce a next state z;41, and the process repeats.
Sp 1s a distribution on S which gives the probability
of being in each state at time 0. The cost function,
¢ (which may be probabilistic, but must have finite
mean and variance), measures how well the agent is
doing: at each time step ¢, the agent incurs a cost
¢(x¢, ar). The agent must act to minimize the ezpected
discounted cost E(Y ;2,7 c(zy, ar)); v € [0,1] is called
the discount factor.

We will write V*(z) for the optimal value function,
the minimal possible expected discounted cost start-
ing from state z. V* will be well-defined if v < 1.
If v = 1, V* will be well-defined if the sequence
V*L V*2 ... converges, where V*"(z) is the minimal
possible n-step expected cost from state z. One way
to ensure convergence is to require that there be a
set of states G with all costs zero and no outgoing
transitions so that, no matter what actions the agent
chooses, limy_.oo P(2; € G) = 1. (We will call such
a set cost-free and properly absorbing. Without loss
of generality, we may collapse G to a single state and
renumber so that G = {1}.)

We will say that an MDP is deterministic if the func-
tions ¢(z,a) and §(z, a) are deterministic for all z and
a, t.e., if the current state and action uniquely de-
termine the cost and the next state. An MDP is fi-
nite if its state and action spaces are finite; it is dis-
counted if v < 1. (We discuss only finite MDPs here,
although many of the results carry over to continuous
processes.) We will call an MDP a Markov process
if |A| =1 (i.e., if the agent never has a choice). In a
Markov process, we cannot influence the cost; our goal
is merely to compute it.

Given two MDPs M; = (S, A1,61,¢1,71,50) and
My = (S, Az, 82, ca,7v2, So) which share the same state
space, we can define a new MDP M3, the composi-
tion of My, and M,, by alternately following transi-
tions from M; and M,. More formally, let M;o be
(S, A1 x Ag, b12, 12,7172, S0). At each step, the agent
will select one action from A; and one from As; we
define the composite transition function 615 so that
812(2,(a1,a2)) = 82(b61(x,a1),az). The cost of this
composite action will be ¢1(, a1) +y1¢2(61(2, a1), az).

Define a policy to be a function # : S — A. An agent
may follow policy = by choosing action 7(z) when-
ever it is in state . It is well-known (Bellman, 1961,
Bertsekas and Tsitsiklis, 1989) that every Markov de-
cision process with a well-defined V* has at least one
optimal policy 7*; an agent which follows #* will do
at least as well as any other agent, including agents
which choose actions according to non-policies. The
policy n* satisfies Bellman’s equation

(Ve € S) V' (x) = E(c(z, 7" (2)) + 7 V" (6(2,7"(2))))

and every policy which satisfies Bellman’s equation is
optimal.

There are two broad classes of learning problems for
Markov decision processes: online and offline. In both
cases, we wish to compute an optimal policy for some
MDP. In the offline case, we are allowed access to the
whole MDP, including the cost and transition func-
tions; in the online case, we are only given S and A,
and then must discover what we can about the MDP
by interacting with it. (In particular, in the online
case, we are not free to try an action from any state;
we are limited to acting in the current state.) We
can transform an online problem into an offline one by
observing some transitions, estimating the cost and
transition functions, and then pretending that our es-
timates are the truth. (This approach is called the
certainty equivalent method.) Similarly, we can trans-
form an offline problem into an online one by pretend-
ing that we don’t know the cost and transition func-
tions. The remainder of the paper deals with offline
problems; for a discussion of the difficulties with ap-
plying our theorems to online problems, and in par-
ticular when we can use function approximation with
Watkins’ (1989) Q-learning algorithm, see (Gordon,
1995).

In the offline case, the optimal value function tells us
the optimal policies: we may set 7*(z) to be any a
which maximizes E(c(z,a) + yV*(é6(z,a))). (In the
online case, V* is not sufficient, since we can’t com-
pute the above expectation.) For a finite MDP, we can
find V* by dynamic programming. With appropriate
assumptions, repeated application of the dynamic pro-
gramming backup operator 7" which for every state z
simultaneously sets

V(z) — 322 E(c(z,a)+ vV (6(z,a)))

is guaranteed to converge to V* from any initial guess.
(For a nondiscounted problem, we define the backup
operator to set V(1) «— 0 as a special case.) This dy-
namic programming algorithm is called parallel value
iteration. The following theorem implies the conver-
gence of parallel value iteration.

Theorem 2.2 (value contraction) The value iter-
ation operator for a discounted Markov decision pro-
cess is a contraction in mazr norm, with contrac-
tion factor equal to the discount. If a nondiscounted
Markov decision process contains a cost-free properly
absorbing state, then the value iteration operator for
that process is a contraction in some weighted maz
norm. In both cases, the fized point of the operator
1s the optimal value function for the MDP.

3 MAIN RESULTS: DISCOUNTED
PROCESSES

In this section, we will consider only discounted
Markov decision processes. The following section gen-
eralizes the results to nondiscounted processes.

Suppose that Ty is the parallel value backup operator
for a Markov decision process M. In the basic value
iteration algorithm, we start off by setting Vj to some
initial guess at M’s value function. Then we repeat-
edly set Vi41 to be Tar(V;) until we either run out of
time or decide that some V,, is a sufficiently accurate
approximation to V*. Normally we would represent
each V; as an array of real numbers indexed by the
states of M; this data structure allows us to represent
any possible value function exactly.

Now suppose that we wish to represent V;, not by a
lookup table, but by some other more compact data
structure such as a neural net. We immediately run
into two difficulties. First, computing Tas(V;) gener-
ally requires that we examine V;(z) for nearly every =
in M’s state space; and if M has enough states that we
can’t afford a lookup table, we probably can’t afford
to compute V; that many times either. Second, even if
we can represent V; exactly, there is no guarantee that
we can also represent Ty (V;).

To address these difficulties, we will assume that we
have a sample Xy of states from M. X, should be
small enough that we can examine each element re-
peatedly; but it should be representative enough that
we can learn something about M by examining only
states in Xg. Now we can define a fitted value itera-
tion algorithm. Rather than setting Viy1 to Tar(V),
we will first compute (Ta(Vi))(2) only for 2 € Xg;
then we will fit our neural net (or other approximator)
to these training values and call the resulting function

Vi1

In order to reason about fitted value iteration, we will
consider function approximators themselves as oper-

ators on the space of value functions. In the follow-
ing definition, it is important to distinguish the target
function f and the learned function f from the map-
ping M 4: the former are real-valued functions, while
the latter is a function from functions to functions. It
is also important to remember that Xy is fixed and
f is deterministic, so there is no element of random-
ness in selecting A’s training data. Therefore, M4 is
a deterministic function.

DEeFINITION: Suppose we wish to approximate a func-
tion from a set S to a real interval R. Fix a function
approximation scheme A (which may depend on the
sample Xog C S). For each possible target function

f €S~ R, Awill produce a fitted function f Define
My, the mapping associated with A, to be the function

which takes each possible f to its corresponding f

In this framework, fitted value iteration works as
follows. Given an initial estimate 1 of the value
function, we begin by computing M4 (Vp), the rep-
resentation of Vj in A. Then we alternately ap-
ply Thr and M, to produce the series of functions
Vo, MA(VQ), TM(MA(VQ)), MA(TM(MA(VQ))), PPN (Il’l
an actual implementation, only the functions My(. ..

would be represented explicitly; the functions Tas(. . .)
would just be sampled at the points Xg.) Finally, when
we satisfy some termination condition, we return one
of the functions Ma(...).

The characteristics of the mapping M4 determine how
it behaves when combined with value iteration. Fig-
ure 1 illustrates one particularly important property.
As the figure shows, linear regression can exaggerate
the difference between two target functions f and g:
a small difference between the target values f(z) and
g(z) can lead to a larger difference between the fit-

ted values f(x) and g(z). Many function approxima-
tors, such as neural nets and local weighted regression,
can exaggerate this way; others, such as k-nearest-
neighbor, can not.

This sort of exaggeration can cause instability in a
fitted value iteration algorithm. By contrast, we will
show that approximators which never exaggerate can
always be combined safely with value iteration. These
approximators are exactly the ones whose mappings
are nonexpansions in max norm: by definition, if My
is a nonexpansion in max norm, then for any z we
have |f(x) —g(x)| < | f(x)—g(z)|. (Note that we do
not require that f(z) and f(J:) be particularly close to
each other, nor that f(:v) and f(y) be as close to each
other as f(z) and f(y).)

The above discussion is summarized in the following

theorem (Gordon, 1995):

Theorem 3.1 Let Tay be the parallel value backup op-
erator for some Markov decision process M with dis-
count v < 1. Let A be a function approzimator with

mapping Ma. Suppose M is a nonexpansion in maz
norm. Then Ma o Ty has contraction factor v; so the
fitted value iteration algorithm based on A converges
m maz norm at the rate v when applied to M.

This theorem is in a sense the best possible: if there
are two value functions z and y so that

[Ma(z) = Ma(y)[| > ||z -yl

then there exists a Markov process M with backup
operator Ty so that Thy o M4 does not have a unique
fixed point.

It remains to show which function approximators can
exaggerate and which can not. Unfortunately, many
common approximators can. For example, as figure 1
demonstrates, linear regression can be an expansion in
max norm; and Boyan and Moore (Boyan and Moore,
1995) show that fitted value iteration with linear re-
gression can diverge. Other methods which may di-
verge include standard feedforward neural nets and
local weighted regression (Boyan and Moore, 1995).

On the other hand, many approximation methods
are nonexpansions, including local weighted averag-
ing, k-nearest-neighbor, Bézier patches, linear inter-
polation, bilinear interpolation on a square (or cubi-
cal, etc.) mesh, as well as simpler methods like grids
and other state aggregation. These methods are all
averagers (Gordon, 1995):

DEFINITION: A real-valued function approximation
scheme is an averager if every fitted value is the
weighted average of zero or more target values and
possibly some predetermined constants. The weights
involved in calculating the fitted value f(z) may de-
pend on the sample vector Xy, but may not depend
on the target values f(y) for any y. More precisely,
for a fixed Xy, if S has n elements, there must exist n
real numbers k;, n? nonnegative real numbers f3;;, and
n nonnegative real numbers f;, so that for each i we

have 3; + Y, Bij = L and f(z:) = Biki + 32, Bij F (%)

Most of the 3;; will generally be zero. In particular,
B;; should be zero if 7 ¢ Xo. Averagers satisfy the
following theorem (Gordon, 1995):

Theorem 3.2 The mapping My associated with any
averager A is a nonexrpansion in mar norm,; so the
fitted value iteration algorithm based on A converges
when applied to any discounted MDP.

4 NONDISCOUNTED PROCESSES

If ¥ = 1, Theorem 3.1 no longer applies: Tay o My
is merely a nonexpansion in max norm, and so is
no longer guaranteed to converge. Fortunately, there
are averagers which we may use with nondiscounted
MDPs. The proof relies on an intriguing property of

@ (b)

Figure 1: Linear regression on the sample Xq = {0,1,2}. (a) A target function f (solid line) and its corresponding
fitted function f (dotted line). (b) Another target function, g, and its fitted function g. Regression exaggerates

the difference between the target functions: the largest difference between f and ¢ is 1 (at « = 1,2), but the

difference between f and g at x = 2 1s %.

o oSO CNOS O ONG

@ (b) (©

Figure 2: A nondiscounted deterministic Markov process and an averager. The process is shown in (a); the goal
is state 1, and all arc costs are 1 except at the goal. In (b) we see the averager, represented as a Markov process:
states 1 and 3 are unchanged, while V(2) is replaced by V(3). The derived Markov process is shown in (c¢); state
3 has been disconnected, so its value estimate will diverge.

f ?

fof i

frr PP P

fFrrr O

O A PP L
prrrrr o5 p s s
PP, A~ 4 poppop L LR
A 9 p p p P P R P
f/D/O/a/v/o/ow/o $ p » » P o o 0
f/O}/O/O/O/O/O/O/O 9}«3/0/0/0/0/0/6/6/6
/a/o/o/e’o—o—o—o—olele © © © © o o —o —© —O© —0 —0

(a) (b) ()

Figure 3: Constructing the derived Markov process. (a) A deterministic process: the state space is the unit
triangle, and on every step the agent moves a constant distance towards the origin. The value of each state is
its distance from the origin, so V* is nonlinear. (b) A representative transition from the derived process. For
our averager, we used linear interpolation on the corners of the triangle; as before, the agent moves towards the
goal, but then the averager moves it randomly to one of the corners. On average, this scattering moves the agent
back away from the goal, so steps in the derived process don’t get the agent as far. The value function for the
derived process is + y. (¢) The expected progress the agent makes on each step.

averagers: we can view any averager as a Markov pro-
cess, so that state x has a transition to state y when-
ever By > 0 (i.e., whenever the fitted V(z) depends
on the target V(y); presumably, this happens when
the averager considers states z and y somehow simi-
lar). Figure 2(b) shows one example of a simple av-
erager viewed as a Markov process; this averager has
511 = P23 = P33 = 1 and all other coefficients zero.

If we view an averager as a Markov process, and com-
pose this process with our original MDP, we will de-
rive a new MDP. The derived MDP is the same as
the original one except that after every step the agent
gets randomly scattered (with probabilities depending
on the 3s) from its current state to some nearby state.
That is, if a transition leads from z to y in the original
MDP, and if the averager considers state z similar to
y, then the same transition in the derived MDP has
a chance of moving the agent from z to z. Figure 2
shows a simple example of the derived MDP; a slightly
more complicated example is in figure 3. As the follow-
ing theorem shows (see (Gordon, 1995) for a proof),
exact value iteration on the derived MDP is the same
as fitted value iteration on the original MDP.

Theorem 4.1 (Derived MDP) For any averager A
with mapping My, and for any MDP M (either dis-
counted or nondiscounted) with parallel value backup
operator Ty, the function ThyoM 4 is the parallel value
backup operator for a new Markov decision process M'.

In general, the backup operator for the derived MDP
may not be a contraction in any norm. Figure 2 shows
an example where this backup operator diverges, since
the derived MDP has a state with infinite cost. How-
ever, we can often guarantee that the derived MDP is
well-behaved. For example, if M is discounted, or if
A uses weight decay (i.e., if 8, > 0 for all y), then
Tay o M4 will be a max norm contraction; and if A is
self-weighted for M (Gordon, 1995), Thr o M4 will be

a contraction in some weighted max norm.

5 CONVERGING TO WHAT?

Until now, we have only considered the convergence or
divergence of fitted dynamic programming algorithms.
Of course we would like not only convergence, but con-
vergence to a reasonable approximation of the value
function.

Suppose that M is an MDP with value function V*,
and let A be an averager. What if V* is also a fixed
point of M 47 Then V* is a fixed point of Thy o My;
so if we can show that Thy o M4 converges to a unique
answer, we will know that it converges to the right
answer. For example, if M is discounted, or if it has
E(c(z,a)) > 0 for all @ # 1, then Ty o M4 will con-
verge to V*.

If we are trying to solve a nondiscounted MDP and

V* differs slightly from the nearest fixed point of My,
arbitrarily large errors are possible. If we are trying
to solve a discounted MDP, on the other hand, we
can prove a much stronger result: if we only know
that the optimal value function is near a fixed point
of our averager, we can guarantee an error bound for
our learned value function (Gordon, 1995). (A bound
immediately follows (see e.g. (Singh and Yee, 1994))
for the loss incurred by following the corresponding

greedy policy.)

Theorem 5.1 Let V* be the optimal value function
for a finite Markov decision process M with discount
factor v. Let Ty be the parallel value backup operator
for M. Let My be a nonexpansion. Let V4 be any
fized point of My. Suppose ||VA — V*|| = ¢, where
[| || denotes maz norm. Then iteration of Tpyr o My
converges to a value function Vy so that

2ve
L=~y
2

e—i—l

V" =Voll

IN

2ve

[V =Ma(Vo) || < —

Others have derived similar bounds for smaller classes
of function approximators. For a bound on the error
introduced by approximating a continuous MDP with
a grid, see (Chow and Tsitsiklis, 1989). For a bound
on the error introduced by state aggregation, and an-
other bound for a class of linear architectures includ-
ing narrow localized basis functions and interpolation,

see (Tsitsiklis and Van Roy, 1994).

The sort of error bound which we have proved is par-
ticularly useful for approximators such as linear in-
terpolation and grids which have many fixed points.
Because it depends on the maximum difference be-
tween V* and V4, the bound is not very useful if V*
may have large discontinuities at unknown locations:
if V* has a discontinuity of height d, then any aver-
ager which can’t mimic the location of this discontinu-
ity exactly will have no representable functions (and
therefore no fixed points) within % of V*.

6 EXPERIMENTS: HILL-CAR THE
HARD WAY

In the hill-car world (Moore, 1991, Boyan and Moore,
1995, Gordon, 1995), the agent must drive a car up
to the top of a steep hill. At any time, it may choose
between two actions, forward and reverse. Unfortu-
nately, the car’s motor is weak, and can’t climb the
hill from a standing start. So, the agent must back
the car up and get a running start.

In the standard formulation of this world, the state
space is [—1,1] x [—2,2], which represents the posi-
tion and velocity of the car. This state space is small
enough that value iteration on a reasonably-sized grid

Figure 4: The hill-car world.

(1000 to 40000 cells, depending on the desired accu-
racy) can find the optimal value function. To test
fitted value iteration, we expanded the state space a
thousandfold: instead of position and velocity, we rep-
resented each state with two 32 x 32 grayscale pictures
like the ones in figure 4(a), making the new state space
[0,1]2948, The top picture shows the car’s current po-
sition; the bottom one shows where it would be in .03s
if it took no action. A simple grid on this expanded
state space is unthinkable: even with just 2 partitions
per pixel, the grid would have 22043 cells.

To approximate the value function, we took a random
sample of 5000 legal pictures and ran fitted value iter-
ation with local weighted averaging. In local weighted
averaging, the fitted value at state z is an average of
the target values at nearby sampled states z’, weighted
by a Gaussian kernel centered at . We used a sym-
metric kernel with height 1 at the center and height %
when the Euclidean distance from 2’ to x was about 22.
(We arrived at this kernel width by a coarse search: it
is the narrowest kernel width we tested for which the
derived MDP was usually connected.) We repeated
the experiment three times and selected the run with
the median RMS error.

The resulting value function is shown in figure 4(b); its
RMS error from the exact value function (figure 4(c))
is 0.155s. By comparison, a 70x 71 grid on the original,
two-dimensional problem has RMSE 0.186s.

7 CONCLUSIONS AND FURTHER
RESEARCH

We have proved convergence for a wide class of fitted
temporal difference methods, and shown experimen-
tally that these methods can solve Markov decision
processes more efficiently than grids of comparable ac-
curacy.

Unfortunately, many popular function approximators,
such as neural nets and linear regression, do not fall
into this class (and in fact can diverge). The chief rea-

son for divergence is exaggeration: the more a method
can exaggerate small changes in its target function, the
more often it diverges under temporal differencing.

There is another important difference between aver-
agers and methods like neural nets. This difference is
the ability to allocate structure dynamically: an av-
erager cannot decide to concentrate its resources on
one region of the state space, whether or not this de-
cision is justified. This ability is important, and it
can be grafted on to averagers (for example, adaptive
sampling for k-nearest-neighbor, or adaptive meshes
for grids or interpolation). The resulting function ap-
proximator is no longer an averager, and so is not cov-
ered by this paper’s proofs. Still, methods of this sort
have been shown to converge in practice (Moore, 1994,
Moore, 1991), so there is hope that a proof is possible.

Acknowledgements

I would like to thank Rich Sutton, Andrew Moore,
Justin Boyan, and Tom Mitchell for their helpful con-
versations with me. Without their constantly poking
holes in my misconceptions, this paper would never
have been written. Thanks also to Michael Littman,
Mark Ollis, and Ken Lang for their comments on
drafts. This material is based on work supported un-
der a National Science Foundation Graduate Research
Fellowship, by NSF grant number BES-9402439, and
by ARPA grant number F33615-93-1-1330. Any opin-
ions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the author and
do not necessarily reflect the views of the National
Science Foundation, ARPA, or the United States gov-
ernment.

References

R. Bellman and S. Dreyfus. Functional approximations
and dynamic programming. Mathematical Tables and
Aids to Computation, 13:247-251, 1959.

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial
approximation — a new computational technique in
dynamic programming: allocation processes. Mathe-

matics of Computation, 17:155-161, 1963.

R. Bellman. On a routing problem. Quarterly of Ap-
plied Mathematics, 16(1):87-90, 1958.

R. Bellman. Adaptive Control Processes.
University Press, 1961.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice
Hall, 1989.

D. Blackwell. Discounted dynamic programming. An-

nals of Mathematical Statistics, 36:226-235, 1965.

J. A. Boyan and A. W. Moore. Generalization in re-
inforcement learning: safely approximating the value
function. In G. Tesauro and D. Touretzky, editors,
Advances in Neural Information Processing Systems,
volume 7. Morgan Kaufmann, 1995.

C.-S. Chow and J. N. Tsitsiklis. An optimal multigrid
algorithm for discrete-time stochastic control. Techni-
cal Report P-135, Center for Intelligent Control Sys-
tems, 1989.

P. Dayan. The convergence of TD(A) for general
lambda. Machine Learning, 8(3-4):341-362, 1992.

L. R. Ford, Jr. and D. R. Fulkerson. Flows in Net-
works. Princeton University Press, 1962.

Princeton

G. J. Gordon. Stable function approximation in dy-
namic programming. Technical Report CS-95-103,
CMU, 1995.

T. Jaakkola, M. I. Jordan, and S. P. Singh. On the
convergence of stochastic iterative dynamic program-
ming algorithms. Neural Computation, 6(6):1185—
1201, 1994.

A. N. Kolmogorov and S. V. Fomin. Introductory Real
Analysis. Prentice Hall, 1970. Revised English edition
translated and edited by A. N. Silverman.

L.-J. Lin. Self-improving reactive agents based on rein-
forcement learning, planning, and teaching. Machine

Learning, 8(3-4):293-322, 1992.

A. W. Moore. Variable resolution dynamic program-
ming: efficiently learning action maps in multivari-
ate real-valued state-spaces. In L. Birnbaum and
G. Collins, editors, Machine Learning: Proceedings of
the eighth international workshop. Morgan Kaufmann,

1991.

A. W. Moore. The parti-game algorithm for variable
resolution reinforcement learning in multidimensional
state spaces. In S. J. Hanson, J. D. Cowan, and C. L.
Giles, editors, Advances in Neural Information Pro-
cessing Systems, volume 6. Morgan Kaufmann, 1994.
P. Sabes. Approximating Q-values with basis func-
tion representations. In Proceedings of the Fourth Con-
nectionist Models Summer School, Hillsdale, NJ, 1993.

Lawrence Erlbaum.

A. L. Samuels. Some studies in machine learning using
the game of checkers. IBM Journal of Research and
Development, 3(3):210-229, 1959.

S. P. Singh and R. C. Yee. Technical note: an up-
per bound on the loss from approximate optimal-value
functions. Machine Learning, 16(3):227-233, 1994.

R. S. Sutton. Learning to predict by the methods
of temporal differences. Machine Learning, 3(1):9-44,
1988.

G. Tesauro. Neurogammon: a neural network
backgammon program. In IJCNN Proceedings I11,
pages 33-39, 1990.

S. Thrun and A. Schwartz. Issues in using function ap-
proximation for reinforcement learning. In Proceedings
of the Fourth Connectionist Models Summer School,
Hillsdale, NJ, 1993. Lawrence Erlbaum.

J. N. Tsitsiklis and B. Van Roy. Feature-based meth-
ods for large-scale dynamic programming. Technical
Report P-2277, Laboratory for Information and Deci-
sion Systems, 1994.

J. N. Tsitsiklis. Asynchronous stochastic approxima-
tion and Q-learning. Machine Learning, 16(3):185—
202, 1994.

C. J. C. H. Watkins and P. Dayan. Q-learning. Ma-
chine Learning, 8(3-4):279-292, 1992.

C. J. C. H. Watkins. Learning from Delayed Re-
wards. PhD thesis, King’s College, Cambridge, Eng-
land, 1989.

I. H. Witten. An adaptive optimal controller for
discrete-time Markov environments. Information and

Control, 34:286-295, 1977.

