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Abstract

Convex games are a natural generalization
of matrix (normal-form) games that can
compactly model many strategic interactions
with interesting structure. We present a new
anytime algorithm for such games that lever-
ages fast best-response oracles for both play-
ers to build a model of the overall game. This
model is used to identify search directions;
the algorithm then does an exact minimiza-
tion in this direction via a specialized line
search. We test the algorithm on a simpli-
fied version of Texas Hold’em poker repre-
sented as an extensive-form game. Our algo-
rithm approximated the exact value of this
game within $0.20 (the maximum pot size is
$310.00) in a little over 2 hours, using less
than 1.5GB of memory; finding a solution
with comparable bounds using a state-of-the-
art interior-point linear programming algo-
rithm took over 4 days and 25GB of memory.

1 INTRODUCTION

Convex games generalize zero-sum matrix games by
allowing arbitrary convex sets in place of probability
simplices. This very general framework can compactly
represent large games with interesting structure. For
example, extensive-form games (EFGs), which model
sequential decisions on a tree with random nodes and
partial observability, can be represented in this way;
but, so can games with other kinds of structure, in-
cluding path-planning games with uncertain outcomes
and adversary controlled costs, routing problems with
adversary-controlled demands, and other optimization
problems like computing minimax expected-size confi-
dence regions.
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The representational power of convex games makes al-
gorithms for their solution particularly important. It
was shown by Koller et al. [1994] that polyhedral con-
vex games can be solved via linear programming (their
work focuses on EFGs, but the formulation holds for
general convex games). Since that seminal result, the
reduction to linear programming has been the state-
of-the-art for solving this class of problems. For exam-
ple, sophisticated game-abstraction techniques com-
bined with linear programming only recently allowed
for the exact solution of Rhode Island Hold’em poker,
a simplified version of the standard game of heads up,
limit Texas Hold’em. Even after the application of
the equilibria-preserving abstraction, solving the cor-
responding linear program exactly took over 7 days of
CPU time and 25 GB of memory [Gilpin and Sand-
holm, 2005].

Convex games often have significant structure that is
not exploited by general-purpose linear programming
algorithms. One way such structure can be exploited is
through fast algorithms for calculating a best response
strategy to a fixed strategy of the opponent. The clas-
sic fictitious play algorithm takes advantage of such or-
acles, and demonstrates remarkably good performance
on Rhode Island Hold’em. In this paper, we develop a
new algorithm for solving convex games that also uses
best-response oracles and outperforms fictitious play.

This algorithm, which we call the double oracle bundle
algorithm, builds up a collection of strategies (called
a bundle) for each player. On each iteration it solves
an approximate game where each player is only al-
lowed to randomize among the strategies contained in
his bundle. Given the optimal mixed strategies for
this restricted game, it calls the oracles to find best
responses for each player in the full game, and then
adds these responses to the bundles to improve the
approximation. The double oracle bundle method is
related to the family of cutting plane and bundle algo-
rithms for non-smooth optimization, and to Benders’
decomposition in the case of polyhedra [Hiriart-Urruty



and Lemaréchal, 1993]. However, the direct applica-
tion of those techniques to convex games yields algo-
rithms that only take advantage of the best response
oracle for one of the players, not both.

In the next section we review matrix games and convex
games. Section 3 recalls the fictitious play algorithm
and the types of best-response algorithms available to
us. Section 4 reviews extensive-form games as this
class of convex games has received the most atten-
tion in the literature and also because we draw our
experimental testbed problems from this class. Sec-
tion 5 presents our algorithm, beginning with an intu-
itively straightforward version and then proceeding to
our full algorithm which addresses some deficiencies
of the simplified version. Finally, we present exper-
imental results in Section 6, demonstrating dramatic
improvements over both fictitious play and commercial
linear programming software.

2 MATRIX AND CONVEX GAMES

A zero-sum matrix (normal-form) game is played by
two players, player row with strategies R = {1, . . . ,m}
and player column with strategies C = {1, . . . , n}. A
m × n matrix M specifies the payoffs, so that if row
plays strategy i ∈ R and column plays j ∈ C, the pay-
ment from row to column is the (i, j)th entry of M ,
denoted M(i, j). The players select their strategies si-
multaneously, without knowledge of the other player’s
choice.

We use ∆(·) to denote the probability sim-
plex over a finite set, so for example ∆(R) =
{x ∈ Rm |

∑m
i=1 x(i) = 1 and x(i) ≥ 0}. A mixed

strategy is an element x ∈ ∆(R) for the row player
or y ∈ ∆(C) for the column player, corresponding to
a distribution over the rows or columns, respectively.
If the players select mixed strategies x and y, it can
be shown that the expected payoff V (x, y) from row to
column is given by the bilinear form xT My. A solution
to the game is a minimax equilibrium (x∗, y∗), a pair of
strategies such that neither player has an incentive to
play differently given that the other player plays their
strategy from the pair. The minimax theorem says
that if the players are allowed to select mixed strate-
gies, there is no advantage to playing first or second:

min
x∈∆(R)

max
y∈∆(C)

xT My = max
y∈∆(C)

min
x∈∆(R)

xT My.

Such an (x∗, y∗) can be found via linear programming.
The (minimax) value of the game is v∗ = V (x∗, y∗).

An ε-approximate minimax equilibrium for a matrix
game is a pair of strategies (x′, y′) where neither player
can gain more than ε value by switching to some other

strategy. Formally,

V (x′, y′) ≤ min
x∈∆(R)

V (x, y′) + ε

V (x′, y′) ≥ max
y∈∆(C)

V (x′, y)− ε.

If ε = 0 we have an exact minimax equilibrium.

Two-player zero-sum bilinear-payoff convex games are
a natural generalization of matrix games; we will sim-
ply refer to this class as “convex games” or CGs
for the sequel. This formulation was first introduced
by Dresher and Karlin [1953], but convex games have
received remarkably little treatment in the literature
considering the generality of the framework. One of
the goals of this paper is to highlight several interest-
ing special cases of convex games, and suggest that the
class deserves much greater attention.

Convex games allow arbitrary convex sets in place
of the probability simplices ∆(R) and ∆(C) of ma-
trix games. A convex game is specified by a tuple
(X, Y,M) where X ⊆ Rm and Y ⊆ Rn are the strat-
egy sets for the two players, whom we will name x
and y, and M is a m × n payoff matrix. Again both
players select strategies simultaneously, and the payoff
from x to y given as V (x, y) = xT My. The concepts of
equilibria and ε-approximate equilibria naturally gen-
eralize to convex games, and it can be shown that the
minimax theorem still holds.1 A polyhedron is a con-
vex set defined by a finite number of linear equality
and inequality constraints, and a convex game is poly-
hedral if X and Y are polyhedra. Polyhedral con-
vex games can be solved in polynomial time via linear
programming, following Koller et al. [1994]. The abil-
ity to represent arbitrary convex strategy sets lets us
take advantage of structure in many types of games,
yielding exponentially smaller representations. Here
we give four examples to briefly illustrate this point:

In cost-paired Markov decision process games,
each player selects a stochastic policy in an MDP, and
their choice determines the costs in the opponent’s
MDP. The set of strategies (stochastic policies in the
MDPs) for each player has a concise2 representation as
a polyhedron, but there are exponentially many deter-
ministic policies and so the corresponding matrix game
is exponential in both rows and columns [McMahan
et al., 2003, McMahan, 2006].

The well-studied problem of computing an optimal
oblivious routing can be expressed as convex game
where one player picks a routing in a network and
the other picks traffic demands on source-sink pairs.

1Some mild technical assumptions are required.
2That is, the size of the representation of the constraints

is polynomial in the size of the representation of the prob-
lem.



xcntr ← any strategy in X

ycntr ← any strategy in Y

lb← −∞ ub←∞
t← 0

while ( (ub− lb) > ε)

t← t + 1

xsrch ← BRx(Mycntr) ysrch ← BRy((x
cntr)T M)

vx = V (xcntr, ysrch) vy = V (xsrch, ycntr)

lb← max(lb, vy) ub← min(ub, vx)

xcntr ← t
t+1

xcntr + 1
t+1

xsrch ycntr ← t
t+1

ycntr + 1
t+1

ysrch

end

return (xcntr, ycntr) corresponding to ub and lb, respectively

Figure 1: Fictitious Play

There are exponentially many deterministic routings
(pure strategies in the matrix game), but again there
is a concise representation of the set of strategies as a
polyhedron. The details of expressing this problem as
a convex game follow from work by Azar et al. [2003],
though they did not connect their work to the convex
game model. The observation that optimal oblivious
routing is a convex game is new (see McMahan [2006]
for details), and the algorithms presented here may be
of practical interest for that problem.

As previously mentioned, extensive-form games
can be transformed to convex games. While there are
typically exponentially many (in the size of the game
tree) pure strategies for an EFG, the set of behavioral
strategies can be represented concisely as a convex set
of achievable sequence weight vectors.

Bryan et al. [2007] recently showed that the statisti-
cal problem of computing minimax expected-size
confidence regions can be formulated as a convex
game, played by nature (who picks the true parameter
values) and a statistician (who picks a confidence pro-
cedure). The requirement that the statistician must
pick a valid confidence procedure can be expressed via
a concise set of linear constraints, but the matrix-game
formulation is exponential in size. As all these exam-
ples demonstrate, fast algorithms for CGs have broad
applicability.

3 BEST RESPONSES

Suppose player y fixes a strategy y ∈ Y . Then, letting
c = My (think of c as a cost vector), the best response
problem is to compute:

min
x∈X

c · x (1)

If X is a polyhedron, then this is just a standard linear
program. But, in many cases (including all the exam-
ples from the previous section) much faster special-
purpose algorithms are available for solving Equa-
tion (1). For example, in the case of cost-paired MDP
games, solving Equation (1) is exactly the problem of
planning in an MDP with known costs. For the re-
mainder of this paper, we assume we have efficient
algorithms (best response oracles) BRx : Rm → Rm

and BRy : Rn → Rn for solving Equation (1). We gen-
erally view these oracles as functions from cost vectors
(rather than opponent strategies) to strategies, so for
example x = BRx(My) is a best response for x to
the strategy y. We choose this notation because the
matrix-vector multiplications with M are often a dom-
inating computational cost, and so explicitly tracking
such multiplications is important.

It is natural to look for algorithms for solving the over-
all game that can exploit these special-purpose best
response oracles. One simple, well-studied algorithm
that accomplishes this is fictitious play: the algorithm
simulates two players repeatedly playing the convex
game G. Each time G is played, each player chooses
to play a best-response to the average of all her op-
ponent’s previous plays.3 While no guarantees can be
made about the performance of each of these players
in the simulation, the average over their past plays
eventually converges to a minimax equilibrium. For
a recent treatment of fictitious play, see [Leslie and
Collins, 2006]. Pseudo-code for this simple algorithm
is given in Figure 1. Note that each call to the best-
response oracles generates an upper or lower bound for
the minimax value v∗ of G: if x (the min player) plays
xcntr in G, then the max player y can do no better
than playing ysrch = BRy((xcntr)T M), and so we con-
clude v∗ ≤ V (xcntr, ysrch). A similar argument holds for
calls to BRx. Synchronous FP executes the commands
as given; Asynchronous FP does all the updates for
x first (the left column in the loop), and then all the
updates for y. The sequence of bounds corresponding
to (xcntr

t , ycntr
t ) need not be improving monotonically,

so we use the max and min to guarantee the sequence
is monotonic. An implementation can then track the
corresponding argmax and argmin strategies, and re-
turn these if the algorithm is interrupted and asked
to produce a solution in an anytime fashion; this pair
of strategies forms a (ub − lb)-approximate minimax
equilibrium.

This anytime performance can be particularly impor-
tant when considering very large games where abstrac-
tions must be introduced to make any solution possi-

3Because the sets X and Y are convex, this average is
also a valid strategy, and hence we can compute a best
response to it.



ble. For example, there has been much recent work
on abstraction for extensive-form games, and poker in
particular [Billings et al., 2003, Gilpin and Sandholm,
2006]. In such applications, approximately solving a
larger (less abstracted) game may be preferable to ex-
actly solving a much more coarsely abstracted version.

There is a close connection between fictitious play (es-
pecially smooth versions of fictitious play) and running
a pair of no-regret algorithms in self-play, one for each
player. For example, the algorithms of Kalai and Vem-
pala [2003] and Gordon [2005] can be be used in self-
play in the same general form as Figure 1; however,
the best-response oracle is replaced with a special-
purpose oracle that at the intuitive level introduces ad-
ditional smoothing. The regret bounds for such algo-
rithms immediately give both convergence-rate guar-
antees as well as performance guarantees for agents
actually playing a repeated game.

4 EXTENSIVE-FORM GAMES

In this section we briefly review extensive-form games
with the aim of connecting known results to our nota-
tion and perspective. Two-player, zero-sum extensive-
form games can model competitive strategic interac-
tions that involve a sequence of decisions and random
events. The game is specified via a game tree, where
at each node either one of the players selects an action
(corresponding to a successor of the current node) or
nature picks a random successor according to a fixed
probability distribution. Partial observability in the
game is modeled via information sets: an information
set is a subset of a player’s nodes that are indistin-
guishable to the player. That is, each player’s policy
is only allowed to be a function of his observed infor-
mation set, not the exact node in the game tree. (Nec-
essarily, all nodes in an information set must have an
equal number of successors.)

We only consider games with perfect recall, which en-
sures each player’s information sets form a tree. This
implies that all of a player’s past actions and observa-
tions can be inferred given the current information set.
With perfect recall, it is sufficient to consider only be-
havior policies, that is, policies which simply specify a
probability distribution over actions at each informa-
tion set.

The key results for extensive-form games that pertain
to our work are the fact that extensive-form games can
be transformed to convex games, and that computing
best responses for extensive-form games is very fast.

The transformation of an extensive-form game to a
convex game (X, Y,M) is via the sequence weight rep-
resentation of strategies: the strategy set X has one

Bx ← {x0} By ← {y0}
M̃x0,y0 ← (x0)

T My0

lb← −∞ ub←∞
t← 0

while ((ub− lb) > ε)

(p, q)← solveMatrixGame(M̃)

xmix ←
P

x∈Bx
p(x) x ymix ←

P
y∈By

q(y) y

xsrch ← BRx(Mymix) ysrch ← BRy((x
mix)T M)

vx = V (xmix, ysrch) vy = V (xsrch, ymix)

lb← max(lb, vy) ub← min(ub, vx)

Bx ← Bx ∪ {xsrch} By ← By ∪ {ysrch}
(∀y ∈ By) M̃xsrch,y ← (xsrch)T My

(∀x ∈ Bx) M̃x,ysrch ← xT Mysrch

t← t + 1

end

return best (xmix, ymix)

Figure 2: Basic Double-Oracle Algorithm

dimension for each possible sequence of (information
set, action) pairs for player x. For a given x ∈ X,
the value xi can be interpreted as the probability that
the ith possible sequence occurs, conditioned on the
other player and nature deterministically taking ac-
tions compatible with this sequence. The perfect re-
call assumption leads to a concise representation of the
sets of valid sequence weight vectors as polyhedra X
and Y . The payoff matrix entry M(i, j) encodes both
nature’s contribution to the probability that sequence
i occurs for x and sequence j occurs for y as well as
the expected payoff given that both of these sequences
occur.

The tree structure of information sets also leads to fast
best response algorithms. If we fix an opponent strat-
egy y, the vector My assigns a cost to each edge which
corresponds to an action in the tree of player x’s infor-
mation sets. Values associated with each information
set can then be computed via dynamic programming,
working from the leaves backward to the root; any
behavior policy that is greedy with respect to these
values is a best response to y. Computing these values
and reading off a best response takes time O(m). For
a more detailed treatment of the best-response prob-
lem in extensive-form games, see [Koller and Megiddo,
1992]; for the transformation of extensive-form games
to convex games see [Koller et al., 1994].

5 BUNDLE-BASED ALGORITHMS

McMahan et al. [2003] introduced the double-oracle al-
gorithm for the specific problem of planning in MDPs
with adversary-controlled costs. In this section, we



show how the double-oracle algorithm can be extended
to arbitrary convex games, and introduce the Dou-
ble Oracle Bundle Algorithm (DOBA). The original
double-oracle algorithm (the “basic” algorithm) may
require an amount of memory exponential in the prob-
lem size, making it of only theoretical interest for
solving large extensive-form games like Rhode Island
Hold’em; DOBA builds on the double-oracle algorithm
by providing a way to bound memory use.

The principal intuition of the double-oracle algorithm
is to use our best-response oracles to build up an
approximate version of the full convex game. Let
G = (X, Y,M) be the game we wish to solve. Our
approximate game G̃ will also be convex, given by
(X̃, Ỹ ,M), where X̃ ⊆ X will be constructed from
a set of best responses for x to various y strategies,
and analogously for Ỹ ⊆ Y . It should be clear that,
if X̃ approaches X and Ỹ approaches Y , the approx-
imate game G̃ becomes more and more similar to G.
Of course, we hope that the approximation becomes
good before X̃ and Ỹ become intractably large. The
key difference between the double-oracle algorithm and
DOBA is that the latter explicitly manages the com-
plexity of X̃ and Ỹ while still guaranteeing conver-
gence to a solution to the overall game G.

In both algorithms, we maintain a finite set of strate-
gies for each player, Bx ⊆ X and By ⊆ Y respectively;
we will call these sets bundles. We denote the convex
hull of a finite set such as Bx by

H(Bx) =

{ ∑
x∈Bx

p(x)x | p ∈ ∆(Bx)

}
.

Note that H(Bx) is a convex subset of X, and similarly
H(By) is a convex subset of Y . Letting X̃ = H(Bx)
and Ỹ = H(By), we have the game G̃ = (X̃, Ỹ ,M)
which we will use as a model of G.

To interpret G̃, we define a matrix game M̃ which has
strategy sets Bx for row and By for column, with the
|Bx| × |By| payoff matrix given by M̃(x, y) = xT My.
The game G̃ is equivalent to M̃ , in that (p, q) is a
solution to M̃ if and only if xmix =

∑
x∈Bx

p(x)x and
ymix =

∑
y∈By

q(y)y form a solution to G̃.

We will move back and forth between the two equiva-
lent representations G̃ and M̃ . For interpretation we
will use G̃, since its relationship to G is more clear. But
for computation we will work with M̃ , since its size is
independent of m and n (it is |Bx|×|By|). This last fact
is critical for large games: for example, in Rhode Is-
land Hold’em, m and n are both approximately 1×106,
while we fix |Bx| and |By| at, say, 55.

Both algorithms build up the model game M̃ in an
intuitive way using the best response oracles: we ini-

tialize the bundles with one or more arbitrarily chosen
strategies4 for each player. Given the current bundles
Bx and By, we solve the corresponding matrix game M̃ ,
producing a mixed strategy (p, q). We then compute
the corresponding strategies xmix ∈ X and ymix ∈ Y ;
(xmix, ymix) is a valid strategy pair in either G̃ or G, and
so we can use our oracles to generate best responses
BRy((xmix)T M) and BRx(Mymix). We add these new
strategies to the bundle, and also use the fact that they
are best responses to update upper and lower bounds
on the value of the game G. This process defines the
basic double-oracle algorithm (Figure 2).

On each iteration, the size of each bundle increases by
one, as does each dimension of the matrix game M̃ .
This is the principal weakness of the basic algorithm:
the cost of each iteration and the size of the bundles
grow, making it infeasible to run an arbitrary number
of iterations. While McMahan et al. [2003] demon-
strated that for some problems only a few iterations
of this algorithm can produce very good solutions, in
general this will not be the case. In particular, for
Rhode Island Hold’em, storing each strategy in the
bundle requires about 7MB of memory, and so physi-
cal memory rapidly limits the size of the bundles and
hence the number of iterations. To address this issue,
DOBA introduces an aggregation and pruning scheme
that allows it to maintain a constant bundle size.

A second deficiency of the basic algorithm is that
inaccuracies in the model G̃ can lead to solutions
(xmix, ymix) that perform poorly in the true game G.
However, the direction from the current best pair of
strategies (x∗, y∗) towards (xmix, ymix) usually provides
a good direction of improvement. To exploit this fact,
we introduce a fast line search procedure that effi-
ciently solves this 1-dimensional optimization problem.
Our final algorithm is given in Figure 3; in the follow-
ing sections we will outline the principle differences
from the basic version.

Aggregation Our aggregation and pruning scheme
has two components. First, we insert the minimax
strategies xcntr and ycntr into the bundles. This has no
effect on the convex hulls of the bundles if we never re-
move strategies, but since we will be discarding strate-
gies, adding the mixtures is useful: in this way even
if we throw out some strategies that support xcntr,
we may still keep xcntr ∈ H(Bx) by explicitly placing
xcntr ∈ Bx.

In order to determine which strategies to discard, each
time we solve M̃ we use the mixed strategies to up-

4These could be the uniform random strategy (this is
how we initialize for our experiments), but there is the op-
portunity to increase performance by seeding the algorithm
with a collection of expert-generated strategies.



while ((ub− lb) > ε)

(p, q)← solveMatrixGame(M̃)

update strategy weights

xmix ←
P

x∈Bx
p(x)x ymix ←

P
y∈By

q(y)y

updateCenter(x)

ub← min
`
ub, V (xcntr, BRy((x

cntr)T M))
´

updateCenter(y)

lb← max
`
lb, V (BRx(Mycntr), ycntr)

´
if (Bx or By are too big) do aggregation

update(φ)

t← t + 1

end

updateCenter(x):

xsrch ← search(BRx(Mycntr), xmix, [0, 1− φ])

fpstep← 1/(t + 1)

α← φ · fpstep

β ← fpstep + (1− φ)(1− fpstep)

xcntr ← search(xcntr, xsrch, [α, β])

add {xmix, BRx(Mymix), xcntr, BRx(Mycntr)} to Bx(*)

end

Figure 3: DOBA: the double oracle bundle algorithm
with line search, aggregation, and convergence guaran-
tees. Initialization and updates to M̃ (performed on
line (∗)) are similar to those in the basic algorithm.

date a weight w(x) or w(y) associated with each strat-
egy in the bundle: this weight is a discounted aver-
age of the probabilities placed on x or y by past so-
lutions to M̃ . Each iteration, we choose to remove
the strategies with the smallest weights; we then add
to the bundle an aggregate of the removed strategies,
with each removed strategy weighted proportionally to
w(x) or w(y). That is, if we remove x1, . . . , xk and if
W =

∑k
i=1 w(xi), then the aggregate strategy is given

by

xaggr =
k∑

i=1

w(xi)
W

xi.

To keep the bundle size constant, we remove five
strategies on each step: one each to to make room for
the four strategies added in line (*) in Figure 3, and
one to make room for the aggregated strategy xaggr.

Line Search For extensive-form games, it takes time
O(m) to run the oracle BRx(cy) for a fixed cost vector
cy = My, but the cost of the multiplication to compute
cy is O(nm). While the matrix M may be sparse,
multiplications with M will still typically be slower
than best response calls by a considerable constant; for
example, this constant is around 20 for Rhode Island
Hold’em.

In this section we show how we can take advantage of
the relative speed of evaluating best responses for fixed
cost vectors. Consider a restricted convex game with
Bx = {x1, x2} and X̃ = H(Bx) but Ỹ = Y . That is,
x has exactly two strategies, while y has full access to
his strategy set. We show that we can solve the corre-
sponding restricted game (H(Bx), Y,M) efficiently via
a line search. The key is that x’s choice of a proba-
bility distribution over Bx only has a single degree of
freedom. Using θ to represent this free variable, we
can write the problem of solving this game as:

min
θ∈[0,1]

max
y∈Y

((1− θ)x1 + θx2)
T

My (2)

For simplicity, we write x(θ) = ((1− θ)x1 + θx2).
Then, define the function f : R → R by

f(θ) = max
y∈Y

x(θ)T My (3)

and so solving Equation (2) is equivalent to solving
minθ∈[0,1] f(θ). Since f is a piecewise maximum over
a set of affine functions, one for each y ∈ Y , it is
convex. We can minimize such a function via an exact
line search if we can evaluate f at all θ ∈ [0, 1] and
also compute a subgradient to f at each θ. The best
response oracle BRy can be used to accomplish both
these tasks.

For a fixed θ, we can find a y that achieves
the maximum in Equation (3) by computing y =
BRy(x(θ)T M), so that f(θ) = V (x(θ), y). Further,
y corresponds to the linear function x(θ)T My which
gives a lower bound on f and is tight at θ, so the slope
of fy is a subgradient of f at θ. This can easily be
calculated as (x2 − x1)T My.

Directly implementing this approach requires a multi-
plication with M on each iteration, but we can avoid
these multiplications by pre-computing (or caching)
c1 = xT

1 M and c2 = xT
2 M . Define c(θ) = (1 − θ)c1 +

θc2. For a fixed θ, we can evaluating c(θ) in O(m) time.
After computing y = BRy(c(θ)), we calculate f(θ) as
c(θ) · y. Using the same y, we can calculate the neces-
sary subgradient as (c2 − c1) · y. Thus, each iteration
of the line search can be completed in O(m) time.

Convergence Guarantees via Fictitious Play
Fictitious play (or a no-regret algorithm in self-play)
maintains centers xcntr and ycntr, estimates of the
minimax optimal mixed strategies. On each itera-
tion FP updates these centers in the search direction,
xsrch = BRx(ycntr) and ysrch = BRy(xcntr). DOBA has a
similar structure: it maintains a center for each player,
and on each iteration updates these centers towards a
search direction. The algorithm maintains a parame-
ter φ (the fictitious play fraction), so that when φ = 0



the algorithm runs in an unrestricted fashion, while if
φ = 1, the algorithm is exactly FP.

The selection of the search direction and update of
the center occurs in the updateCenter(x) method of
Figure 3; updateCenter(y) is identical, but with the
roles of x and y switched. The best response to the
opponent’s current center is one possible search di-
rection; the solution to the model game M̃ provides
another. DOBA does a line search between these
two possibilities in order to choose its search direc-
tion; however, at least φ weight is required to be
on the best response to the opponent’s center,5 so
that when φ = 1 DOBA uses the same search di-
rection as FP. This is accomplished via the call to
search(BRx(Mycntr), xmix, [0, 1− φ]).

Similarly, we update the center by a line search from
xcntr towards xsrch, but we constrain the interval of the
search to linearly interpolate from [0, 1] when φ = 0, to
[1/(t+1), 1/(t+1)] when φ = 1. The constants α and β
in the call to search(xcntr, xsrch, [α, β]) accomplish this
interpolation; when φ = 1, we have the fixed step-size
1/(t + 1) of fictitious play.

We can insure convergence of DOBA by updating φ
based on the rate of change of (ub− lb) so that if the
rate drops lower than that expected of FP, φ eventually
goes to 1, and DOBA effectively becomes FP. We ran
experiments with several simple methods for updating
φ; generally these had little impact of the runtime of
the algorithm. To avoid conflating the impact of the
φ updating scheme with the performance of our un-
constrained approach, we present experimental results
with φ fixed at 0.

6 EXPERIMENTAL RESULTS

We tested DOBA and FP on two poker games rep-
resented as EFGs: exactly abstracted Rhode Island
Hold’em (RIH), and approximately abstracted6 Texas
Hold’em (TH). For an introduction to two-player
(heads up) limit Texas Hold’em, see, for example,
Billings et al. [2003]. RIH is a restricted version of TH:
it is played with a full deck of 52 cards, but each player
receives only a single face-down hole card, and there
are only two community cards. There are three rounds
of betting, with up to three raises per betting round.

5It is probably better to directly constrain the value
of xsrch against ycntr, say requiring that xsrch is a (1 − φ)-
approximate best response, for example. Or, perhaps even
better, this constraint could be embedded directly into the
linear program for solving the small matrix game M̃ . We
have not yet run experiments to test these ideas.

6This instance only models the first three rounds of bet-
ting, and uses other approximation techniques from Gilpin
and Sandholm [2006].
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Figure 4: Runtimes for asynchronous FP (AFP),
DOBA (with |B| = 55), and CPLEX to produce
ε = $0.73 and ε = $0.20 approximate minimax solu-
tions. Both AFP and DOBA outperform CPLEX by
several orders of magnitude (note log scale). CPLEX
was run on a different machine than FP and DOBA,
so the comparison is approximate.

Unabstracted Rhode Island Hold’em has a game tree
with 3.1 billion nodes, which is still too large to solve
directly. However, by applying a novel exact abstrac-
tion technique (the GameShrink algorithm), Gilpin
and Sandholm [2005] were able to produce an equiva-
lent but much smaller EFG: it has 50× 106 non-zeros
in the payoff and sequence constraint matrices, with
dimensions m = n = 883, 741, taking about 600MB
of memory to store. A solution to this game can be
converted to a payoff-equivalent strategy for the un-
abstracted game. This version of RIH has $5.00 antes
and a maximum pot size of $310.00. The uniform ran-
dom strategy, from which we started both our algo-
rithm and fictitious play, loses approximately $290.00
per game. The minimax value of the game is −$0.64;
the value is negative because player x (the minimizing
player) bets second, and thus gains a small advantage
based on the information revealed by the first player’s
initial bet.

Gilpin and Sandholm [2005] used the CPLEX commer-
cial linear programming package to solve RIH via the
barrier method in about 7.5 days, using 25 GB of mem-
ory; achieving an ε = $0.20 approximate minimax so-
lution took over 4.5 days. DOBA produced a solution
of that quality in 130 minutes, using less than 1.5GB of
memory; to our surprise, asynchronous FP (AFP) was
even faster, needing only 50 minutes; see Figure 4. TH
is larger than RIH (130×106 non-zeros), but has lower
dimensionality (m = n = 236,416). The instance we
used has a small blind (similar to an ante) of $0.50, and
a big blind of $1.00. For this problem, DOBA signifi-
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Figure 5: Algorithm runtime vs. approximation error for RIH (left) and TH (right). The Y axis is a log scale
on ε for the best approximate solution the algorithms can return at a given time, in units of $0.01. Note that
DOBA outperforms both versions of FP by several orders of magnitude for TH.

cantly outperformed asynchronous fictitious play: FP
bounded the value of the game in [−$0.028,−$0.046]
in a 2 hour run, while DOBA achieved better bounds
in less than 6 minutes. Figure 5 compares the anytime
performance of DOBA and fictitious play on both TH
and RIH. For more details, see McMahan [2006].

7 CONCLUSIONS

This work demonstrates that a variety of research
problems of current interest can be caste as convex
games, and demonstrates a powerful new algorithm for
finding approximate equilibria in these games. There
is great promise in both mapping additional optimiza-
tion problems to the convex game framework as well
as continuing the development of algorithms for the
solution of convex games.
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